Spaces:
Runtime error
Runtime error
Commit
·
ae29df4
1
Parent(s):
ea1edf1
Initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +160 -0
- LICENSE +21 -0
- README.md +1 -3
- app.py +115 -0
- assets/results.png +0 -0
- callbacks/base.py +35 -0
- config/audiosep_base.yaml +41 -0
- data/audiotext_dataset.py +91 -0
- data/datamodules.py +122 -0
- data/waveform_mixers.py +127 -0
- datafiles/template.json +8 -0
- environment.yml +326 -0
- losses.py +17 -0
- models/CLAP/__init__.py +0 -0
- models/CLAP/open_clip/__init__.py +25 -0
- models/CLAP/open_clip/bert.py +40 -0
- models/CLAP/open_clip/factory.py +277 -0
- models/CLAP/open_clip/feature_fusion.py +192 -0
- models/CLAP/open_clip/htsat.py +1308 -0
- models/CLAP/open_clip/linear_probe.py +66 -0
- models/CLAP/open_clip/loss.py +398 -0
- models/CLAP/open_clip/model.py +935 -0
- models/CLAP/open_clip/model_configs/HTSAT-base.json +23 -0
- models/CLAP/open_clip/model_configs/HTSAT-large.json +23 -0
- models/CLAP/open_clip/model_configs/HTSAT-tiny-win-1536.json +23 -0
- models/CLAP/open_clip/model_configs/HTSAT-tiny.json +23 -0
- models/CLAP/open_clip/model_configs/PANN-10.json +23 -0
- models/CLAP/open_clip/model_configs/PANN-14-fmax-18k.json +23 -0
- models/CLAP/open_clip/model_configs/PANN-14-fmax-8k-20s.json +23 -0
- models/CLAP/open_clip/model_configs/PANN-14-tiny-transformer.json +23 -0
- models/CLAP/open_clip/model_configs/PANN-14-win-1536.json +23 -0
- models/CLAP/open_clip/model_configs/PANN-14.json +23 -0
- models/CLAP/open_clip/model_configs/PANN-6.json +23 -0
- models/CLAP/open_clip/model_configs/RN101-quickgelu.json +22 -0
- models/CLAP/open_clip/model_configs/RN101.json +21 -0
- models/CLAP/open_clip/model_configs/RN50-quickgelu.json +22 -0
- models/CLAP/open_clip/model_configs/RN50.json +21 -0
- models/CLAP/open_clip/model_configs/RN50x16.json +21 -0
- models/CLAP/open_clip/model_configs/RN50x4.json +21 -0
- models/CLAP/open_clip/model_configs/ViT-B-16.json +16 -0
- models/CLAP/open_clip/model_configs/ViT-B-32-quickgelu.json +17 -0
- models/CLAP/open_clip/model_configs/ViT-B-32.json +16 -0
- models/CLAP/open_clip/model_configs/ViT-L-14.json +16 -0
- models/CLAP/open_clip/openai.py +156 -0
- models/CLAP/open_clip/pann_model.py +704 -0
- models/CLAP/open_clip/pretrained.py +167 -0
- models/CLAP/open_clip/timm_model.py +112 -0
- models/CLAP/open_clip/tokenizer.py +197 -0
- models/CLAP/open_clip/transform.py +45 -0
- models/CLAP/open_clip/utils.py +361 -0
.gitignore
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# poetry
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 102 |
+
#poetry.lock
|
| 103 |
+
|
| 104 |
+
# pdm
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 106 |
+
#pdm.lock
|
| 107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 108 |
+
# in version control.
|
| 109 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 110 |
+
.pdm.toml
|
| 111 |
+
|
| 112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 113 |
+
__pypackages__/
|
| 114 |
+
|
| 115 |
+
# Celery stuff
|
| 116 |
+
celerybeat-schedule
|
| 117 |
+
celerybeat.pid
|
| 118 |
+
|
| 119 |
+
# SageMath parsed files
|
| 120 |
+
*.sage.py
|
| 121 |
+
|
| 122 |
+
# Environments
|
| 123 |
+
.env
|
| 124 |
+
.venv
|
| 125 |
+
env/
|
| 126 |
+
venv/
|
| 127 |
+
ENV/
|
| 128 |
+
env.bak/
|
| 129 |
+
venv.bak/
|
| 130 |
+
|
| 131 |
+
# Spyder project settings
|
| 132 |
+
.spyderproject
|
| 133 |
+
.spyproject
|
| 134 |
+
|
| 135 |
+
# Rope project settings
|
| 136 |
+
.ropeproject
|
| 137 |
+
|
| 138 |
+
# mkdocs documentation
|
| 139 |
+
/site
|
| 140 |
+
|
| 141 |
+
# mypy
|
| 142 |
+
.mypy_cache/
|
| 143 |
+
.dmypy.json
|
| 144 |
+
dmypy.json
|
| 145 |
+
|
| 146 |
+
# Pyre type checker
|
| 147 |
+
.pyre/
|
| 148 |
+
|
| 149 |
+
# pytype static type analyzer
|
| 150 |
+
.pytype/
|
| 151 |
+
|
| 152 |
+
# Cython debug symbols
|
| 153 |
+
cython_debug/
|
| 154 |
+
|
| 155 |
+
# PyCharm
|
| 156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
+
#.idea/
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) Xubo Liu
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE
|
README.md
CHANGED
|
@@ -8,6 +8,4 @@ sdk_version: 3.47.1
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
+
---
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
from threading import Thread
|
| 3 |
+
|
| 4 |
+
import gdown
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import librosa
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
from pipeline import build_audiosep
|
| 11 |
+
|
| 12 |
+
CHECKPOINTS_DIR = Path("checkpoint")
|
| 13 |
+
|
| 14 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
|
| 16 |
+
# The model will be loaded in the future
|
| 17 |
+
MODEL_NAME = CHECKPOINTS_DIR / "audiosep_base_4M_steps.ckpt"
|
| 18 |
+
MODEL = None
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
description = """
|
| 22 |
+
# AudioSep: Separate Anything You Describe
|
| 23 |
+
[[Project Page]](https://audio-agi.github.io/Separate-Anything-You-Describe) [[Paper]](https://audio-agi.github.io/Separate-Anything-You-Describe/AudioSep_arXiv.pdf) [[Code]](https://github.com/Audio-AGI/AudioSep)
|
| 24 |
+
|
| 25 |
+
We introduce AudioSep, a foundation model for open-domain sound separation with natural language queries.
|
| 26 |
+
AudioSep demonstrates strong separation performance and impressivezero-shot generalization ability on
|
| 27 |
+
numerous tasks such as audio event separation, musical instrument separation, and speech enhancement.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_model():
|
| 32 |
+
model = build_audiosep(
|
| 33 |
+
config_yaml="config/audiosep_base.yaml",
|
| 34 |
+
checkpoint_path=MODEL_NAME,
|
| 35 |
+
device=DEVICE,
|
| 36 |
+
)
|
| 37 |
+
return model
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def inference(audio_file_path: str, text: str):
|
| 41 |
+
print(f"Separate audio from [{audio_file_path}] with textual query [{text}]")
|
| 42 |
+
mixture, _ = librosa.load(audio_file_path, sr=32000, mono=True)
|
| 43 |
+
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
text = [text]
|
| 46 |
+
|
| 47 |
+
conditions = MODEL.query_encoder.get_query_embed(
|
| 48 |
+
modality="text", text=text, device=DEVICE
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
input_dict = {
|
| 52 |
+
"mixture": torch.Tensor(mixture)[None, None, :].to(DEVICE),
|
| 53 |
+
"condition": conditions,
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
sep_segment = MODEL.ss_model(input_dict)["waveform"]
|
| 57 |
+
|
| 58 |
+
sep_segment = sep_segment.squeeze(0).squeeze(0).data.cpu().numpy()
|
| 59 |
+
|
| 60 |
+
return 32000, np.round(sep_segment * 32767).astype(np.int16)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def download_models():
|
| 64 |
+
CHECKPOINTS_DIR.mkdir(exist_ok=True)
|
| 65 |
+
success_file = CHECKPOINTS_DIR / "_SUCCESS"
|
| 66 |
+
|
| 67 |
+
models = (
|
| 68 |
+
(
|
| 69 |
+
"https://drive.google.com/file/d/1wQuXThdATXrkmkPM2sRGaNapJ4mTqmlY/view?usp=sharing",
|
| 70 |
+
MODEL_NAME,
|
| 71 |
+
),
|
| 72 |
+
(
|
| 73 |
+
"https://drive.google.com/file/d/11oj8_tPG6SXgw5fIEsZ5HiWZnJOrvdhw/view?usp=sharing",
|
| 74 |
+
CHECKPOINTS_DIR / "music_speech_audioset_epoch_15_esc_89.98.pt",
|
| 75 |
+
),
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
def download(models):
|
| 79 |
+
for model_url, model_path in models:
|
| 80 |
+
gdown.download(model_url, str(model_path), quiet=False, fuzzy=True)
|
| 81 |
+
|
| 82 |
+
success_file.touch()
|
| 83 |
+
|
| 84 |
+
global MODEL
|
| 85 |
+
MODEL = get_model()
|
| 86 |
+
button.update(value="Separate", interactive=True)
|
| 87 |
+
|
| 88 |
+
if not success_file.exists():
|
| 89 |
+
thread = Thread(target=download, args=[models])
|
| 90 |
+
thread.start()
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
with gr.Blocks(title="AudioSep") as demo:
|
| 94 |
+
gr.Markdown(description)
|
| 95 |
+
with gr.Row():
|
| 96 |
+
with gr.Column():
|
| 97 |
+
input_audio = gr.Audio()
|
| 98 |
+
text = gr.Textbox()
|
| 99 |
+
with gr.Column():
|
| 100 |
+
with gr.Column():
|
| 101 |
+
output_audio = gr.Audio(scale=10)
|
| 102 |
+
button = gr.Button(
|
| 103 |
+
"Downloading the models...",
|
| 104 |
+
variant="primary",
|
| 105 |
+
scale=2,
|
| 106 |
+
size="lg",
|
| 107 |
+
interactive=False,
|
| 108 |
+
)
|
| 109 |
+
button.click(
|
| 110 |
+
fn=inference, inputs=[input_audio, text], outputs=[output_audio]
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
download_models()
|
| 114 |
+
|
| 115 |
+
demo.queue().launch(share=True)
|
assets/results.png
ADDED
|
callbacks/base.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import lightning.pytorch as pl
|
| 3 |
+
from lightning.pytorch.utilities import rank_zero_only
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class CheckpointEveryNSteps(pl.Callback):
|
| 7 |
+
def __init__(
|
| 8 |
+
self,
|
| 9 |
+
checkpoints_dir,
|
| 10 |
+
save_step_frequency,
|
| 11 |
+
) -> None:
|
| 12 |
+
r"""Save a checkpoint every N steps.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
checkpoints_dir (str): directory to save checkpoints
|
| 16 |
+
save_step_frequency (int): save checkpoint every N step
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
self.checkpoints_dir = checkpoints_dir
|
| 20 |
+
self.save_step_frequency = save_step_frequency
|
| 21 |
+
|
| 22 |
+
@rank_zero_only
|
| 23 |
+
def on_train_batch_end(self, *args, **kwargs) -> None:
|
| 24 |
+
r"""Save a checkpoint every N steps."""
|
| 25 |
+
|
| 26 |
+
trainer = args[0]
|
| 27 |
+
global_step = trainer.global_step
|
| 28 |
+
|
| 29 |
+
if global_step == 1 or global_step % self.save_step_frequency == 0:
|
| 30 |
+
|
| 31 |
+
ckpt_path = os.path.join(
|
| 32 |
+
self.checkpoints_dir,
|
| 33 |
+
"step={}.ckpt".format(global_step))
|
| 34 |
+
trainer.save_checkpoint(ckpt_path)
|
| 35 |
+
print("Save checkpoint to {}".format(ckpt_path))
|
config/audiosep_base.yaml
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
task_name: AudioSep
|
| 3 |
+
|
| 4 |
+
data:
|
| 5 |
+
datafiles:
|
| 6 |
+
- 'datafiles/template.json'
|
| 7 |
+
|
| 8 |
+
sampling_rate: 32000
|
| 9 |
+
segment_seconds: 5
|
| 10 |
+
loudness_norm:
|
| 11 |
+
lower_db: -10
|
| 12 |
+
higher_db: 10
|
| 13 |
+
max_mix_num: 2
|
| 14 |
+
|
| 15 |
+
model:
|
| 16 |
+
query_net: CLAP
|
| 17 |
+
condition_size: 512
|
| 18 |
+
model_type: ResUNet30
|
| 19 |
+
input_channels: 1
|
| 20 |
+
output_channels: 1
|
| 21 |
+
resume_checkpoint: ""
|
| 22 |
+
use_text_ratio: 1.0
|
| 23 |
+
|
| 24 |
+
train:
|
| 25 |
+
optimizer:
|
| 26 |
+
optimizer_type: AdamW
|
| 27 |
+
learning_rate: 1e-3
|
| 28 |
+
warm_up_steps: 10000
|
| 29 |
+
reduce_lr_steps: 1000000
|
| 30 |
+
lr_lambda_type: constant_warm_up
|
| 31 |
+
num_nodes: 1
|
| 32 |
+
num_workers: 6
|
| 33 |
+
loss_type: l1_wav
|
| 34 |
+
sync_batchnorm: True
|
| 35 |
+
batch_size_per_device: 12
|
| 36 |
+
steps_per_epoch: 10000 # Every 10000 steps is called an `epoch`.
|
| 37 |
+
evaluate_step_frequency: 10000 # Evaluate every #evaluate_step_frequency steps.
|
| 38 |
+
save_step_frequency: 20000 # Save every #save_step_frequency steps.
|
| 39 |
+
early_stop_steps: 10000001
|
| 40 |
+
random_seed: 1234
|
| 41 |
+
|
data/audiotext_dataset.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import random
|
| 3 |
+
import torch
|
| 4 |
+
import torchaudio
|
| 5 |
+
from torch.utils.data import Dataset
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class AudioTextDataset(Dataset):
|
| 9 |
+
"""Can sample data from audio-text databases
|
| 10 |
+
Params:
|
| 11 |
+
sampling_rate: audio sampling rate
|
| 12 |
+
max_clip_len: max length (seconds) of audio clip to be sampled
|
| 13 |
+
"""
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
datafiles=[''],
|
| 17 |
+
sampling_rate=32000,
|
| 18 |
+
max_clip_len=5,
|
| 19 |
+
):
|
| 20 |
+
all_data_json = []
|
| 21 |
+
for datafile in datafiles:
|
| 22 |
+
with open(datafile, 'r') as fp:
|
| 23 |
+
data_json = json.load(fp)['data']
|
| 24 |
+
all_data_json.extend(data_json)
|
| 25 |
+
self.all_data_json = all_data_json
|
| 26 |
+
|
| 27 |
+
self.sampling_rate = sampling_rate
|
| 28 |
+
self.max_length = max_clip_len * sampling_rate
|
| 29 |
+
|
| 30 |
+
def __len__(self):
|
| 31 |
+
return len(self.all_data_json)
|
| 32 |
+
|
| 33 |
+
def _cut_or_randomcrop(self, waveform):
|
| 34 |
+
# waveform: [1, samples]
|
| 35 |
+
# random crop
|
| 36 |
+
if waveform.size(1) > self.max_length:
|
| 37 |
+
random_idx = random.randint(0, waveform.size(1)-self.max_length)
|
| 38 |
+
waveform = waveform[:, random_idx:random_idx+self.max_length]
|
| 39 |
+
else:
|
| 40 |
+
temp_wav = torch.zeros(1, self.max_length)
|
| 41 |
+
temp_wav[:, 0:waveform.size(1)] = waveform
|
| 42 |
+
waveform = temp_wav
|
| 43 |
+
|
| 44 |
+
assert waveform.size(1) == self.max_length, \
|
| 45 |
+
f"number of audio samples is {waveform.size(1)}"
|
| 46 |
+
|
| 47 |
+
return waveform
|
| 48 |
+
|
| 49 |
+
def _read_audio(self, index):
|
| 50 |
+
try:
|
| 51 |
+
audio_path = self.all_data_json[index]['wav']
|
| 52 |
+
audio_data, audio_rate = torchaudio.load(audio_path, channels_first=True)
|
| 53 |
+
text = self.all_data_json[index]['caption']
|
| 54 |
+
|
| 55 |
+
# drop short utterance
|
| 56 |
+
if audio_data.size(1) < self.sampling_rate * 1:
|
| 57 |
+
raise Exception(f'{audio_path} is too short, drop it ...')
|
| 58 |
+
|
| 59 |
+
return text, audio_data, audio_rate
|
| 60 |
+
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f'error: {e} occurs, when loading {audio_path}')
|
| 63 |
+
random_index = random.randint(0, len(self.all_data_json)-1)
|
| 64 |
+
return self._read_audio(index=random_index)
|
| 65 |
+
|
| 66 |
+
def __getitem__(self, index):
|
| 67 |
+
# create a audio tensor
|
| 68 |
+
text, audio_data, audio_rate = self._read_audio(index)
|
| 69 |
+
audio_len = audio_data.shape[1] / audio_rate
|
| 70 |
+
# convert stero to single channel
|
| 71 |
+
if audio_data.shape[0] > 1:
|
| 72 |
+
# audio_data: [samples]
|
| 73 |
+
audio_data = (audio_data[0] + audio_data[1]) / 2
|
| 74 |
+
else:
|
| 75 |
+
audio_data = audio_data.squeeze(0)
|
| 76 |
+
|
| 77 |
+
# resample audio clip
|
| 78 |
+
if audio_rate != self.sampling_rate:
|
| 79 |
+
audio_data = torchaudio.functional.resample(audio_data, orig_freq=audio_rate, new_freq=self.sampling_rate)
|
| 80 |
+
|
| 81 |
+
audio_data = audio_data.unsqueeze(0)
|
| 82 |
+
|
| 83 |
+
audio_data = self._cut_or_randomcrop(audio_data)
|
| 84 |
+
|
| 85 |
+
data_dict = {
|
| 86 |
+
'text': text,
|
| 87 |
+
'waveform': audio_data,
|
| 88 |
+
'modality': 'audio_text'
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
return data_dict
|
data/datamodules.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Optional, NoReturn
|
| 2 |
+
import torch
|
| 3 |
+
import lightning.pytorch as pl
|
| 4 |
+
from torch.utils.data import DataLoader
|
| 5 |
+
from data.audiotext_dataset import AudioTextDataset
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class DataModule(pl.LightningDataModule):
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
train_dataset: object,
|
| 12 |
+
batch_size: int,
|
| 13 |
+
num_workers: int
|
| 14 |
+
):
|
| 15 |
+
r"""Data module. To get one batch of data:
|
| 16 |
+
|
| 17 |
+
code-block:: python
|
| 18 |
+
|
| 19 |
+
data_module.setup()
|
| 20 |
+
|
| 21 |
+
for batch_data_dict in data_module.train_dataloader():
|
| 22 |
+
print(batch_data_dict.keys())
|
| 23 |
+
break
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
train_sampler: Sampler object
|
| 27 |
+
train_dataset: Dataset object
|
| 28 |
+
num_workers: int
|
| 29 |
+
distributed: bool
|
| 30 |
+
"""
|
| 31 |
+
super().__init__()
|
| 32 |
+
self._train_dataset = train_dataset
|
| 33 |
+
self.num_workers = num_workers
|
| 34 |
+
self.batch_size = batch_size
|
| 35 |
+
self.collate_fn = collate_fn
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def prepare_data(self):
|
| 39 |
+
# download, split, etc...
|
| 40 |
+
# only called on 1 GPU/TPU in distributed
|
| 41 |
+
pass
|
| 42 |
+
|
| 43 |
+
def setup(self, stage: Optional[str] = None) -> NoReturn:
|
| 44 |
+
r"""called on every device."""
|
| 45 |
+
|
| 46 |
+
# make assignments here (val/train/test split)
|
| 47 |
+
# called on every process in DDP
|
| 48 |
+
|
| 49 |
+
# SegmentSampler is used for selecting segments for training.
|
| 50 |
+
# On multiple devices, each SegmentSampler samples a part of mini-batch
|
| 51 |
+
# data.
|
| 52 |
+
self.train_dataset = self._train_dataset
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def train_dataloader(self) -> torch.utils.data.DataLoader:
|
| 56 |
+
r"""Get train loader."""
|
| 57 |
+
train_loader = DataLoader(
|
| 58 |
+
dataset=self.train_dataset,
|
| 59 |
+
batch_size=self.batch_size,
|
| 60 |
+
collate_fn=self.collate_fn,
|
| 61 |
+
num_workers=self.num_workers,
|
| 62 |
+
pin_memory=True,
|
| 63 |
+
persistent_workers=False,
|
| 64 |
+
shuffle=True
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
return train_loader
|
| 68 |
+
|
| 69 |
+
def val_dataloader(self):
|
| 70 |
+
# val_split = Dataset(...)
|
| 71 |
+
# return DataLoader(val_split)
|
| 72 |
+
pass
|
| 73 |
+
|
| 74 |
+
def test_dataloader(self):
|
| 75 |
+
# test_split = Dataset(...)
|
| 76 |
+
# return DataLoader(test_split)
|
| 77 |
+
pass
|
| 78 |
+
|
| 79 |
+
def teardown(self):
|
| 80 |
+
# clean up after fit or test
|
| 81 |
+
# called on every process in DDP
|
| 82 |
+
pass
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def collate_fn(list_data_dict):
|
| 86 |
+
r"""Collate mini-batch data to inputs and targets for training.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
list_data_dict: e.g., [
|
| 90 |
+
{
|
| 91 |
+
'text': 'a sound of dog',
|
| 92 |
+
'waveform': (1, samples),
|
| 93 |
+
'modality': 'audio_text'
|
| 94 |
+
}
|
| 95 |
+
...
|
| 96 |
+
]
|
| 97 |
+
Returns:
|
| 98 |
+
data_dict: e.g.
|
| 99 |
+
'audio_text': {
|
| 100 |
+
'text': ['a sound of dog', ...]
|
| 101 |
+
'waveform': (batch_size, 1, samples)
|
| 102 |
+
}
|
| 103 |
+
"""
|
| 104 |
+
|
| 105 |
+
at_list_data_dict = [data_dict for data_dict in list_data_dict if data_dict['modality']=='audio_text']
|
| 106 |
+
|
| 107 |
+
at_data_dict = {}
|
| 108 |
+
|
| 109 |
+
if len(at_list_data_dict) > 0:
|
| 110 |
+
for key in at_list_data_dict[0].keys():
|
| 111 |
+
at_data_dict[key] = [at_data_dict[key] for at_data_dict in at_list_data_dict]
|
| 112 |
+
if key == 'waveform':
|
| 113 |
+
at_data_dict[key] = torch.stack(at_data_dict[key])
|
| 114 |
+
elif key == 'text':
|
| 115 |
+
at_data_dict[key] = [text for text in at_data_dict[key]]
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
data_dict = {
|
| 119 |
+
'audio_text': at_data_dict
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
return data_dict
|
data/waveform_mixers.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import sre_compile
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import pyloudnorm as pyln
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class SegmentMixer(nn.Module):
|
| 10 |
+
def __init__(self, max_mix_num, lower_db, higher_db):
|
| 11 |
+
super(SegmentMixer, self).__init__()
|
| 12 |
+
|
| 13 |
+
self.max_mix_num = max_mix_num
|
| 14 |
+
self.loudness_param = {
|
| 15 |
+
'lower_db': lower_db,
|
| 16 |
+
'higher_db': higher_db,
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
def __call__(self, waveforms):
|
| 20 |
+
|
| 21 |
+
batch_size = waveforms.shape[0]
|
| 22 |
+
|
| 23 |
+
data_dict = {
|
| 24 |
+
'segment': [],
|
| 25 |
+
'mixture': [],
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
for n in range(0, batch_size):
|
| 29 |
+
|
| 30 |
+
segment = waveforms[n].clone()
|
| 31 |
+
|
| 32 |
+
# create zero tensors as the background template
|
| 33 |
+
noise = torch.zeros_like(segment)
|
| 34 |
+
|
| 35 |
+
mix_num = random.randint(2, self.max_mix_num)
|
| 36 |
+
assert mix_num >= 2
|
| 37 |
+
|
| 38 |
+
for i in range(1, mix_num):
|
| 39 |
+
next_segment = waveforms[(n + i) % batch_size]
|
| 40 |
+
rescaled_next_segment = dynamic_loudnorm(audio=next_segment, reference=segment, **self.loudness_param)
|
| 41 |
+
noise += rescaled_next_segment
|
| 42 |
+
|
| 43 |
+
# randomly normalize background noise
|
| 44 |
+
noise = dynamic_loudnorm(audio=noise, reference=segment, **self.loudness_param)
|
| 45 |
+
|
| 46 |
+
# create audio mixyure
|
| 47 |
+
mixture = segment + noise
|
| 48 |
+
|
| 49 |
+
# declipping if need be
|
| 50 |
+
max_value = torch.max(torch.abs(mixture))
|
| 51 |
+
if max_value > 1:
|
| 52 |
+
segment *= 0.9 / max_value
|
| 53 |
+
mixture *= 0.9 / max_value
|
| 54 |
+
|
| 55 |
+
data_dict['segment'].append(segment)
|
| 56 |
+
data_dict['mixture'].append(mixture)
|
| 57 |
+
|
| 58 |
+
for key in data_dict.keys():
|
| 59 |
+
data_dict[key] = torch.stack(data_dict[key], dim=0)
|
| 60 |
+
|
| 61 |
+
# return data_dict
|
| 62 |
+
return data_dict['mixture'], data_dict['segment']
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def rescale_to_match_energy(segment1, segment2):
|
| 66 |
+
|
| 67 |
+
ratio = get_energy_ratio(segment1, segment2)
|
| 68 |
+
rescaled_segment1 = segment1 / ratio
|
| 69 |
+
return rescaled_segment1
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def get_energy(x):
|
| 73 |
+
return torch.mean(x ** 2)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def get_energy_ratio(segment1, segment2):
|
| 77 |
+
|
| 78 |
+
energy1 = get_energy(segment1)
|
| 79 |
+
energy2 = max(get_energy(segment2), 1e-10)
|
| 80 |
+
ratio = (energy1 / energy2) ** 0.5
|
| 81 |
+
ratio = torch.clamp(ratio, 0.02, 50)
|
| 82 |
+
return ratio
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def dynamic_loudnorm(audio, reference, lower_db=-10, higher_db=10):
|
| 86 |
+
rescaled_audio = rescale_to_match_energy(audio, reference)
|
| 87 |
+
|
| 88 |
+
delta_loudness = random.randint(lower_db, higher_db)
|
| 89 |
+
|
| 90 |
+
gain = np.power(10.0, delta_loudness / 20.0)
|
| 91 |
+
|
| 92 |
+
return gain * rescaled_audio
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def torch_to_numpy(tensor):
|
| 96 |
+
"""Convert a PyTorch tensor to a NumPy array."""
|
| 97 |
+
if isinstance(tensor, torch.Tensor):
|
| 98 |
+
return tensor.detach().cpu().numpy()
|
| 99 |
+
else:
|
| 100 |
+
raise ValueError("Input must be a PyTorch tensor.")
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def numpy_to_torch(array):
|
| 104 |
+
"""Convert a NumPy array to a PyTorch tensor."""
|
| 105 |
+
if isinstance(array, np.ndarray):
|
| 106 |
+
return torch.from_numpy(array)
|
| 107 |
+
else:
|
| 108 |
+
raise ValueError("Input must be a NumPy array.")
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
# decayed
|
| 112 |
+
def random_loudness_norm(audio, lower_db=-35, higher_db=-15, sr=32000):
|
| 113 |
+
device = audio.device
|
| 114 |
+
audio = torch_to_numpy(audio.squeeze(0))
|
| 115 |
+
# randomly select a norm volume
|
| 116 |
+
norm_vol = random.randint(lower_db, higher_db)
|
| 117 |
+
|
| 118 |
+
# measure the loudness first
|
| 119 |
+
meter = pyln.Meter(sr) # create BS.1770 meter
|
| 120 |
+
loudness = meter.integrated_loudness(audio)
|
| 121 |
+
# loudness normalize audio
|
| 122 |
+
normalized_audio = pyln.normalize.loudness(audio, loudness, norm_vol)
|
| 123 |
+
|
| 124 |
+
normalized_audio = numpy_to_torch(normalized_audio).unsqueeze(0)
|
| 125 |
+
|
| 126 |
+
return normalized_audio.to(device)
|
| 127 |
+
|
datafiles/template.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"data": [
|
| 3 |
+
{
|
| 4 |
+
"wav": "path_to_audio_file",
|
| 5 |
+
"caption": "textual_desciptions"
|
| 6 |
+
}
|
| 7 |
+
]
|
| 8 |
+
}
|
environment.yml
ADDED
|
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: AudioSep
|
| 2 |
+
channels:
|
| 3 |
+
- pytorch
|
| 4 |
+
- nvidia
|
| 5 |
+
- defaults
|
| 6 |
+
dependencies:
|
| 7 |
+
- _libgcc_mutex=0.1=main
|
| 8 |
+
- _openmp_mutex=5.1=1_gnu
|
| 9 |
+
- backcall=0.2.0=pyhd3eb1b0_0
|
| 10 |
+
- blas=1.0=mkl
|
| 11 |
+
- boltons=23.0.0=py310h06a4308_0
|
| 12 |
+
- brotlipy=0.7.0=py310h7f8727e_1002
|
| 13 |
+
- bzip2=1.0.8=h7b6447c_0
|
| 14 |
+
- ca-certificates=2023.01.10=h06a4308_0
|
| 15 |
+
- certifi=2022.12.7=py310h06a4308_0
|
| 16 |
+
- cffi=1.15.1=py310h5eee18b_3
|
| 17 |
+
- charset-normalizer=2.0.4=pyhd3eb1b0_0
|
| 18 |
+
- comm=0.1.2=py310h06a4308_0
|
| 19 |
+
- conda=23.3.1=py310h06a4308_0
|
| 20 |
+
- conda-content-trust=0.1.3=py310h06a4308_0
|
| 21 |
+
- conda-package-handling=2.0.2=py310h06a4308_0
|
| 22 |
+
- conda-package-streaming=0.7.0=py310h06a4308_0
|
| 23 |
+
- cryptography=38.0.4=py310h9ce1e76_0
|
| 24 |
+
- cuda=11.6.1=0
|
| 25 |
+
- cuda-cccl=11.6.55=hf6102b2_0
|
| 26 |
+
- cuda-command-line-tools=11.6.2=0
|
| 27 |
+
- cuda-compiler=11.6.2=0
|
| 28 |
+
- cuda-cudart=11.6.55=he381448_0
|
| 29 |
+
- cuda-cudart-dev=11.6.55=h42ad0f4_0
|
| 30 |
+
- cuda-cuobjdump=11.6.124=h2eeebcb_0
|
| 31 |
+
- cuda-cupti=11.6.124=h86345e5_0
|
| 32 |
+
- cuda-cuxxfilt=11.6.124=hecbf4f6_0
|
| 33 |
+
- cuda-driver-dev=11.6.55=0
|
| 34 |
+
- cuda-gdb=12.1.55=0
|
| 35 |
+
- cuda-libraries=11.6.1=0
|
| 36 |
+
- cuda-libraries-dev=11.6.1=0
|
| 37 |
+
- cuda-memcheck=11.8.86=0
|
| 38 |
+
- cuda-nsight=12.1.55=0
|
| 39 |
+
- cuda-nsight-compute=12.1.0=0
|
| 40 |
+
- cuda-nvcc=11.6.124=hbba6d2d_0
|
| 41 |
+
- cuda-nvdisasm=12.1.55=0
|
| 42 |
+
- cuda-nvml-dev=11.6.55=haa9ef22_0
|
| 43 |
+
- cuda-nvprof=12.1.55=0
|
| 44 |
+
- cuda-nvprune=11.6.124=he22ec0a_0
|
| 45 |
+
- cuda-nvrtc=11.6.124=h020bade_0
|
| 46 |
+
- cuda-nvrtc-dev=11.6.124=h249d397_0
|
| 47 |
+
- cuda-nvtx=11.6.124=h0630a44_0
|
| 48 |
+
- cuda-nvvp=12.1.55=0
|
| 49 |
+
- cuda-runtime=11.6.1=0
|
| 50 |
+
- cuda-samples=11.6.101=h8efea70_0
|
| 51 |
+
- cuda-sanitizer-api=12.1.55=0
|
| 52 |
+
- cuda-toolkit=11.6.1=0
|
| 53 |
+
- cuda-tools=11.6.1=0
|
| 54 |
+
- cuda-visual-tools=11.6.1=0
|
| 55 |
+
- debugpy=1.5.1=py310h295c915_0
|
| 56 |
+
- decorator=5.1.1=pyhd3eb1b0_0
|
| 57 |
+
- flit-core=3.8.0=py310h06a4308_0
|
| 58 |
+
- freetype=2.12.1=h4a9f257_0
|
| 59 |
+
- gds-tools=1.6.0.25=0
|
| 60 |
+
- giflib=5.2.1=h5eee18b_3
|
| 61 |
+
- gmp=6.2.1=h295c915_3
|
| 62 |
+
- gnutls=3.6.15=he1e5248_0
|
| 63 |
+
- idna=3.4=py310h06a4308_0
|
| 64 |
+
- intel-openmp=2021.4.0=h06a4308_3561
|
| 65 |
+
- ipykernel=6.19.2=py310h2f386ee_0
|
| 66 |
+
- ipython=8.12.0=py310h06a4308_0
|
| 67 |
+
- jpeg=9e=h5eee18b_1
|
| 68 |
+
- jsonpatch=1.32=pyhd3eb1b0_0
|
| 69 |
+
- jsonpointer=2.1=pyhd3eb1b0_0
|
| 70 |
+
- jupyter_client=8.1.0=py310h06a4308_0
|
| 71 |
+
- jupyter_core=5.3.0=py310h06a4308_0
|
| 72 |
+
- lame=3.100=h7b6447c_0
|
| 73 |
+
- lcms2=2.12=h3be6417_0
|
| 74 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
| 75 |
+
- lerc=3.0=h295c915_0
|
| 76 |
+
- libcublas=11.9.2.110=h5e84587_0
|
| 77 |
+
- libcublas-dev=11.9.2.110=h5c901ab_0
|
| 78 |
+
- libcufft=10.7.1.112=hf425ae0_0
|
| 79 |
+
- libcufft-dev=10.7.1.112=ha5ce4c0_0
|
| 80 |
+
- libcufile=1.6.0.25=0
|
| 81 |
+
- libcufile-dev=1.6.0.25=0
|
| 82 |
+
- libcurand=10.3.2.56=0
|
| 83 |
+
- libcurand-dev=10.3.2.56=0
|
| 84 |
+
- libcusolver=11.3.4.124=h33c3c4e_0
|
| 85 |
+
- libcusparse=11.7.2.124=h7538f96_0
|
| 86 |
+
- libcusparse-dev=11.7.2.124=hbbe9722_0
|
| 87 |
+
- libdeflate=1.17=h5eee18b_0
|
| 88 |
+
- libffi=3.4.2=h6a678d5_6
|
| 89 |
+
- libgcc-ng=11.2.0=h1234567_1
|
| 90 |
+
- libgomp=11.2.0=h1234567_1
|
| 91 |
+
- libiconv=1.16=h7f8727e_2
|
| 92 |
+
- libidn2=2.3.2=h7f8727e_0
|
| 93 |
+
- libnpp=11.6.3.124=hd2722f0_0
|
| 94 |
+
- libnpp-dev=11.6.3.124=h3c42840_0
|
| 95 |
+
- libnvjpeg=11.6.2.124=hd473ad6_0
|
| 96 |
+
- libnvjpeg-dev=11.6.2.124=hb5906b9_0
|
| 97 |
+
- libpng=1.6.39=h5eee18b_0
|
| 98 |
+
- libsodium=1.0.18=h7b6447c_0
|
| 99 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
| 100 |
+
- libtasn1=4.19.0=h5eee18b_0
|
| 101 |
+
- libtiff=4.5.0=h6a678d5_2
|
| 102 |
+
- libunistring=0.9.10=h27cfd23_0
|
| 103 |
+
- libuuid=1.41.5=h5eee18b_0
|
| 104 |
+
- libwebp=1.2.4=h11a3e52_1
|
| 105 |
+
- libwebp-base=1.2.4=h5eee18b_1
|
| 106 |
+
- lz4-c=1.9.4=h6a678d5_0
|
| 107 |
+
- matplotlib-inline=0.1.6=py310h06a4308_0
|
| 108 |
+
- mkl=2021.4.0=h06a4308_640
|
| 109 |
+
- mkl-service=2.4.0=py310h7f8727e_0
|
| 110 |
+
- mkl_fft=1.3.1=py310hd6ae3a3_0
|
| 111 |
+
- mkl_random=1.2.2=py310h00e6091_0
|
| 112 |
+
- ncurses=6.4=h6a678d5_0
|
| 113 |
+
- nest-asyncio=1.5.6=py310h06a4308_0
|
| 114 |
+
- nettle=3.7.3=hbbd107a_1
|
| 115 |
+
- nsight-compute=2023.1.0.15=0
|
| 116 |
+
- numpy=1.23.5=py310hd5efca6_0
|
| 117 |
+
- numpy-base=1.23.5=py310h8e6c178_0
|
| 118 |
+
- openh264=2.1.1=h4ff587b_0
|
| 119 |
+
- openssl=1.1.1t=h7f8727e_0
|
| 120 |
+
- packaging=23.0=py310h06a4308_0
|
| 121 |
+
- parso=0.8.3=pyhd3eb1b0_0
|
| 122 |
+
- pexpect=4.8.0=pyhd3eb1b0_3
|
| 123 |
+
- pickleshare=0.7.5=pyhd3eb1b0_1003
|
| 124 |
+
- pip=22.3.1=py310h06a4308_0
|
| 125 |
+
- platformdirs=2.5.2=py310h06a4308_0
|
| 126 |
+
- pluggy=1.0.0=py310h06a4308_1
|
| 127 |
+
- psutil=5.9.0=py310h5eee18b_0
|
| 128 |
+
- ptyprocess=0.7.0=pyhd3eb1b0_2
|
| 129 |
+
- pure_eval=0.2.2=pyhd3eb1b0_0
|
| 130 |
+
- pycosat=0.6.4=py310h5eee18b_0
|
| 131 |
+
- pycparser=2.21=pyhd3eb1b0_0
|
| 132 |
+
- pyopenssl=22.0.0=pyhd3eb1b0_0
|
| 133 |
+
- pysocks=1.7.1=py310h06a4308_0
|
| 134 |
+
- python=3.10.9=h7a1cb2a_0
|
| 135 |
+
- python-dateutil=2.8.2=pyhd3eb1b0_0
|
| 136 |
+
- pytorch=1.13.1=py3.10_cuda11.6_cudnn8.3.2_0
|
| 137 |
+
- pytorch-cuda=11.6=h867d48c_1
|
| 138 |
+
- pytorch-mutex=1.0=cuda
|
| 139 |
+
- pyzmq=23.2.0=py310h6a678d5_0
|
| 140 |
+
- readline=8.2=h5eee18b_0
|
| 141 |
+
- requests=2.28.1=py310h06a4308_0
|
| 142 |
+
- ruamel.yaml=0.17.21=py310h5eee18b_0
|
| 143 |
+
- ruamel.yaml.clib=0.2.6=py310h5eee18b_1
|
| 144 |
+
- setuptools=65.6.3=py310h06a4308_0
|
| 145 |
+
- six=1.16.0=pyhd3eb1b0_1
|
| 146 |
+
- sqlite=3.40.1=h5082296_0
|
| 147 |
+
- stack_data=0.2.0=pyhd3eb1b0_0
|
| 148 |
+
- tk=8.6.12=h1ccaba5_0
|
| 149 |
+
- toolz=0.12.0=py310h06a4308_0
|
| 150 |
+
- torchaudio=0.13.1=py310_cu116
|
| 151 |
+
- torchvision=0.14.1=py310_cu116
|
| 152 |
+
- tornado=6.2=py310h5eee18b_0
|
| 153 |
+
- tqdm=4.64.1=py310h06a4308_0
|
| 154 |
+
- typing_extensions=4.4.0=py310h06a4308_0
|
| 155 |
+
- tzdata=2022g=h04d1e81_0
|
| 156 |
+
- urllib3=1.26.14=py310h06a4308_0
|
| 157 |
+
- wheel=0.37.1=pyhd3eb1b0_0
|
| 158 |
+
- xz=5.2.10=h5eee18b_1
|
| 159 |
+
- zeromq=4.3.4=h2531618_0
|
| 160 |
+
- zlib=1.2.13=h5eee18b_0
|
| 161 |
+
- zstandard=0.18.0=py310h5eee18b_0
|
| 162 |
+
- zstd=1.5.4=hc292b87_0
|
| 163 |
+
- pip:
|
| 164 |
+
- absl-py==1.4.0
|
| 165 |
+
- aiohttp==3.8.4
|
| 166 |
+
- aiosignal==1.3.1
|
| 167 |
+
- anyio==3.6.2
|
| 168 |
+
- appdirs==1.4.4
|
| 169 |
+
- arrow==1.2.3
|
| 170 |
+
- asttokens==2.2.1
|
| 171 |
+
- async-generator==1.10
|
| 172 |
+
- async-timeout==4.0.2
|
| 173 |
+
- attrs==22.2.0
|
| 174 |
+
- audioread==3.0.0
|
| 175 |
+
- av==10.0.0
|
| 176 |
+
- beartype==0.12.0
|
| 177 |
+
- beautifulsoup4==4.12.2
|
| 178 |
+
- blessed==1.20.0
|
| 179 |
+
- braceexpand==0.1.7
|
| 180 |
+
- cachetools==5.3.0
|
| 181 |
+
- click==8.1.3
|
| 182 |
+
- contourpy==1.0.7
|
| 183 |
+
- croniter==1.3.10
|
| 184 |
+
- cycler==0.11.0
|
| 185 |
+
- dataclasses-json==0.5.8
|
| 186 |
+
- dateutils==0.6.12
|
| 187 |
+
- decord==0.6.0
|
| 188 |
+
- deepdiff==6.3.0
|
| 189 |
+
- dtk==0.2
|
| 190 |
+
- exceptiongroup==1.1.1
|
| 191 |
+
- executing==1.2.0
|
| 192 |
+
- fastapi==0.88.0
|
| 193 |
+
- ffmpeg==1.4
|
| 194 |
+
- ffmpeg-python==0.2.0
|
| 195 |
+
- filelock==3.12.0
|
| 196 |
+
- fonttools==4.39.3
|
| 197 |
+
- frozenlist==1.3.3
|
| 198 |
+
- fsspec==2023.4.0
|
| 199 |
+
- ftfy==6.1.1
|
| 200 |
+
- future==0.18.3
|
| 201 |
+
- gammatone==1.0
|
| 202 |
+
- google-auth==2.17.3
|
| 203 |
+
- google-auth-oauthlib==1.0.0
|
| 204 |
+
- greenlet==2.0.2
|
| 205 |
+
- grpcio==1.54.0
|
| 206 |
+
- h11==0.14.0
|
| 207 |
+
- h5py==3.8.0
|
| 208 |
+
- hickle==5.0.2
|
| 209 |
+
- huggingface-hub==0.14.1
|
| 210 |
+
- humanize==4.6.0
|
| 211 |
+
- imageio==2.27.0
|
| 212 |
+
- inquirer==3.1.3
|
| 213 |
+
- ipdb==0.13.13
|
| 214 |
+
- itsdangerous==2.1.2
|
| 215 |
+
- jedi==0.18.2
|
| 216 |
+
- jinja2==3.1.2
|
| 217 |
+
- joblib==1.2.0
|
| 218 |
+
- kiwisolver==1.4.4
|
| 219 |
+
- langchain==0.0.216
|
| 220 |
+
- langchainplus-sdk==0.0.17
|
| 221 |
+
- lazy-loader==0.2
|
| 222 |
+
- librosa==0.10.0.post2
|
| 223 |
+
- lightning==2.0.0
|
| 224 |
+
- lightning-cloud==0.5.33
|
| 225 |
+
- lightning-utilities==0.8.0
|
| 226 |
+
- llvmlite==0.39.1
|
| 227 |
+
- markdown==3.4.3
|
| 228 |
+
- markdown-it-py==2.2.0
|
| 229 |
+
- markupsafe==2.1.2
|
| 230 |
+
- marshmallow==3.19.0
|
| 231 |
+
- marshmallow-enum==1.5.1
|
| 232 |
+
- matplotlib==3.7.1
|
| 233 |
+
- mdurl==0.1.2
|
| 234 |
+
- mergedeep==1.3.4
|
| 235 |
+
- mock==5.0.2
|
| 236 |
+
- msgpack==1.0.5
|
| 237 |
+
- msgpack-numpy==0.4.8
|
| 238 |
+
- multidict==6.0.4
|
| 239 |
+
- musdb==0.4.0
|
| 240 |
+
- mypy-extensions==1.0.0
|
| 241 |
+
- networkx==3.1
|
| 242 |
+
- nose==1.3.7
|
| 243 |
+
- numba==0.56.4
|
| 244 |
+
- numexpr==2.8.4
|
| 245 |
+
- oauthlib==3.2.2
|
| 246 |
+
- openai==0.27.8
|
| 247 |
+
- openapi-schema-pydantic==1.2.4
|
| 248 |
+
- opencv-python==4.7.0.72
|
| 249 |
+
- ordered-set==4.1.0
|
| 250 |
+
- outcome==1.2.0
|
| 251 |
+
- pandas==1.5.3
|
| 252 |
+
- panns-inference==0.1.0
|
| 253 |
+
- pesq==0.0.4
|
| 254 |
+
- pillow==9.5.0
|
| 255 |
+
- pooch==1.6.0
|
| 256 |
+
- prompt-toolkit==3.0.38
|
| 257 |
+
- protobuf==4.22.3
|
| 258 |
+
- pyaml==23.5.9
|
| 259 |
+
- pyasn1==0.5.0
|
| 260 |
+
- pyasn1-modules==0.3.0
|
| 261 |
+
- pydantic==1.10.7
|
| 262 |
+
- pygments==2.14.0
|
| 263 |
+
- pyjwt==2.6.0
|
| 264 |
+
- pyloudnorm==0.1.1
|
| 265 |
+
- pyparsing==3.0.9
|
| 266 |
+
- pystoi==0.3.3
|
| 267 |
+
- python-editor==1.0.4
|
| 268 |
+
- python-multipart==0.0.6
|
| 269 |
+
- pytorch-ignite==0.3.0
|
| 270 |
+
- pytorch-lightning==2.0.1.post0
|
| 271 |
+
- pytz==2023.3
|
| 272 |
+
- pywavelets==1.4.1
|
| 273 |
+
- pyyaml==6.0
|
| 274 |
+
- readchar==4.0.5
|
| 275 |
+
- regex==2023.3.23
|
| 276 |
+
- requests-oauthlib==1.3.1
|
| 277 |
+
- resampy==0.4.2
|
| 278 |
+
- rich==13.3.3
|
| 279 |
+
- rsa==4.9
|
| 280 |
+
- scikit-image==0.20.0
|
| 281 |
+
- scikit-learn==1.2.2
|
| 282 |
+
- scipy==1.10.1
|
| 283 |
+
- selenium==4.8.3
|
| 284 |
+
- simplejpeg==1.6.6
|
| 285 |
+
- sniffio==1.3.0
|
| 286 |
+
- sortedcontainers==2.4.0
|
| 287 |
+
- soundfile==0.12.1
|
| 288 |
+
- soupsieve==2.4
|
| 289 |
+
- soxr==0.3.5
|
| 290 |
+
- sqlalchemy==2.0.17
|
| 291 |
+
- stack-data==0.6.2
|
| 292 |
+
- starlette==0.22.0
|
| 293 |
+
- starsessions==1.3.0
|
| 294 |
+
- stempeg==0.2.3
|
| 295 |
+
- tenacity==8.2.2
|
| 296 |
+
- tensorboard==2.12.2
|
| 297 |
+
- tensorboard-data-server==0.7.0
|
| 298 |
+
- tensorboard-plugin-wit==1.8.1
|
| 299 |
+
- termcolor==1.1.0
|
| 300 |
+
- threadpoolctl==3.1.0
|
| 301 |
+
- tifffile==2023.3.21
|
| 302 |
+
- timm==0.3.2
|
| 303 |
+
- tokenizers==0.13.3
|
| 304 |
+
- tomli==2.0.1
|
| 305 |
+
- torchfile==0.1.0
|
| 306 |
+
- torchlibrosa==0.1.0
|
| 307 |
+
- torchmetrics==0.11.4
|
| 308 |
+
- traitlets==5.9.0
|
| 309 |
+
- transformers==4.28.1
|
| 310 |
+
- trio==0.22.0
|
| 311 |
+
- trio-websocket==0.10.2
|
| 312 |
+
- typeguard==3.0.2
|
| 313 |
+
- typing-extensions==4.5.0
|
| 314 |
+
- typing-inspect==0.9.0
|
| 315 |
+
- uvicorn==0.21.1
|
| 316 |
+
- visdom==0.1.8.9
|
| 317 |
+
- wcwidth==0.2.6
|
| 318 |
+
- webdataset==0.2.48
|
| 319 |
+
- websocket-client==1.5.1
|
| 320 |
+
- websockets==11.0.1
|
| 321 |
+
- werkzeug==2.2.3
|
| 322 |
+
- wget==3.2
|
| 323 |
+
- wsproto==1.2.0
|
| 324 |
+
- yarl==1.8.2
|
| 325 |
+
- zenodo-get==1.3.4
|
| 326 |
+
- zsvision==0.7.8
|
losses.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def l1(output, target):
|
| 5 |
+
return torch.mean(torch.abs(output - target))
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def l1_wav(output_dict, target_dict):
|
| 9 |
+
return l1(output_dict['segment'], target_dict['segment'])
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_loss_function(loss_type):
|
| 13 |
+
if loss_type == "l1_wav":
|
| 14 |
+
return l1_wav
|
| 15 |
+
|
| 16 |
+
else:
|
| 17 |
+
raise NotImplementedError("Error!")
|
models/CLAP/__init__.py
ADDED
|
File without changes
|
models/CLAP/open_clip/__init__.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .factory import (
|
| 2 |
+
list_models,
|
| 3 |
+
create_model,
|
| 4 |
+
create_model_and_transforms,
|
| 5 |
+
add_model_config,
|
| 6 |
+
)
|
| 7 |
+
from .loss import ClipLoss, gather_features, LPLoss, lp_gather_features, LPMetrics
|
| 8 |
+
from .model import (
|
| 9 |
+
CLAP,
|
| 10 |
+
CLAPTextCfg,
|
| 11 |
+
CLAPVisionCfg,
|
| 12 |
+
CLAPAudioCfp,
|
| 13 |
+
convert_weights_to_fp16,
|
| 14 |
+
trace_model,
|
| 15 |
+
)
|
| 16 |
+
from .openai import load_openai_model, list_openai_models
|
| 17 |
+
from .pretrained import (
|
| 18 |
+
list_pretrained,
|
| 19 |
+
list_pretrained_tag_models,
|
| 20 |
+
list_pretrained_model_tags,
|
| 21 |
+
get_pretrained_url,
|
| 22 |
+
download_pretrained,
|
| 23 |
+
)
|
| 24 |
+
from .tokenizer import SimpleTokenizer, tokenize
|
| 25 |
+
from .transform import image_transform
|
models/CLAP/open_clip/bert.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import BertTokenizer, BertModel
|
| 2 |
+
|
| 3 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
| 4 |
+
model = BertModel.from_pretrained("bert-base-uncased")
|
| 5 |
+
text = "Replace me by any text you'd like."
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def bert_embeddings(text):
|
| 9 |
+
# text = "Replace me by any text you'd like."
|
| 10 |
+
encoded_input = tokenizer(text, return_tensors="pt")
|
| 11 |
+
output = model(**encoded_input)
|
| 12 |
+
return output
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
from transformers import RobertaTokenizer, RobertaModel
|
| 16 |
+
|
| 17 |
+
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
| 18 |
+
model = RobertaModel.from_pretrained("roberta-base")
|
| 19 |
+
text = "Replace me by any text you'd like."
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def Roberta_embeddings(text):
|
| 23 |
+
# text = "Replace me by any text you'd like."
|
| 24 |
+
encoded_input = tokenizer(text, return_tensors="pt")
|
| 25 |
+
output = model(**encoded_input)
|
| 26 |
+
return output
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
from transformers import BartTokenizer, BartModel
|
| 30 |
+
|
| 31 |
+
tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
|
| 32 |
+
model = BartModel.from_pretrained("facebook/bart-base")
|
| 33 |
+
text = "Replace me by any text you'd like."
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def bart_embeddings(text):
|
| 37 |
+
# text = "Replace me by any text you'd like."
|
| 38 |
+
encoded_input = tokenizer(text, return_tensors="pt")
|
| 39 |
+
output = model(**encoded_input)
|
| 40 |
+
return output
|
models/CLAP/open_clip/factory.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
import pathlib
|
| 5 |
+
import re
|
| 6 |
+
from copy import deepcopy
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
from .model import CLAP, convert_weights_to_fp16
|
| 12 |
+
from .openai import load_openai_model
|
| 13 |
+
from .pretrained import get_pretrained_url, download_pretrained
|
| 14 |
+
from .transform import image_transform
|
| 15 |
+
|
| 16 |
+
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
|
| 17 |
+
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def _natural_key(string_):
|
| 21 |
+
return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())]
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def _rescan_model_configs():
|
| 25 |
+
global _MODEL_CONFIGS
|
| 26 |
+
|
| 27 |
+
config_ext = (".json",)
|
| 28 |
+
config_files = []
|
| 29 |
+
for config_path in _MODEL_CONFIG_PATHS:
|
| 30 |
+
if config_path.is_file() and config_path.suffix in config_ext:
|
| 31 |
+
config_files.append(config_path)
|
| 32 |
+
elif config_path.is_dir():
|
| 33 |
+
for ext in config_ext:
|
| 34 |
+
config_files.extend(config_path.glob(f"*{ext}"))
|
| 35 |
+
|
| 36 |
+
for cf in config_files:
|
| 37 |
+
if os.path.basename(cf)[0] == ".":
|
| 38 |
+
continue # Ignore hidden files
|
| 39 |
+
|
| 40 |
+
with open(cf, "r") as f:
|
| 41 |
+
model_cfg = json.load(f)
|
| 42 |
+
if all(a in model_cfg for a in ("embed_dim", "audio_cfg", "text_cfg")):
|
| 43 |
+
_MODEL_CONFIGS[cf.stem] = model_cfg
|
| 44 |
+
|
| 45 |
+
_MODEL_CONFIGS = {
|
| 46 |
+
k: v
|
| 47 |
+
for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
_rescan_model_configs() # initial populate of model config registry
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def load_state_dict(checkpoint_path: str, map_location="cpu", skip_params=True):
|
| 55 |
+
checkpoint = torch.load(checkpoint_path, map_location=map_location)
|
| 56 |
+
if isinstance(checkpoint, dict) and "state_dict" in checkpoint:
|
| 57 |
+
state_dict = checkpoint["state_dict"]
|
| 58 |
+
else:
|
| 59 |
+
state_dict = checkpoint
|
| 60 |
+
if skip_params:
|
| 61 |
+
if next(iter(state_dict.items()))[0].startswith("module"):
|
| 62 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
| 63 |
+
# for k in state_dict:
|
| 64 |
+
# if k.startswith('transformer'):
|
| 65 |
+
# v = state_dict.pop(k)
|
| 66 |
+
# state_dict['text_branch.' + k[12:]] = v
|
| 67 |
+
return state_dict
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def create_model(
|
| 71 |
+
amodel_name: str,
|
| 72 |
+
tmodel_name: str,
|
| 73 |
+
pretrained: str = "",
|
| 74 |
+
precision: str = "fp32",
|
| 75 |
+
device: torch.device = torch.device("cpu"),
|
| 76 |
+
jit: bool = False,
|
| 77 |
+
force_quick_gelu: bool = False,
|
| 78 |
+
openai_model_cache_dir: str = os.path.expanduser("~/.cache/clip"),
|
| 79 |
+
skip_params=True,
|
| 80 |
+
pretrained_audio: str = "",
|
| 81 |
+
pretrained_text: str = "",
|
| 82 |
+
enable_fusion: bool = False,
|
| 83 |
+
fusion_type: str = "None"
|
| 84 |
+
# pretrained_image: bool = False,
|
| 85 |
+
):
|
| 86 |
+
amodel_name = amodel_name.replace(
|
| 87 |
+
"/", "-"
|
| 88 |
+
) # for callers using old naming with / in ViT names
|
| 89 |
+
pretrained_orig = pretrained
|
| 90 |
+
pretrained = pretrained.lower()
|
| 91 |
+
if pretrained == "openai":
|
| 92 |
+
if amodel_name in _MODEL_CONFIGS:
|
| 93 |
+
logging.info(f"Loading {amodel_name} model config.")
|
| 94 |
+
model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
|
| 95 |
+
else:
|
| 96 |
+
logging.error(
|
| 97 |
+
f"Model config for {amodel_name} not found; available models {list_models()}."
|
| 98 |
+
)
|
| 99 |
+
raise RuntimeError(f"Model config for {amodel_name} not found.")
|
| 100 |
+
|
| 101 |
+
logging.info(f"Loading pretrained ViT-B-16 text encoder from OpenAI.")
|
| 102 |
+
# Hard Code in model name
|
| 103 |
+
model_cfg["text_cfg"]["model_type"] = tmodel_name
|
| 104 |
+
model = load_openai_model(
|
| 105 |
+
"ViT-B-16",
|
| 106 |
+
model_cfg,
|
| 107 |
+
device=device,
|
| 108 |
+
jit=jit,
|
| 109 |
+
cache_dir=openai_model_cache_dir,
|
| 110 |
+
enable_fusion=enable_fusion,
|
| 111 |
+
fusion_type=fusion_type,
|
| 112 |
+
)
|
| 113 |
+
# See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372
|
| 114 |
+
if precision == "amp" or precision == "fp32":
|
| 115 |
+
model = model.float()
|
| 116 |
+
else:
|
| 117 |
+
if amodel_name in _MODEL_CONFIGS:
|
| 118 |
+
logging.info(f"Loading {amodel_name} model config.")
|
| 119 |
+
model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
|
| 120 |
+
else:
|
| 121 |
+
logging.error(
|
| 122 |
+
f"Model config for {amodel_name} not found; available models {list_models()}."
|
| 123 |
+
)
|
| 124 |
+
raise RuntimeError(f"Model config for {amodel_name} not found.")
|
| 125 |
+
|
| 126 |
+
if force_quick_gelu:
|
| 127 |
+
# override for use of QuickGELU on non-OpenAI transformer models
|
| 128 |
+
model_cfg["quick_gelu"] = True
|
| 129 |
+
|
| 130 |
+
# if pretrained_image:
|
| 131 |
+
# if 'timm_amodel_name' in model_cfg.get('vision_cfg', {}):
|
| 132 |
+
# # pretrained weight loading for timm models set via vision_cfg
|
| 133 |
+
# model_cfg['vision_cfg']['timm_model_pretrained'] = True
|
| 134 |
+
# else:
|
| 135 |
+
# assert False, 'pretrained image towers currently only supported for timm models'
|
| 136 |
+
model_cfg["text_cfg"]["model_type"] = tmodel_name
|
| 137 |
+
model_cfg["enable_fusion"] = enable_fusion
|
| 138 |
+
model_cfg["fusion_type"] = fusion_type
|
| 139 |
+
model = CLAP(**model_cfg)
|
| 140 |
+
|
| 141 |
+
if pretrained:
|
| 142 |
+
checkpoint_path = ""
|
| 143 |
+
url = get_pretrained_url(amodel_name, pretrained)
|
| 144 |
+
if url:
|
| 145 |
+
checkpoint_path = download_pretrained(url, root=openai_model_cache_dir)
|
| 146 |
+
elif os.path.exists(pretrained_orig):
|
| 147 |
+
checkpoint_path = pretrained_orig
|
| 148 |
+
if checkpoint_path:
|
| 149 |
+
logging.info(
|
| 150 |
+
f"Loading pretrained {amodel_name}-{tmodel_name} weights ({pretrained})."
|
| 151 |
+
)
|
| 152 |
+
ckpt = load_state_dict(checkpoint_path, skip_params=True)
|
| 153 |
+
model.load_state_dict(ckpt)
|
| 154 |
+
param_names = [n for n, p in model.named_parameters()]
|
| 155 |
+
# for n in param_names:
|
| 156 |
+
# print(n, "\t", "Loaded" if n in ckpt else "Unloaded")
|
| 157 |
+
else:
|
| 158 |
+
logging.warning(
|
| 159 |
+
f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
|
| 160 |
+
)
|
| 161 |
+
raise RuntimeError(
|
| 162 |
+
f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
if pretrained_audio:
|
| 166 |
+
if amodel_name.startswith("PANN"):
|
| 167 |
+
if "Cnn14_mAP" in pretrained_audio: # official checkpoint
|
| 168 |
+
audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
|
| 169 |
+
audio_ckpt = audio_ckpt["model"]
|
| 170 |
+
keys = list(audio_ckpt.keys())
|
| 171 |
+
for key in keys:
|
| 172 |
+
if (
|
| 173 |
+
"spectrogram_extractor" not in key
|
| 174 |
+
and "logmel_extractor" not in key
|
| 175 |
+
):
|
| 176 |
+
v = audio_ckpt.pop(key)
|
| 177 |
+
audio_ckpt["audio_branch." + key] = v
|
| 178 |
+
elif os.path.basename(pretrained_audio).startswith(
|
| 179 |
+
"PANN"
|
| 180 |
+
): # checkpoint trained via HTSAT codebase
|
| 181 |
+
audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
|
| 182 |
+
audio_ckpt = audio_ckpt["state_dict"]
|
| 183 |
+
keys = list(audio_ckpt.keys())
|
| 184 |
+
for key in keys:
|
| 185 |
+
if key.startswith("sed_model"):
|
| 186 |
+
v = audio_ckpt.pop(key)
|
| 187 |
+
audio_ckpt["audio_branch." + key[10:]] = v
|
| 188 |
+
elif os.path.basename(pretrained_audio).startswith(
|
| 189 |
+
"finetuned"
|
| 190 |
+
): # checkpoint trained via linear probe codebase
|
| 191 |
+
audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
|
| 192 |
+
else:
|
| 193 |
+
raise ValueError("Unknown audio checkpoint")
|
| 194 |
+
elif amodel_name.startswith("HTSAT"):
|
| 195 |
+
if "HTSAT_AudioSet_Saved" in pretrained_audio: # official checkpoint
|
| 196 |
+
audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
|
| 197 |
+
audio_ckpt = audio_ckpt["state_dict"]
|
| 198 |
+
keys = list(audio_ckpt.keys())
|
| 199 |
+
for key in keys:
|
| 200 |
+
if key.startswith("sed_model") and (
|
| 201 |
+
"spectrogram_extractor" not in key
|
| 202 |
+
and "logmel_extractor" not in key
|
| 203 |
+
):
|
| 204 |
+
v = audio_ckpt.pop(key)
|
| 205 |
+
audio_ckpt["audio_branch." + key[10:]] = v
|
| 206 |
+
elif os.path.basename(pretrained_audio).startswith(
|
| 207 |
+
"HTSAT"
|
| 208 |
+
): # checkpoint trained via HTSAT codebase
|
| 209 |
+
audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
|
| 210 |
+
audio_ckpt = audio_ckpt["state_dict"]
|
| 211 |
+
keys = list(audio_ckpt.keys())
|
| 212 |
+
for key in keys:
|
| 213 |
+
if key.startswith("sed_model"):
|
| 214 |
+
v = audio_ckpt.pop(key)
|
| 215 |
+
audio_ckpt["audio_branch." + key[10:]] = v
|
| 216 |
+
elif os.path.basename(pretrained_audio).startswith(
|
| 217 |
+
"finetuned"
|
| 218 |
+
): # checkpoint trained via linear probe codebase
|
| 219 |
+
audio_ckpt = torch.load(pretrained_audio, map_location="cpu")
|
| 220 |
+
else:
|
| 221 |
+
raise ValueError("Unknown audio checkpoint")
|
| 222 |
+
else:
|
| 223 |
+
raise f"this audio encoder pretrained checkpoint is not support"
|
| 224 |
+
|
| 225 |
+
model.load_state_dict(audio_ckpt, strict=False)
|
| 226 |
+
logging.info(
|
| 227 |
+
f"Loading pretrained {amodel_name} weights ({pretrained_audio})."
|
| 228 |
+
)
|
| 229 |
+
param_names = [n for n, p in model.named_parameters()]
|
| 230 |
+
for n in param_names:
|
| 231 |
+
print(n, "\t", "Loaded" if n in audio_ckpt else "Unloaded")
|
| 232 |
+
|
| 233 |
+
model.to(device=device)
|
| 234 |
+
if precision == "fp16":
|
| 235 |
+
assert device.type != "cpu"
|
| 236 |
+
convert_weights_to_fp16(model)
|
| 237 |
+
|
| 238 |
+
if jit:
|
| 239 |
+
model = torch.jit.script(model)
|
| 240 |
+
|
| 241 |
+
return model, model_cfg
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def create_model_and_transforms(
|
| 245 |
+
model_name: str,
|
| 246 |
+
pretrained: str = "",
|
| 247 |
+
precision: str = "fp32",
|
| 248 |
+
device: torch.device = torch.device("cpu"),
|
| 249 |
+
jit: bool = False,
|
| 250 |
+
force_quick_gelu: bool = False,
|
| 251 |
+
# pretrained_image: bool = False,
|
| 252 |
+
):
|
| 253 |
+
model = create_model(
|
| 254 |
+
model_name,
|
| 255 |
+
pretrained,
|
| 256 |
+
precision,
|
| 257 |
+
device,
|
| 258 |
+
jit,
|
| 259 |
+
force_quick_gelu=force_quick_gelu,
|
| 260 |
+
# pretrained_image=pretrained_image
|
| 261 |
+
)
|
| 262 |
+
preprocess_train = image_transform(model.visual.image_size, is_train=True)
|
| 263 |
+
preprocess_val = image_transform(model.visual.image_size, is_train=False)
|
| 264 |
+
return model, preprocess_train, preprocess_val
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def list_models():
|
| 268 |
+
"""enumerate available model architectures based on config files"""
|
| 269 |
+
return list(_MODEL_CONFIGS.keys())
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def add_model_config(path):
|
| 273 |
+
"""add model config path or file and update registry"""
|
| 274 |
+
if not isinstance(path, Path):
|
| 275 |
+
path = Path(path)
|
| 276 |
+
_MODEL_CONFIG_PATHS.append(path)
|
| 277 |
+
_rescan_model_configs()
|
models/CLAP/open_clip/feature_fusion.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Feature Fusion for Varible-Length Data Processing
|
| 3 |
+
AFF/iAFF is referred and modified from https://github.com/YimianDai/open-aff/blob/master/aff_pytorch/aff_net/fusion.py
|
| 4 |
+
According to the paper: Yimian Dai et al, Attentional Feature Fusion, IEEE Winter Conference on Applications of Computer Vision, WACV 2021
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class DAF(nn.Module):
|
| 12 |
+
"""
|
| 13 |
+
直接相加 DirectAddFuse
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
def __init__(self):
|
| 17 |
+
super(DAF, self).__init__()
|
| 18 |
+
|
| 19 |
+
def forward(self, x, residual):
|
| 20 |
+
return x + residual
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class iAFF(nn.Module):
|
| 24 |
+
"""
|
| 25 |
+
多特征融合 iAFF
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
def __init__(self, channels=64, r=4, type="2D"):
|
| 29 |
+
super(iAFF, self).__init__()
|
| 30 |
+
inter_channels = int(channels // r)
|
| 31 |
+
|
| 32 |
+
if type == "1D":
|
| 33 |
+
# 本地注意力
|
| 34 |
+
self.local_att = nn.Sequential(
|
| 35 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 36 |
+
nn.BatchNorm1d(inter_channels),
|
| 37 |
+
nn.ReLU(inplace=True),
|
| 38 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 39 |
+
nn.BatchNorm1d(channels),
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# 全局注意力
|
| 43 |
+
self.global_att = nn.Sequential(
|
| 44 |
+
nn.AdaptiveAvgPool1d(1),
|
| 45 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 46 |
+
nn.BatchNorm1d(inter_channels),
|
| 47 |
+
nn.ReLU(inplace=True),
|
| 48 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 49 |
+
nn.BatchNorm1d(channels),
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# 第二次本地注意力
|
| 53 |
+
self.local_att2 = nn.Sequential(
|
| 54 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 55 |
+
nn.BatchNorm1d(inter_channels),
|
| 56 |
+
nn.ReLU(inplace=True),
|
| 57 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 58 |
+
nn.BatchNorm1d(channels),
|
| 59 |
+
)
|
| 60 |
+
# 第二次全局注意力
|
| 61 |
+
self.global_att2 = nn.Sequential(
|
| 62 |
+
nn.AdaptiveAvgPool1d(1),
|
| 63 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 64 |
+
nn.BatchNorm1d(inter_channels),
|
| 65 |
+
nn.ReLU(inplace=True),
|
| 66 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 67 |
+
nn.BatchNorm1d(channels),
|
| 68 |
+
)
|
| 69 |
+
elif type == "2D":
|
| 70 |
+
# 本地注意力
|
| 71 |
+
self.local_att = nn.Sequential(
|
| 72 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 73 |
+
nn.BatchNorm2d(inter_channels),
|
| 74 |
+
nn.ReLU(inplace=True),
|
| 75 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 76 |
+
nn.BatchNorm2d(channels),
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# 全局注意力
|
| 80 |
+
self.global_att = nn.Sequential(
|
| 81 |
+
nn.AdaptiveAvgPool2d(1),
|
| 82 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 83 |
+
nn.BatchNorm2d(inter_channels),
|
| 84 |
+
nn.ReLU(inplace=True),
|
| 85 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 86 |
+
nn.BatchNorm2d(channels),
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# 第二次本地注意力
|
| 90 |
+
self.local_att2 = nn.Sequential(
|
| 91 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 92 |
+
nn.BatchNorm2d(inter_channels),
|
| 93 |
+
nn.ReLU(inplace=True),
|
| 94 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 95 |
+
nn.BatchNorm2d(channels),
|
| 96 |
+
)
|
| 97 |
+
# 第二次全局注意力
|
| 98 |
+
self.global_att2 = nn.Sequential(
|
| 99 |
+
nn.AdaptiveAvgPool2d(1),
|
| 100 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 101 |
+
nn.BatchNorm2d(inter_channels),
|
| 102 |
+
nn.ReLU(inplace=True),
|
| 103 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 104 |
+
nn.BatchNorm2d(channels),
|
| 105 |
+
)
|
| 106 |
+
else:
|
| 107 |
+
raise f"the type is not supported"
|
| 108 |
+
|
| 109 |
+
self.sigmoid = nn.Sigmoid()
|
| 110 |
+
|
| 111 |
+
def forward(self, x, residual):
|
| 112 |
+
flag = False
|
| 113 |
+
xa = x + residual
|
| 114 |
+
if xa.size(0) == 1:
|
| 115 |
+
xa = torch.cat([xa, xa], dim=0)
|
| 116 |
+
flag = True
|
| 117 |
+
xl = self.local_att(xa)
|
| 118 |
+
xg = self.global_att(xa)
|
| 119 |
+
xlg = xl + xg
|
| 120 |
+
wei = self.sigmoid(xlg)
|
| 121 |
+
xi = x * wei + residual * (1 - wei)
|
| 122 |
+
|
| 123 |
+
xl2 = self.local_att2(xi)
|
| 124 |
+
xg2 = self.global_att(xi)
|
| 125 |
+
xlg2 = xl2 + xg2
|
| 126 |
+
wei2 = self.sigmoid(xlg2)
|
| 127 |
+
xo = x * wei2 + residual * (1 - wei2)
|
| 128 |
+
if flag:
|
| 129 |
+
xo = xo[0].unsqueeze(0)
|
| 130 |
+
return xo
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class AFF(nn.Module):
|
| 134 |
+
"""
|
| 135 |
+
多特征融合 AFF
|
| 136 |
+
"""
|
| 137 |
+
|
| 138 |
+
def __init__(self, channels=64, r=4, type="2D"):
|
| 139 |
+
super(AFF, self).__init__()
|
| 140 |
+
inter_channels = int(channels // r)
|
| 141 |
+
|
| 142 |
+
if type == "1D":
|
| 143 |
+
self.local_att = nn.Sequential(
|
| 144 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 145 |
+
nn.BatchNorm1d(inter_channels),
|
| 146 |
+
nn.ReLU(inplace=True),
|
| 147 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 148 |
+
nn.BatchNorm1d(channels),
|
| 149 |
+
)
|
| 150 |
+
self.global_att = nn.Sequential(
|
| 151 |
+
nn.AdaptiveAvgPool1d(1),
|
| 152 |
+
nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 153 |
+
nn.BatchNorm1d(inter_channels),
|
| 154 |
+
nn.ReLU(inplace=True),
|
| 155 |
+
nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 156 |
+
nn.BatchNorm1d(channels),
|
| 157 |
+
)
|
| 158 |
+
elif type == "2D":
|
| 159 |
+
self.local_att = nn.Sequential(
|
| 160 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 161 |
+
nn.BatchNorm2d(inter_channels),
|
| 162 |
+
nn.ReLU(inplace=True),
|
| 163 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 164 |
+
nn.BatchNorm2d(channels),
|
| 165 |
+
)
|
| 166 |
+
self.global_att = nn.Sequential(
|
| 167 |
+
nn.AdaptiveAvgPool2d(1),
|
| 168 |
+
nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
|
| 169 |
+
nn.BatchNorm2d(inter_channels),
|
| 170 |
+
nn.ReLU(inplace=True),
|
| 171 |
+
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
|
| 172 |
+
nn.BatchNorm2d(channels),
|
| 173 |
+
)
|
| 174 |
+
else:
|
| 175 |
+
raise f"the type is not supported."
|
| 176 |
+
|
| 177 |
+
self.sigmoid = nn.Sigmoid()
|
| 178 |
+
|
| 179 |
+
def forward(self, x, residual):
|
| 180 |
+
flag = False
|
| 181 |
+
xa = x + residual
|
| 182 |
+
if xa.size(0) == 1:
|
| 183 |
+
xa = torch.cat([xa, xa], dim=0)
|
| 184 |
+
flag = True
|
| 185 |
+
xl = self.local_att(xa)
|
| 186 |
+
xg = self.global_att(xa)
|
| 187 |
+
xlg = xl + xg
|
| 188 |
+
wei = self.sigmoid(xlg)
|
| 189 |
+
xo = 2 * x * wei + 2 * residual * (1 - wei)
|
| 190 |
+
if flag:
|
| 191 |
+
xo = xo[0].unsqueeze(0)
|
| 192 |
+
return xo
|
models/CLAP/open_clip/htsat.py
ADDED
|
@@ -0,0 +1,1308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ke Chen
|
| 2 |
+
# knutchen@ucsd.edu
|
| 3 |
+
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
|
| 4 |
+
# Some layers designed on the model
|
| 5 |
+
# below codes are based and referred from https://github.com/microsoft/Swin-Transformer
|
| 6 |
+
# Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from itertools import repeat
|
| 12 |
+
import collections.abc
|
| 13 |
+
import math
|
| 14 |
+
import warnings
|
| 15 |
+
|
| 16 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
| 17 |
+
import torch.utils.checkpoint as checkpoint
|
| 18 |
+
|
| 19 |
+
import random
|
| 20 |
+
|
| 21 |
+
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
|
| 22 |
+
from torchlibrosa.augmentation import SpecAugmentation
|
| 23 |
+
|
| 24 |
+
from itertools import repeat
|
| 25 |
+
from .utils import do_mixup, interpolate
|
| 26 |
+
|
| 27 |
+
from .feature_fusion import iAFF, AFF, DAF
|
| 28 |
+
|
| 29 |
+
# from PyTorch internals
|
| 30 |
+
def _ntuple(n):
|
| 31 |
+
def parse(x):
|
| 32 |
+
if isinstance(x, collections.abc.Iterable):
|
| 33 |
+
return x
|
| 34 |
+
return tuple(repeat(x, n))
|
| 35 |
+
|
| 36 |
+
return parse
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
to_1tuple = _ntuple(1)
|
| 40 |
+
to_2tuple = _ntuple(2)
|
| 41 |
+
to_3tuple = _ntuple(3)
|
| 42 |
+
to_4tuple = _ntuple(4)
|
| 43 |
+
to_ntuple = _ntuple
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
| 47 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 48 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
| 49 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
| 50 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
| 51 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
| 52 |
+
'survival rate' as the argument.
|
| 53 |
+
"""
|
| 54 |
+
if drop_prob == 0.0 or not training:
|
| 55 |
+
return x
|
| 56 |
+
keep_prob = 1 - drop_prob
|
| 57 |
+
shape = (x.shape[0],) + (1,) * (
|
| 58 |
+
x.ndim - 1
|
| 59 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
| 60 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
| 61 |
+
random_tensor.floor_() # binarize
|
| 62 |
+
output = x.div(keep_prob) * random_tensor
|
| 63 |
+
return output
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class DropPath(nn.Module):
|
| 67 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
| 68 |
+
|
| 69 |
+
def __init__(self, drop_prob=None):
|
| 70 |
+
super(DropPath, self).__init__()
|
| 71 |
+
self.drop_prob = drop_prob
|
| 72 |
+
|
| 73 |
+
def forward(self, x):
|
| 74 |
+
return drop_path(x, self.drop_prob, self.training)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class PatchEmbed(nn.Module):
|
| 78 |
+
"""2D Image to Patch Embedding"""
|
| 79 |
+
|
| 80 |
+
def __init__(
|
| 81 |
+
self,
|
| 82 |
+
img_size=224,
|
| 83 |
+
patch_size=16,
|
| 84 |
+
in_chans=3,
|
| 85 |
+
embed_dim=768,
|
| 86 |
+
norm_layer=None,
|
| 87 |
+
flatten=True,
|
| 88 |
+
patch_stride=16,
|
| 89 |
+
enable_fusion=False,
|
| 90 |
+
fusion_type="None",
|
| 91 |
+
):
|
| 92 |
+
super().__init__()
|
| 93 |
+
img_size = to_2tuple(img_size)
|
| 94 |
+
patch_size = to_2tuple(patch_size)
|
| 95 |
+
patch_stride = to_2tuple(patch_stride)
|
| 96 |
+
self.img_size = img_size
|
| 97 |
+
self.patch_size = patch_size
|
| 98 |
+
self.patch_stride = patch_stride
|
| 99 |
+
self.grid_size = (
|
| 100 |
+
img_size[0] // patch_stride[0],
|
| 101 |
+
img_size[1] // patch_stride[1],
|
| 102 |
+
)
|
| 103 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
| 104 |
+
self.flatten = flatten
|
| 105 |
+
self.in_chans = in_chans
|
| 106 |
+
self.embed_dim = embed_dim
|
| 107 |
+
|
| 108 |
+
self.enable_fusion = enable_fusion
|
| 109 |
+
self.fusion_type = fusion_type
|
| 110 |
+
|
| 111 |
+
padding = (
|
| 112 |
+
(patch_size[0] - patch_stride[0]) // 2,
|
| 113 |
+
(patch_size[1] - patch_stride[1]) // 2,
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
if (self.enable_fusion) and (self.fusion_type == "channel_map"):
|
| 117 |
+
self.proj = nn.Conv2d(
|
| 118 |
+
in_chans * 4,
|
| 119 |
+
embed_dim,
|
| 120 |
+
kernel_size=patch_size,
|
| 121 |
+
stride=patch_stride,
|
| 122 |
+
padding=padding,
|
| 123 |
+
)
|
| 124 |
+
else:
|
| 125 |
+
self.proj = nn.Conv2d(
|
| 126 |
+
in_chans,
|
| 127 |
+
embed_dim,
|
| 128 |
+
kernel_size=patch_size,
|
| 129 |
+
stride=patch_stride,
|
| 130 |
+
padding=padding,
|
| 131 |
+
)
|
| 132 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 133 |
+
|
| 134 |
+
if (self.enable_fusion) and (
|
| 135 |
+
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
|
| 136 |
+
):
|
| 137 |
+
self.mel_conv2d = nn.Conv2d(
|
| 138 |
+
in_chans,
|
| 139 |
+
embed_dim,
|
| 140 |
+
kernel_size=(patch_size[0], patch_size[1] * 3),
|
| 141 |
+
stride=(patch_stride[0], patch_stride[1] * 3),
|
| 142 |
+
padding=padding,
|
| 143 |
+
)
|
| 144 |
+
if self.fusion_type == "daf_2d":
|
| 145 |
+
self.fusion_model = DAF()
|
| 146 |
+
elif self.fusion_type == "aff_2d":
|
| 147 |
+
self.fusion_model = AFF(channels=embed_dim, type="2D")
|
| 148 |
+
elif self.fusion_type == "iaff_2d":
|
| 149 |
+
self.fusion_model = iAFF(channels=embed_dim, type="2D")
|
| 150 |
+
|
| 151 |
+
def forward(self, x, longer_idx=None):
|
| 152 |
+
if (self.enable_fusion) and (
|
| 153 |
+
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
|
| 154 |
+
):
|
| 155 |
+
global_x = x[:, 0:1, :, :]
|
| 156 |
+
|
| 157 |
+
# global processing
|
| 158 |
+
B, C, H, W = global_x.shape
|
| 159 |
+
assert (
|
| 160 |
+
H == self.img_size[0] and W == self.img_size[1]
|
| 161 |
+
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
| 162 |
+
global_x = self.proj(global_x)
|
| 163 |
+
TW = global_x.size(-1)
|
| 164 |
+
if len(longer_idx) > 0:
|
| 165 |
+
# local processing
|
| 166 |
+
local_x = x[longer_idx, 1:, :, :].contiguous()
|
| 167 |
+
B, C, H, W = local_x.shape
|
| 168 |
+
local_x = local_x.view(B * C, 1, H, W)
|
| 169 |
+
local_x = self.mel_conv2d(local_x)
|
| 170 |
+
local_x = local_x.view(
|
| 171 |
+
B, C, local_x.size(1), local_x.size(2), local_x.size(3)
|
| 172 |
+
)
|
| 173 |
+
local_x = local_x.permute((0, 2, 3, 1, 4)).contiguous().flatten(3)
|
| 174 |
+
TB, TC, TH, _ = local_x.size()
|
| 175 |
+
if local_x.size(-1) < TW:
|
| 176 |
+
local_x = torch.cat(
|
| 177 |
+
[
|
| 178 |
+
local_x,
|
| 179 |
+
torch.zeros(
|
| 180 |
+
(TB, TC, TH, TW - local_x.size(-1)),
|
| 181 |
+
device=global_x.device,
|
| 182 |
+
),
|
| 183 |
+
],
|
| 184 |
+
dim=-1,
|
| 185 |
+
)
|
| 186 |
+
else:
|
| 187 |
+
local_x = local_x[:, :, :, :TW]
|
| 188 |
+
|
| 189 |
+
global_x[longer_idx] = self.fusion_model(global_x[longer_idx], local_x)
|
| 190 |
+
x = global_x
|
| 191 |
+
else:
|
| 192 |
+
B, C, H, W = x.shape
|
| 193 |
+
assert (
|
| 194 |
+
H == self.img_size[0] and W == self.img_size[1]
|
| 195 |
+
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
| 196 |
+
x = self.proj(x)
|
| 197 |
+
|
| 198 |
+
if self.flatten:
|
| 199 |
+
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
|
| 200 |
+
x = self.norm(x)
|
| 201 |
+
return x
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
class Mlp(nn.Module):
|
| 205 |
+
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
|
| 206 |
+
|
| 207 |
+
def __init__(
|
| 208 |
+
self,
|
| 209 |
+
in_features,
|
| 210 |
+
hidden_features=None,
|
| 211 |
+
out_features=None,
|
| 212 |
+
act_layer=nn.GELU,
|
| 213 |
+
drop=0.0,
|
| 214 |
+
):
|
| 215 |
+
super().__init__()
|
| 216 |
+
out_features = out_features or in_features
|
| 217 |
+
hidden_features = hidden_features or in_features
|
| 218 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 219 |
+
self.act = act_layer()
|
| 220 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 221 |
+
self.drop = nn.Dropout(drop)
|
| 222 |
+
|
| 223 |
+
def forward(self, x):
|
| 224 |
+
x = self.fc1(x)
|
| 225 |
+
x = self.act(x)
|
| 226 |
+
x = self.drop(x)
|
| 227 |
+
x = self.fc2(x)
|
| 228 |
+
x = self.drop(x)
|
| 229 |
+
return x
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
| 233 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 234 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 235 |
+
def norm_cdf(x):
|
| 236 |
+
# Computes standard normal cumulative distribution function
|
| 237 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
| 238 |
+
|
| 239 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 240 |
+
warnings.warn(
|
| 241 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 242 |
+
"The distribution of values may be incorrect.",
|
| 243 |
+
stacklevel=2,
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
with torch.no_grad():
|
| 247 |
+
# Values are generated by using a truncated uniform distribution and
|
| 248 |
+
# then using the inverse CDF for the normal distribution.
|
| 249 |
+
# Get upper and lower cdf values
|
| 250 |
+
l = norm_cdf((a - mean) / std)
|
| 251 |
+
u = norm_cdf((b - mean) / std)
|
| 252 |
+
|
| 253 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 254 |
+
# [2l-1, 2u-1].
|
| 255 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 256 |
+
|
| 257 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 258 |
+
# standard normal
|
| 259 |
+
tensor.erfinv_()
|
| 260 |
+
|
| 261 |
+
# Transform to proper mean, std
|
| 262 |
+
tensor.mul_(std * math.sqrt(2.0))
|
| 263 |
+
tensor.add_(mean)
|
| 264 |
+
|
| 265 |
+
# Clamp to ensure it's in the proper range
|
| 266 |
+
tensor.clamp_(min=a, max=b)
|
| 267 |
+
return tensor
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
|
| 271 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
| 272 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
| 273 |
+
normal distribution. The values are effectively drawn from the
|
| 274 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 275 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 276 |
+
the bounds. The method used for generating the random values works
|
| 277 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
| 278 |
+
Args:
|
| 279 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 280 |
+
mean: the mean of the normal distribution
|
| 281 |
+
std: the standard deviation of the normal distribution
|
| 282 |
+
a: the minimum cutoff value
|
| 283 |
+
b: the maximum cutoff value
|
| 284 |
+
Examples:
|
| 285 |
+
>>> w = torch.empty(3, 5)
|
| 286 |
+
>>> nn.init.trunc_normal_(w)
|
| 287 |
+
"""
|
| 288 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
| 292 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
| 293 |
+
if mode == "fan_in":
|
| 294 |
+
denom = fan_in
|
| 295 |
+
elif mode == "fan_out":
|
| 296 |
+
denom = fan_out
|
| 297 |
+
elif mode == "fan_avg":
|
| 298 |
+
denom = (fan_in + fan_out) / 2
|
| 299 |
+
|
| 300 |
+
variance = scale / denom
|
| 301 |
+
|
| 302 |
+
if distribution == "truncated_normal":
|
| 303 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
| 304 |
+
trunc_normal_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
| 305 |
+
elif distribution == "normal":
|
| 306 |
+
tensor.normal_(std=math.sqrt(variance))
|
| 307 |
+
elif distribution == "uniform":
|
| 308 |
+
bound = math.sqrt(3 * variance)
|
| 309 |
+
tensor.uniform_(-bound, bound)
|
| 310 |
+
else:
|
| 311 |
+
raise ValueError(f"invalid distribution {distribution}")
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
def lecun_normal_(tensor):
|
| 315 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def window_partition(x, window_size):
|
| 319 |
+
"""
|
| 320 |
+
Args:
|
| 321 |
+
x: (B, H, W, C)
|
| 322 |
+
window_size (int): window size
|
| 323 |
+
Returns:
|
| 324 |
+
windows: (num_windows*B, window_size, window_size, C)
|
| 325 |
+
"""
|
| 326 |
+
B, H, W, C = x.shape
|
| 327 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
| 328 |
+
windows = (
|
| 329 |
+
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 330 |
+
)
|
| 331 |
+
return windows
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
def window_reverse(windows, window_size, H, W):
|
| 335 |
+
"""
|
| 336 |
+
Args:
|
| 337 |
+
windows: (num_windows*B, window_size, window_size, C)
|
| 338 |
+
window_size (int): Window size
|
| 339 |
+
H (int): Height of image
|
| 340 |
+
W (int): Width of image
|
| 341 |
+
Returns:
|
| 342 |
+
x: (B, H, W, C)
|
| 343 |
+
"""
|
| 344 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
| 345 |
+
x = windows.view(
|
| 346 |
+
B, H // window_size, W // window_size, window_size, window_size, -1
|
| 347 |
+
)
|
| 348 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
| 349 |
+
return x
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
class WindowAttention(nn.Module):
|
| 353 |
+
r"""Window based multi-head self attention (W-MSA) module with relative position bias.
|
| 354 |
+
It supports both of shifted and non-shifted window.
|
| 355 |
+
Args:
|
| 356 |
+
dim (int): Number of input channels.
|
| 357 |
+
window_size (tuple[int]): The height and width of the window.
|
| 358 |
+
num_heads (int): Number of attention heads.
|
| 359 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 360 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
| 361 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
| 362 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
| 363 |
+
"""
|
| 364 |
+
|
| 365 |
+
def __init__(
|
| 366 |
+
self,
|
| 367 |
+
dim,
|
| 368 |
+
window_size,
|
| 369 |
+
num_heads,
|
| 370 |
+
qkv_bias=True,
|
| 371 |
+
qk_scale=None,
|
| 372 |
+
attn_drop=0.0,
|
| 373 |
+
proj_drop=0.0,
|
| 374 |
+
):
|
| 375 |
+
|
| 376 |
+
super().__init__()
|
| 377 |
+
self.dim = dim
|
| 378 |
+
self.window_size = window_size # Wh, Ww
|
| 379 |
+
self.num_heads = num_heads
|
| 380 |
+
head_dim = dim // num_heads
|
| 381 |
+
self.scale = qk_scale or head_dim**-0.5
|
| 382 |
+
|
| 383 |
+
# define a parameter table of relative position bias
|
| 384 |
+
self.relative_position_bias_table = nn.Parameter(
|
| 385 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
| 386 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
| 387 |
+
|
| 388 |
+
# get pair-wise relative position index for each token inside the window
|
| 389 |
+
coords_h = torch.arange(self.window_size[0])
|
| 390 |
+
coords_w = torch.arange(self.window_size[1])
|
| 391 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
| 392 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
| 393 |
+
relative_coords = (
|
| 394 |
+
coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
| 395 |
+
) # 2, Wh*Ww, Wh*Ww
|
| 396 |
+
relative_coords = relative_coords.permute(
|
| 397 |
+
1, 2, 0
|
| 398 |
+
).contiguous() # Wh*Ww, Wh*Ww, 2
|
| 399 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
| 400 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
| 401 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
| 402 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
| 403 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
| 404 |
+
|
| 405 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 406 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 407 |
+
self.proj = nn.Linear(dim, dim)
|
| 408 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 409 |
+
|
| 410 |
+
trunc_normal_(self.relative_position_bias_table, std=0.02)
|
| 411 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 412 |
+
|
| 413 |
+
def forward(self, x, mask=None):
|
| 414 |
+
"""
|
| 415 |
+
Args:
|
| 416 |
+
x: input features with shape of (num_windows*B, N, C)
|
| 417 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
| 418 |
+
"""
|
| 419 |
+
B_, N, C = x.shape
|
| 420 |
+
qkv = (
|
| 421 |
+
self.qkv(x)
|
| 422 |
+
.reshape(B_, N, 3, self.num_heads, C // self.num_heads)
|
| 423 |
+
.permute(2, 0, 3, 1, 4)
|
| 424 |
+
)
|
| 425 |
+
q, k, v = (
|
| 426 |
+
qkv[0],
|
| 427 |
+
qkv[1],
|
| 428 |
+
qkv[2],
|
| 429 |
+
) # make torchscript happy (cannot use tensor as tuple)
|
| 430 |
+
|
| 431 |
+
q = q * self.scale
|
| 432 |
+
attn = q @ k.transpose(-2, -1)
|
| 433 |
+
|
| 434 |
+
relative_position_bias = self.relative_position_bias_table[
|
| 435 |
+
self.relative_position_index.view(-1)
|
| 436 |
+
].view(
|
| 437 |
+
self.window_size[0] * self.window_size[1],
|
| 438 |
+
self.window_size[0] * self.window_size[1],
|
| 439 |
+
-1,
|
| 440 |
+
) # Wh*Ww,Wh*Ww,nH
|
| 441 |
+
relative_position_bias = relative_position_bias.permute(
|
| 442 |
+
2, 0, 1
|
| 443 |
+
).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 444 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
| 445 |
+
|
| 446 |
+
if mask is not None:
|
| 447 |
+
nW = mask.shape[0]
|
| 448 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(
|
| 449 |
+
1
|
| 450 |
+
).unsqueeze(0)
|
| 451 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
| 452 |
+
attn = self.softmax(attn)
|
| 453 |
+
else:
|
| 454 |
+
attn = self.softmax(attn)
|
| 455 |
+
|
| 456 |
+
attn = self.attn_drop(attn)
|
| 457 |
+
|
| 458 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
| 459 |
+
x = self.proj(x)
|
| 460 |
+
x = self.proj_drop(x)
|
| 461 |
+
return x, attn
|
| 462 |
+
|
| 463 |
+
def extra_repr(self):
|
| 464 |
+
return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}"
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
# We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model
|
| 468 |
+
class SwinTransformerBlock(nn.Module):
|
| 469 |
+
r"""Swin Transformer Block.
|
| 470 |
+
Args:
|
| 471 |
+
dim (int): Number of input channels.
|
| 472 |
+
input_resolution (tuple[int]): Input resulotion.
|
| 473 |
+
num_heads (int): Number of attention heads.
|
| 474 |
+
window_size (int): Window size.
|
| 475 |
+
shift_size (int): Shift size for SW-MSA.
|
| 476 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 477 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 478 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 479 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 480 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 481 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
| 482 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
| 483 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 484 |
+
"""
|
| 485 |
+
|
| 486 |
+
def __init__(
|
| 487 |
+
self,
|
| 488 |
+
dim,
|
| 489 |
+
input_resolution,
|
| 490 |
+
num_heads,
|
| 491 |
+
window_size=7,
|
| 492 |
+
shift_size=0,
|
| 493 |
+
mlp_ratio=4.0,
|
| 494 |
+
qkv_bias=True,
|
| 495 |
+
qk_scale=None,
|
| 496 |
+
drop=0.0,
|
| 497 |
+
attn_drop=0.0,
|
| 498 |
+
drop_path=0.0,
|
| 499 |
+
act_layer=nn.GELU,
|
| 500 |
+
norm_layer=nn.LayerNorm,
|
| 501 |
+
norm_before_mlp="ln",
|
| 502 |
+
):
|
| 503 |
+
super().__init__()
|
| 504 |
+
self.dim = dim
|
| 505 |
+
self.input_resolution = input_resolution
|
| 506 |
+
self.num_heads = num_heads
|
| 507 |
+
self.window_size = window_size
|
| 508 |
+
self.shift_size = shift_size
|
| 509 |
+
self.mlp_ratio = mlp_ratio
|
| 510 |
+
self.norm_before_mlp = norm_before_mlp
|
| 511 |
+
if min(self.input_resolution) <= self.window_size:
|
| 512 |
+
# if window size is larger than input resolution, we don't partition windows
|
| 513 |
+
self.shift_size = 0
|
| 514 |
+
self.window_size = min(self.input_resolution)
|
| 515 |
+
assert (
|
| 516 |
+
0 <= self.shift_size < self.window_size
|
| 517 |
+
), "shift_size must in 0-window_size"
|
| 518 |
+
|
| 519 |
+
self.norm1 = norm_layer(dim)
|
| 520 |
+
self.attn = WindowAttention(
|
| 521 |
+
dim,
|
| 522 |
+
window_size=to_2tuple(self.window_size),
|
| 523 |
+
num_heads=num_heads,
|
| 524 |
+
qkv_bias=qkv_bias,
|
| 525 |
+
qk_scale=qk_scale,
|
| 526 |
+
attn_drop=attn_drop,
|
| 527 |
+
proj_drop=drop,
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 531 |
+
if self.norm_before_mlp == "ln":
|
| 532 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 533 |
+
elif self.norm_before_mlp == "bn":
|
| 534 |
+
self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose(
|
| 535 |
+
1, 2
|
| 536 |
+
)
|
| 537 |
+
else:
|
| 538 |
+
raise NotImplementedError
|
| 539 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 540 |
+
self.mlp = Mlp(
|
| 541 |
+
in_features=dim,
|
| 542 |
+
hidden_features=mlp_hidden_dim,
|
| 543 |
+
act_layer=act_layer,
|
| 544 |
+
drop=drop,
|
| 545 |
+
)
|
| 546 |
+
|
| 547 |
+
if self.shift_size > 0:
|
| 548 |
+
# calculate attention mask for SW-MSA
|
| 549 |
+
H, W = self.input_resolution
|
| 550 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
| 551 |
+
h_slices = (
|
| 552 |
+
slice(0, -self.window_size),
|
| 553 |
+
slice(-self.window_size, -self.shift_size),
|
| 554 |
+
slice(-self.shift_size, None),
|
| 555 |
+
)
|
| 556 |
+
w_slices = (
|
| 557 |
+
slice(0, -self.window_size),
|
| 558 |
+
slice(-self.window_size, -self.shift_size),
|
| 559 |
+
slice(-self.shift_size, None),
|
| 560 |
+
)
|
| 561 |
+
cnt = 0
|
| 562 |
+
for h in h_slices:
|
| 563 |
+
for w in w_slices:
|
| 564 |
+
img_mask[:, h, w, :] = cnt
|
| 565 |
+
cnt += 1
|
| 566 |
+
|
| 567 |
+
mask_windows = window_partition(
|
| 568 |
+
img_mask, self.window_size
|
| 569 |
+
) # nW, window_size, window_size, 1
|
| 570 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
| 571 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
| 572 |
+
attn_mask = attn_mask.masked_fill(
|
| 573 |
+
attn_mask != 0, float(-100.0)
|
| 574 |
+
).masked_fill(attn_mask == 0, float(0.0))
|
| 575 |
+
else:
|
| 576 |
+
attn_mask = None
|
| 577 |
+
|
| 578 |
+
self.register_buffer("attn_mask", attn_mask)
|
| 579 |
+
|
| 580 |
+
def forward(self, x):
|
| 581 |
+
# pdb.set_trace()
|
| 582 |
+
H, W = self.input_resolution
|
| 583 |
+
# print("H: ", H)
|
| 584 |
+
# print("W: ", W)
|
| 585 |
+
# pdb.set_trace()
|
| 586 |
+
B, L, C = x.shape
|
| 587 |
+
# assert L == H * W, "input feature has wrong size"
|
| 588 |
+
|
| 589 |
+
shortcut = x
|
| 590 |
+
x = self.norm1(x)
|
| 591 |
+
x = x.view(B, H, W, C)
|
| 592 |
+
|
| 593 |
+
# cyclic shift
|
| 594 |
+
if self.shift_size > 0:
|
| 595 |
+
shifted_x = torch.roll(
|
| 596 |
+
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
|
| 597 |
+
)
|
| 598 |
+
else:
|
| 599 |
+
shifted_x = x
|
| 600 |
+
|
| 601 |
+
# partition windows
|
| 602 |
+
x_windows = window_partition(
|
| 603 |
+
shifted_x, self.window_size
|
| 604 |
+
) # nW*B, window_size, window_size, C
|
| 605 |
+
x_windows = x_windows.view(
|
| 606 |
+
-1, self.window_size * self.window_size, C
|
| 607 |
+
) # nW*B, window_size*window_size, C
|
| 608 |
+
|
| 609 |
+
# W-MSA/SW-MSA
|
| 610 |
+
attn_windows, attn = self.attn(
|
| 611 |
+
x_windows, mask=self.attn_mask
|
| 612 |
+
) # nW*B, window_size*window_size, C
|
| 613 |
+
|
| 614 |
+
# merge windows
|
| 615 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
| 616 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
| 617 |
+
|
| 618 |
+
# reverse cyclic shift
|
| 619 |
+
if self.shift_size > 0:
|
| 620 |
+
x = torch.roll(
|
| 621 |
+
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)
|
| 622 |
+
)
|
| 623 |
+
else:
|
| 624 |
+
x = shifted_x
|
| 625 |
+
x = x.view(B, H * W, C)
|
| 626 |
+
|
| 627 |
+
# FFN
|
| 628 |
+
x = shortcut + self.drop_path(x)
|
| 629 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 630 |
+
|
| 631 |
+
return x, attn
|
| 632 |
+
|
| 633 |
+
def extra_repr(self):
|
| 634 |
+
return (
|
| 635 |
+
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
|
| 636 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
| 637 |
+
)
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
class PatchMerging(nn.Module):
|
| 641 |
+
r"""Patch Merging Layer.
|
| 642 |
+
Args:
|
| 643 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
| 644 |
+
dim (int): Number of input channels.
|
| 645 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 646 |
+
"""
|
| 647 |
+
|
| 648 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
| 649 |
+
super().__init__()
|
| 650 |
+
self.input_resolution = input_resolution
|
| 651 |
+
self.dim = dim
|
| 652 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
| 653 |
+
self.norm = norm_layer(4 * dim)
|
| 654 |
+
|
| 655 |
+
def forward(self, x):
|
| 656 |
+
"""
|
| 657 |
+
x: B, H*W, C
|
| 658 |
+
"""
|
| 659 |
+
H, W = self.input_resolution
|
| 660 |
+
B, L, C = x.shape
|
| 661 |
+
assert L == H * W, "input feature has wrong size"
|
| 662 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
| 663 |
+
|
| 664 |
+
x = x.view(B, H, W, C)
|
| 665 |
+
|
| 666 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
| 667 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
| 668 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
| 669 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
| 670 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
| 671 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
| 672 |
+
|
| 673 |
+
x = self.norm(x)
|
| 674 |
+
x = self.reduction(x)
|
| 675 |
+
|
| 676 |
+
return x
|
| 677 |
+
|
| 678 |
+
def extra_repr(self):
|
| 679 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
| 680 |
+
|
| 681 |
+
|
| 682 |
+
class BasicLayer(nn.Module):
|
| 683 |
+
"""A basic Swin Transformer layer for one stage.
|
| 684 |
+
Args:
|
| 685 |
+
dim (int): Number of input channels.
|
| 686 |
+
input_resolution (tuple[int]): Input resolution.
|
| 687 |
+
depth (int): Number of blocks.
|
| 688 |
+
num_heads (int): Number of attention heads.
|
| 689 |
+
window_size (int): Local window size.
|
| 690 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 691 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 692 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 693 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 694 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 695 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
| 696 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 697 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
| 698 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
| 699 |
+
"""
|
| 700 |
+
|
| 701 |
+
def __init__(
|
| 702 |
+
self,
|
| 703 |
+
dim,
|
| 704 |
+
input_resolution,
|
| 705 |
+
depth,
|
| 706 |
+
num_heads,
|
| 707 |
+
window_size,
|
| 708 |
+
mlp_ratio=4.0,
|
| 709 |
+
qkv_bias=True,
|
| 710 |
+
qk_scale=None,
|
| 711 |
+
drop=0.0,
|
| 712 |
+
attn_drop=0.0,
|
| 713 |
+
drop_path=0.0,
|
| 714 |
+
norm_layer=nn.LayerNorm,
|
| 715 |
+
downsample=None,
|
| 716 |
+
use_checkpoint=False,
|
| 717 |
+
norm_before_mlp="ln",
|
| 718 |
+
):
|
| 719 |
+
|
| 720 |
+
super().__init__()
|
| 721 |
+
self.dim = dim
|
| 722 |
+
self.input_resolution = input_resolution
|
| 723 |
+
self.depth = depth
|
| 724 |
+
self.use_checkpoint = use_checkpoint
|
| 725 |
+
|
| 726 |
+
# build blocks
|
| 727 |
+
self.blocks = nn.ModuleList(
|
| 728 |
+
[
|
| 729 |
+
SwinTransformerBlock(
|
| 730 |
+
dim=dim,
|
| 731 |
+
input_resolution=input_resolution,
|
| 732 |
+
num_heads=num_heads,
|
| 733 |
+
window_size=window_size,
|
| 734 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
| 735 |
+
mlp_ratio=mlp_ratio,
|
| 736 |
+
qkv_bias=qkv_bias,
|
| 737 |
+
qk_scale=qk_scale,
|
| 738 |
+
drop=drop,
|
| 739 |
+
attn_drop=attn_drop,
|
| 740 |
+
drop_path=drop_path[i]
|
| 741 |
+
if isinstance(drop_path, list)
|
| 742 |
+
else drop_path,
|
| 743 |
+
norm_layer=norm_layer,
|
| 744 |
+
norm_before_mlp=norm_before_mlp,
|
| 745 |
+
)
|
| 746 |
+
for i in range(depth)
|
| 747 |
+
]
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
# patch merging layer
|
| 751 |
+
if downsample is not None:
|
| 752 |
+
self.downsample = downsample(
|
| 753 |
+
input_resolution, dim=dim, norm_layer=norm_layer
|
| 754 |
+
)
|
| 755 |
+
else:
|
| 756 |
+
self.downsample = None
|
| 757 |
+
|
| 758 |
+
def forward(self, x):
|
| 759 |
+
attns = []
|
| 760 |
+
for blk in self.blocks:
|
| 761 |
+
if self.use_checkpoint:
|
| 762 |
+
x = checkpoint.checkpoint(blk, x)
|
| 763 |
+
else:
|
| 764 |
+
x, attn = blk(x)
|
| 765 |
+
if not self.training:
|
| 766 |
+
attns.append(attn.unsqueeze(0))
|
| 767 |
+
if self.downsample is not None:
|
| 768 |
+
x = self.downsample(x)
|
| 769 |
+
if not self.training:
|
| 770 |
+
attn = torch.cat(attns, dim=0)
|
| 771 |
+
attn = torch.mean(attn, dim=0)
|
| 772 |
+
return x, attn
|
| 773 |
+
|
| 774 |
+
def extra_repr(self):
|
| 775 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
| 776 |
+
|
| 777 |
+
|
| 778 |
+
# The Core of HTSAT
|
| 779 |
+
class HTSAT_Swin_Transformer(nn.Module):
|
| 780 |
+
r"""HTSAT based on the Swin Transformer
|
| 781 |
+
Args:
|
| 782 |
+
spec_size (int | tuple(int)): Input Spectrogram size. Default 256
|
| 783 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
| 784 |
+
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
|
| 785 |
+
in_chans (int): Number of input image channels. Default: 1 (mono)
|
| 786 |
+
num_classes (int): Number of classes for classification head. Default: 527
|
| 787 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
| 788 |
+
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
|
| 789 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
| 790 |
+
window_size (int): Window size. Default: 8
|
| 791 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
| 792 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 793 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
| 794 |
+
drop_rate (float): Dropout rate. Default: 0
|
| 795 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
| 796 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
| 797 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
| 798 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
| 799 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
| 800 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
| 801 |
+
config (module): The configuration Module from config.py
|
| 802 |
+
"""
|
| 803 |
+
|
| 804 |
+
def __init__(
|
| 805 |
+
self,
|
| 806 |
+
spec_size=256,
|
| 807 |
+
patch_size=4,
|
| 808 |
+
patch_stride=(4, 4),
|
| 809 |
+
in_chans=1,
|
| 810 |
+
num_classes=527,
|
| 811 |
+
embed_dim=96,
|
| 812 |
+
depths=[2, 2, 6, 2],
|
| 813 |
+
num_heads=[4, 8, 16, 32],
|
| 814 |
+
window_size=8,
|
| 815 |
+
mlp_ratio=4.0,
|
| 816 |
+
qkv_bias=True,
|
| 817 |
+
qk_scale=None,
|
| 818 |
+
drop_rate=0.0,
|
| 819 |
+
attn_drop_rate=0.0,
|
| 820 |
+
drop_path_rate=0.1,
|
| 821 |
+
norm_layer=nn.LayerNorm,
|
| 822 |
+
ape=False,
|
| 823 |
+
patch_norm=True,
|
| 824 |
+
use_checkpoint=False,
|
| 825 |
+
norm_before_mlp="ln",
|
| 826 |
+
config=None,
|
| 827 |
+
enable_fusion=False,
|
| 828 |
+
fusion_type="None",
|
| 829 |
+
**kwargs,
|
| 830 |
+
):
|
| 831 |
+
super(HTSAT_Swin_Transformer, self).__init__()
|
| 832 |
+
|
| 833 |
+
self.config = config
|
| 834 |
+
self.spec_size = spec_size
|
| 835 |
+
self.patch_stride = patch_stride
|
| 836 |
+
self.patch_size = patch_size
|
| 837 |
+
self.window_size = window_size
|
| 838 |
+
self.embed_dim = embed_dim
|
| 839 |
+
self.depths = depths
|
| 840 |
+
self.ape = ape
|
| 841 |
+
self.in_chans = in_chans
|
| 842 |
+
self.num_classes = num_classes
|
| 843 |
+
self.num_heads = num_heads
|
| 844 |
+
self.num_layers = len(self.depths)
|
| 845 |
+
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
|
| 846 |
+
|
| 847 |
+
self.drop_rate = drop_rate
|
| 848 |
+
self.attn_drop_rate = attn_drop_rate
|
| 849 |
+
self.drop_path_rate = drop_path_rate
|
| 850 |
+
|
| 851 |
+
self.qkv_bias = qkv_bias
|
| 852 |
+
self.qk_scale = None
|
| 853 |
+
|
| 854 |
+
self.patch_norm = patch_norm
|
| 855 |
+
self.norm_layer = norm_layer if self.patch_norm else None
|
| 856 |
+
self.norm_before_mlp = norm_before_mlp
|
| 857 |
+
self.mlp_ratio = mlp_ratio
|
| 858 |
+
|
| 859 |
+
self.use_checkpoint = use_checkpoint
|
| 860 |
+
|
| 861 |
+
self.enable_fusion = enable_fusion
|
| 862 |
+
self.fusion_type = fusion_type
|
| 863 |
+
|
| 864 |
+
# process mel-spec ; used only once
|
| 865 |
+
self.freq_ratio = self.spec_size // self.config.mel_bins
|
| 866 |
+
window = "hann"
|
| 867 |
+
center = True
|
| 868 |
+
pad_mode = "reflect"
|
| 869 |
+
ref = 1.0
|
| 870 |
+
amin = 1e-10
|
| 871 |
+
top_db = None
|
| 872 |
+
self.interpolate_ratio = 32 # Downsampled ratio
|
| 873 |
+
# Spectrogram extractor
|
| 874 |
+
self.spectrogram_extractor = Spectrogram(
|
| 875 |
+
n_fft=config.window_size,
|
| 876 |
+
hop_length=config.hop_size,
|
| 877 |
+
win_length=config.window_size,
|
| 878 |
+
window=window,
|
| 879 |
+
center=center,
|
| 880 |
+
pad_mode=pad_mode,
|
| 881 |
+
freeze_parameters=True,
|
| 882 |
+
)
|
| 883 |
+
# Logmel feature extractor
|
| 884 |
+
self.logmel_extractor = LogmelFilterBank(
|
| 885 |
+
sr=config.sample_rate,
|
| 886 |
+
n_fft=config.window_size,
|
| 887 |
+
n_mels=config.mel_bins,
|
| 888 |
+
fmin=config.fmin,
|
| 889 |
+
fmax=config.fmax,
|
| 890 |
+
ref=ref,
|
| 891 |
+
amin=amin,
|
| 892 |
+
top_db=top_db,
|
| 893 |
+
freeze_parameters=True,
|
| 894 |
+
)
|
| 895 |
+
# Spec augmenter
|
| 896 |
+
self.spec_augmenter = SpecAugmentation(
|
| 897 |
+
time_drop_width=64,
|
| 898 |
+
time_stripes_num=2,
|
| 899 |
+
freq_drop_width=8,
|
| 900 |
+
freq_stripes_num=2,
|
| 901 |
+
) # 2 2
|
| 902 |
+
self.bn0 = nn.BatchNorm2d(self.config.mel_bins)
|
| 903 |
+
|
| 904 |
+
# split spctrogram into non-overlapping patches
|
| 905 |
+
self.patch_embed = PatchEmbed(
|
| 906 |
+
img_size=self.spec_size,
|
| 907 |
+
patch_size=self.patch_size,
|
| 908 |
+
in_chans=self.in_chans,
|
| 909 |
+
embed_dim=self.embed_dim,
|
| 910 |
+
norm_layer=self.norm_layer,
|
| 911 |
+
patch_stride=patch_stride,
|
| 912 |
+
enable_fusion=self.enable_fusion,
|
| 913 |
+
fusion_type=self.fusion_type,
|
| 914 |
+
)
|
| 915 |
+
|
| 916 |
+
num_patches = self.patch_embed.num_patches
|
| 917 |
+
patches_resolution = self.patch_embed.grid_size
|
| 918 |
+
self.patches_resolution = patches_resolution
|
| 919 |
+
|
| 920 |
+
# absolute position embedding
|
| 921 |
+
if self.ape:
|
| 922 |
+
self.absolute_pos_embed = nn.Parameter(
|
| 923 |
+
torch.zeros(1, num_patches, self.embed_dim)
|
| 924 |
+
)
|
| 925 |
+
trunc_normal_(self.absolute_pos_embed, std=0.02)
|
| 926 |
+
|
| 927 |
+
self.pos_drop = nn.Dropout(p=self.drop_rate)
|
| 928 |
+
|
| 929 |
+
# stochastic depth
|
| 930 |
+
dpr = [
|
| 931 |
+
x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))
|
| 932 |
+
] # stochastic depth decay rule
|
| 933 |
+
|
| 934 |
+
# build layers
|
| 935 |
+
self.layers = nn.ModuleList()
|
| 936 |
+
for i_layer in range(self.num_layers):
|
| 937 |
+
layer = BasicLayer(
|
| 938 |
+
dim=int(self.embed_dim * 2**i_layer),
|
| 939 |
+
input_resolution=(
|
| 940 |
+
patches_resolution[0] // (2**i_layer),
|
| 941 |
+
patches_resolution[1] // (2**i_layer),
|
| 942 |
+
),
|
| 943 |
+
depth=self.depths[i_layer],
|
| 944 |
+
num_heads=self.num_heads[i_layer],
|
| 945 |
+
window_size=self.window_size,
|
| 946 |
+
mlp_ratio=self.mlp_ratio,
|
| 947 |
+
qkv_bias=self.qkv_bias,
|
| 948 |
+
qk_scale=self.qk_scale,
|
| 949 |
+
drop=self.drop_rate,
|
| 950 |
+
attn_drop=self.attn_drop_rate,
|
| 951 |
+
drop_path=dpr[
|
| 952 |
+
sum(self.depths[:i_layer]) : sum(self.depths[: i_layer + 1])
|
| 953 |
+
],
|
| 954 |
+
norm_layer=self.norm_layer,
|
| 955 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
| 956 |
+
use_checkpoint=use_checkpoint,
|
| 957 |
+
norm_before_mlp=self.norm_before_mlp,
|
| 958 |
+
)
|
| 959 |
+
self.layers.append(layer)
|
| 960 |
+
|
| 961 |
+
self.norm = self.norm_layer(self.num_features)
|
| 962 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
| 963 |
+
self.maxpool = nn.AdaptiveMaxPool1d(1)
|
| 964 |
+
|
| 965 |
+
SF = (
|
| 966 |
+
self.spec_size
|
| 967 |
+
// (2 ** (len(self.depths) - 1))
|
| 968 |
+
// self.patch_stride[0]
|
| 969 |
+
// self.freq_ratio
|
| 970 |
+
)
|
| 971 |
+
self.tscam_conv = nn.Conv2d(
|
| 972 |
+
in_channels=self.num_features,
|
| 973 |
+
out_channels=self.num_classes,
|
| 974 |
+
kernel_size=(SF, 3),
|
| 975 |
+
padding=(0, 1),
|
| 976 |
+
)
|
| 977 |
+
self.head = nn.Linear(num_classes, num_classes)
|
| 978 |
+
|
| 979 |
+
if (self.enable_fusion) and (
|
| 980 |
+
self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]
|
| 981 |
+
):
|
| 982 |
+
self.mel_conv1d = nn.Sequential(
|
| 983 |
+
nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2),
|
| 984 |
+
nn.BatchNorm1d(64),
|
| 985 |
+
)
|
| 986 |
+
if self.fusion_type == "daf_1d":
|
| 987 |
+
self.fusion_model = DAF()
|
| 988 |
+
elif self.fusion_type == "aff_1d":
|
| 989 |
+
self.fusion_model = AFF(channels=64, type="1D")
|
| 990 |
+
elif self.fusion_type == "iaff_1d":
|
| 991 |
+
self.fusion_model = iAFF(channels=64, type="1D")
|
| 992 |
+
|
| 993 |
+
self.apply(self._init_weights)
|
| 994 |
+
|
| 995 |
+
def _init_weights(self, m):
|
| 996 |
+
if isinstance(m, nn.Linear):
|
| 997 |
+
trunc_normal_(m.weight, std=0.02)
|
| 998 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 999 |
+
nn.init.constant_(m.bias, 0)
|
| 1000 |
+
elif isinstance(m, nn.LayerNorm):
|
| 1001 |
+
nn.init.constant_(m.bias, 0)
|
| 1002 |
+
nn.init.constant_(m.weight, 1.0)
|
| 1003 |
+
|
| 1004 |
+
@torch.jit.ignore
|
| 1005 |
+
def no_weight_decay(self):
|
| 1006 |
+
return {"absolute_pos_embed"}
|
| 1007 |
+
|
| 1008 |
+
@torch.jit.ignore
|
| 1009 |
+
def no_weight_decay_keywords(self):
|
| 1010 |
+
return {"relative_position_bias_table"}
|
| 1011 |
+
|
| 1012 |
+
def forward_features(self, x, longer_idx=None):
|
| 1013 |
+
# A deprecated optimization for using a hierarchical output from different blocks
|
| 1014 |
+
|
| 1015 |
+
frames_num = x.shape[2]
|
| 1016 |
+
x = self.patch_embed(x, longer_idx=longer_idx)
|
| 1017 |
+
if self.ape:
|
| 1018 |
+
x = x + self.absolute_pos_embed
|
| 1019 |
+
x = self.pos_drop(x)
|
| 1020 |
+
for i, layer in enumerate(self.layers):
|
| 1021 |
+
x, attn = layer(x)
|
| 1022 |
+
# for x
|
| 1023 |
+
x = self.norm(x)
|
| 1024 |
+
B, N, C = x.shape
|
| 1025 |
+
SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
|
| 1026 |
+
ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
|
| 1027 |
+
x = x.permute(0, 2, 1).contiguous().reshape(B, C, SF, ST)
|
| 1028 |
+
B, C, F, T = x.shape
|
| 1029 |
+
# group 2D CNN
|
| 1030 |
+
c_freq_bin = F // self.freq_ratio
|
| 1031 |
+
x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
|
| 1032 |
+
x = x.permute(0, 1, 3, 2, 4).contiguous().reshape(B, C, c_freq_bin, -1)
|
| 1033 |
+
# get latent_output
|
| 1034 |
+
fine_grained_latent_output = torch.mean(x, dim=2)
|
| 1035 |
+
fine_grained_latent_output = interpolate(
|
| 1036 |
+
fine_grained_latent_output.permute(0, 2, 1).contiguous(),
|
| 1037 |
+
8 * self.patch_stride[1],
|
| 1038 |
+
)
|
| 1039 |
+
|
| 1040 |
+
latent_output = self.avgpool(torch.flatten(x, 2))
|
| 1041 |
+
latent_output = torch.flatten(latent_output, 1)
|
| 1042 |
+
|
| 1043 |
+
# display the attention map, if needed
|
| 1044 |
+
|
| 1045 |
+
x = self.tscam_conv(x)
|
| 1046 |
+
x = torch.flatten(x, 2) # B, C, T
|
| 1047 |
+
|
| 1048 |
+
fpx = interpolate(
|
| 1049 |
+
torch.sigmoid(x).permute(0, 2, 1).contiguous(), 8 * self.patch_stride[1]
|
| 1050 |
+
)
|
| 1051 |
+
|
| 1052 |
+
x = self.avgpool(x)
|
| 1053 |
+
x = torch.flatten(x, 1)
|
| 1054 |
+
|
| 1055 |
+
output_dict = {
|
| 1056 |
+
"framewise_output": fpx, # already sigmoided
|
| 1057 |
+
"clipwise_output": torch.sigmoid(x),
|
| 1058 |
+
"fine_grained_embedding": fine_grained_latent_output,
|
| 1059 |
+
"embedding": latent_output,
|
| 1060 |
+
}
|
| 1061 |
+
|
| 1062 |
+
return output_dict
|
| 1063 |
+
|
| 1064 |
+
def crop_wav(self, x, crop_size, spe_pos=None):
|
| 1065 |
+
time_steps = x.shape[2]
|
| 1066 |
+
tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device)
|
| 1067 |
+
for i in range(len(x)):
|
| 1068 |
+
if spe_pos is None:
|
| 1069 |
+
crop_pos = random.randint(0, time_steps - crop_size - 1)
|
| 1070 |
+
else:
|
| 1071 |
+
crop_pos = spe_pos
|
| 1072 |
+
tx[i][0] = x[i, 0, crop_pos : crop_pos + crop_size, :]
|
| 1073 |
+
return tx
|
| 1074 |
+
|
| 1075 |
+
# Reshape the wavform to a img size, if you want to use the pretrained swin transformer model
|
| 1076 |
+
def reshape_wav2img(self, x):
|
| 1077 |
+
B, C, T, F = x.shape
|
| 1078 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
| 1079 |
+
target_F = self.spec_size // self.freq_ratio
|
| 1080 |
+
assert (
|
| 1081 |
+
T <= target_T and F <= target_F
|
| 1082 |
+
), "the wav size should less than or equal to the swin input size"
|
| 1083 |
+
# to avoid bicubic zero error
|
| 1084 |
+
if T < target_T:
|
| 1085 |
+
x = nn.functional.interpolate(
|
| 1086 |
+
x, (target_T, x.shape[3]), mode="bicubic", align_corners=True
|
| 1087 |
+
)
|
| 1088 |
+
if F < target_F:
|
| 1089 |
+
x = nn.functional.interpolate(
|
| 1090 |
+
x, (x.shape[2], target_F), mode="bicubic", align_corners=True
|
| 1091 |
+
)
|
| 1092 |
+
x = x.permute(0, 1, 3, 2).contiguous()
|
| 1093 |
+
x = x.reshape(
|
| 1094 |
+
x.shape[0],
|
| 1095 |
+
x.shape[1],
|
| 1096 |
+
x.shape[2],
|
| 1097 |
+
self.freq_ratio,
|
| 1098 |
+
x.shape[3] // self.freq_ratio,
|
| 1099 |
+
)
|
| 1100 |
+
# print(x.shape)
|
| 1101 |
+
x = x.permute(0, 1, 3, 2, 4).contiguous()
|
| 1102 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4])
|
| 1103 |
+
return x
|
| 1104 |
+
|
| 1105 |
+
# Repeat the wavform to a img size, if you want to use the pretrained swin transformer model
|
| 1106 |
+
def repeat_wat2img(self, x, cur_pos):
|
| 1107 |
+
B, C, T, F = x.shape
|
| 1108 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
| 1109 |
+
target_F = self.spec_size // self.freq_ratio
|
| 1110 |
+
assert (
|
| 1111 |
+
T <= target_T and F <= target_F
|
| 1112 |
+
), "the wav size should less than or equal to the swin input size"
|
| 1113 |
+
# to avoid bicubic zero error
|
| 1114 |
+
if T < target_T:
|
| 1115 |
+
x = nn.functional.interpolate(
|
| 1116 |
+
x, (target_T, x.shape[3]), mode="bicubic", align_corners=True
|
| 1117 |
+
)
|
| 1118 |
+
if F < target_F:
|
| 1119 |
+
x = nn.functional.interpolate(
|
| 1120 |
+
x, (x.shape[2], target_F), mode="bicubic", align_corners=True
|
| 1121 |
+
)
|
| 1122 |
+
x = x.permute(0, 1, 3, 2).contiguous() # B C F T
|
| 1123 |
+
x = x[:, :, :, cur_pos : cur_pos + self.spec_size]
|
| 1124 |
+
x = x.repeat(repeats=(1, 1, 4, 1))
|
| 1125 |
+
return x
|
| 1126 |
+
|
| 1127 |
+
def forward(
|
| 1128 |
+
self, x: torch.Tensor, mixup_lambda=None, infer_mode=False, device=None
|
| 1129 |
+
): # out_feat_keys: List[str] = None):
|
| 1130 |
+
|
| 1131 |
+
if self.enable_fusion and x["longer"].sum() == 0:
|
| 1132 |
+
# if no audio is longer than 10s, then randomly select one audio to be longer
|
| 1133 |
+
x["longer"][torch.randint(0, x["longer"].shape[0], (1,))] = True
|
| 1134 |
+
|
| 1135 |
+
if not self.enable_fusion:
|
| 1136 |
+
x = x["waveform"].to(device=device, non_blocking=True)
|
| 1137 |
+
x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
|
| 1138 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
| 1139 |
+
x = x.transpose(1, 3)
|
| 1140 |
+
x = self.bn0(x)
|
| 1141 |
+
x = x.transpose(1, 3)
|
| 1142 |
+
if self.training:
|
| 1143 |
+
x = self.spec_augmenter(x)
|
| 1144 |
+
|
| 1145 |
+
if self.training and mixup_lambda is not None:
|
| 1146 |
+
x = do_mixup(x, mixup_lambda)
|
| 1147 |
+
|
| 1148 |
+
x = self.reshape_wav2img(x)
|
| 1149 |
+
output_dict = self.forward_features(x)
|
| 1150 |
+
else:
|
| 1151 |
+
longer_list = x["longer"].to(device=device, non_blocking=True)
|
| 1152 |
+
x = x["mel_fusion"].to(device=device, non_blocking=True)
|
| 1153 |
+
x = x.transpose(1, 3)
|
| 1154 |
+
x = self.bn0(x)
|
| 1155 |
+
x = x.transpose(1, 3)
|
| 1156 |
+
longer_list_idx = torch.where(longer_list)[0]
|
| 1157 |
+
if self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]:
|
| 1158 |
+
new_x = x[:, 0:1, :, :].clone().contiguous()
|
| 1159 |
+
if len(longer_list_idx) > 0:
|
| 1160 |
+
# local processing
|
| 1161 |
+
fusion_x_local = x[longer_list_idx, 1:, :, :].clone().contiguous()
|
| 1162 |
+
FB, FC, FT, FF = fusion_x_local.size()
|
| 1163 |
+
fusion_x_local = fusion_x_local.view(FB * FC, FT, FF)
|
| 1164 |
+
fusion_x_local = torch.permute(
|
| 1165 |
+
fusion_x_local, (0, 2, 1)
|
| 1166 |
+
).contiguous()
|
| 1167 |
+
fusion_x_local = self.mel_conv1d(fusion_x_local)
|
| 1168 |
+
fusion_x_local = fusion_x_local.view(
|
| 1169 |
+
FB, FC, FF, fusion_x_local.size(-1)
|
| 1170 |
+
)
|
| 1171 |
+
fusion_x_local = (
|
| 1172 |
+
torch.permute(fusion_x_local, (0, 2, 1, 3))
|
| 1173 |
+
.contiguous()
|
| 1174 |
+
.flatten(2)
|
| 1175 |
+
)
|
| 1176 |
+
if fusion_x_local.size(-1) < FT:
|
| 1177 |
+
fusion_x_local = torch.cat(
|
| 1178 |
+
[
|
| 1179 |
+
fusion_x_local,
|
| 1180 |
+
torch.zeros(
|
| 1181 |
+
(FB, FF, FT - fusion_x_local.size(-1)),
|
| 1182 |
+
device=device,
|
| 1183 |
+
),
|
| 1184 |
+
],
|
| 1185 |
+
dim=-1,
|
| 1186 |
+
)
|
| 1187 |
+
else:
|
| 1188 |
+
fusion_x_local = fusion_x_local[:, :, :FT]
|
| 1189 |
+
# 1D fusion
|
| 1190 |
+
new_x = new_x.squeeze(1).permute((0, 2, 1)).contiguous()
|
| 1191 |
+
new_x[longer_list_idx] = self.fusion_model(
|
| 1192 |
+
new_x[longer_list_idx], fusion_x_local
|
| 1193 |
+
)
|
| 1194 |
+
x = new_x.permute((0, 2, 1)).contiguous()[:, None, :, :]
|
| 1195 |
+
else:
|
| 1196 |
+
x = new_x
|
| 1197 |
+
|
| 1198 |
+
elif self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d", "channel_map"]:
|
| 1199 |
+
x = x # no change
|
| 1200 |
+
|
| 1201 |
+
if self.training:
|
| 1202 |
+
x = self.spec_augmenter(x)
|
| 1203 |
+
if self.training and mixup_lambda is not None:
|
| 1204 |
+
x = do_mixup(x, mixup_lambda)
|
| 1205 |
+
|
| 1206 |
+
x = self.reshape_wav2img(x)
|
| 1207 |
+
output_dict = self.forward_features(x, longer_idx=longer_list_idx)
|
| 1208 |
+
|
| 1209 |
+
# if infer_mode:
|
| 1210 |
+
# # in infer mode. we need to handle different length audio input
|
| 1211 |
+
# frame_num = x.shape[2]
|
| 1212 |
+
# target_T = int(self.spec_size * self.freq_ratio)
|
| 1213 |
+
# repeat_ratio = math.floor(target_T / frame_num)
|
| 1214 |
+
# x = x.repeat(repeats=(1,1,repeat_ratio,1))
|
| 1215 |
+
# x = self.reshape_wav2img(x)
|
| 1216 |
+
# output_dict = self.forward_features(x)
|
| 1217 |
+
# else:
|
| 1218 |
+
# if x.shape[2] > self.freq_ratio * self.spec_size:
|
| 1219 |
+
# if self.training:
|
| 1220 |
+
# x = self.crop_wav(x, crop_size=self.freq_ratio * self.spec_size)
|
| 1221 |
+
# x = self.reshape_wav2img(x)
|
| 1222 |
+
# output_dict = self.forward_features(x)
|
| 1223 |
+
# else:
|
| 1224 |
+
# # Change: Hard code here
|
| 1225 |
+
# overlap_size = (x.shape[2] - 1) // 4
|
| 1226 |
+
# output_dicts = []
|
| 1227 |
+
# crop_size = (x.shape[2] - 1) // 2
|
| 1228 |
+
# for cur_pos in range(0, x.shape[2] - crop_size - 1, overlap_size):
|
| 1229 |
+
# tx = self.crop_wav(x, crop_size = crop_size, spe_pos = cur_pos)
|
| 1230 |
+
# tx = self.reshape_wav2img(tx)
|
| 1231 |
+
# output_dicts.append(self.forward_features(tx))
|
| 1232 |
+
# clipwise_output = torch.zeros_like(output_dicts[0]["clipwise_output"]).float().to(x.device)
|
| 1233 |
+
# framewise_output = torch.zeros_like(output_dicts[0]["framewise_output"]).float().to(x.device)
|
| 1234 |
+
# for d in output_dicts:
|
| 1235 |
+
# clipwise_output += d["clipwise_output"]
|
| 1236 |
+
# framewise_output += d["framewise_output"]
|
| 1237 |
+
# clipwise_output = clipwise_output / len(output_dicts)
|
| 1238 |
+
# framewise_output = framewise_output / len(output_dicts)
|
| 1239 |
+
# output_dict = {
|
| 1240 |
+
# 'framewise_output': framewise_output,
|
| 1241 |
+
# 'clipwise_output': clipwise_output
|
| 1242 |
+
# }
|
| 1243 |
+
# else: # this part is typically used, and most easy one
|
| 1244 |
+
# x = self.reshape_wav2img(x)
|
| 1245 |
+
# output_dict = self.forward_features(x)
|
| 1246 |
+
# x = self.head(x)
|
| 1247 |
+
|
| 1248 |
+
# We process the data in the dataloader part, in that here we only consider the input_T < fixed_T
|
| 1249 |
+
|
| 1250 |
+
return output_dict
|
| 1251 |
+
|
| 1252 |
+
|
| 1253 |
+
def create_htsat_model(audio_cfg, enable_fusion=False, fusion_type="None"):
|
| 1254 |
+
try:
|
| 1255 |
+
|
| 1256 |
+
assert audio_cfg.model_name in [
|
| 1257 |
+
"tiny",
|
| 1258 |
+
"base",
|
| 1259 |
+
"large",
|
| 1260 |
+
], "model name for HTS-AT is wrong!"
|
| 1261 |
+
if audio_cfg.model_name == "tiny":
|
| 1262 |
+
model = HTSAT_Swin_Transformer(
|
| 1263 |
+
spec_size=256,
|
| 1264 |
+
patch_size=4,
|
| 1265 |
+
patch_stride=(4, 4),
|
| 1266 |
+
num_classes=audio_cfg.class_num,
|
| 1267 |
+
embed_dim=96,
|
| 1268 |
+
depths=[2, 2, 6, 2],
|
| 1269 |
+
num_heads=[4, 8, 16, 32],
|
| 1270 |
+
window_size=8,
|
| 1271 |
+
config=audio_cfg,
|
| 1272 |
+
enable_fusion=enable_fusion,
|
| 1273 |
+
fusion_type=fusion_type,
|
| 1274 |
+
)
|
| 1275 |
+
elif audio_cfg.model_name == "base":
|
| 1276 |
+
model = HTSAT_Swin_Transformer(
|
| 1277 |
+
spec_size=256,
|
| 1278 |
+
patch_size=4,
|
| 1279 |
+
patch_stride=(4, 4),
|
| 1280 |
+
num_classes=audio_cfg.class_num,
|
| 1281 |
+
embed_dim=128,
|
| 1282 |
+
depths=[2, 2, 12, 2],
|
| 1283 |
+
num_heads=[4, 8, 16, 32],
|
| 1284 |
+
window_size=8,
|
| 1285 |
+
config=audio_cfg,
|
| 1286 |
+
enable_fusion=enable_fusion,
|
| 1287 |
+
fusion_type=fusion_type,
|
| 1288 |
+
)
|
| 1289 |
+
elif audio_cfg.model_name == "large":
|
| 1290 |
+
model = HTSAT_Swin_Transformer(
|
| 1291 |
+
spec_size=256,
|
| 1292 |
+
patch_size=4,
|
| 1293 |
+
patch_stride=(4, 4),
|
| 1294 |
+
num_classes=audio_cfg.class_num,
|
| 1295 |
+
embed_dim=256,
|
| 1296 |
+
depths=[2, 2, 12, 2],
|
| 1297 |
+
num_heads=[4, 8, 16, 32],
|
| 1298 |
+
window_size=8,
|
| 1299 |
+
config=audio_cfg,
|
| 1300 |
+
enable_fusion=enable_fusion,
|
| 1301 |
+
fusion_type=fusion_type,
|
| 1302 |
+
)
|
| 1303 |
+
|
| 1304 |
+
return model
|
| 1305 |
+
except:
|
| 1306 |
+
raise RuntimeError(
|
| 1307 |
+
f"Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough."
|
| 1308 |
+
)
|
models/CLAP/open_clip/linear_probe.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from torch import nn
|
| 4 |
+
from .model import MLPLayers
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class LinearProbe(nn.Module):
|
| 8 |
+
def __init__(self, model, mlp, freeze, in_ch, out_ch, act=None):
|
| 9 |
+
"""
|
| 10 |
+
Args:
|
| 11 |
+
model: nn.Module
|
| 12 |
+
mlp: bool, if True, then use the MLP layer as the linear probe module
|
| 13 |
+
freeze: bool, if Ture, then freeze all the CLAP model's layers when training the linear probe
|
| 14 |
+
in_ch: int, the output channel from CLAP model
|
| 15 |
+
out_ch: int, the output channel from linear probe (class_num)
|
| 16 |
+
act: torch.nn.functional, the activation function before the loss function
|
| 17 |
+
"""
|
| 18 |
+
super().__init__()
|
| 19 |
+
in_ch = 512
|
| 20 |
+
self.clap_model = model
|
| 21 |
+
self.clap_model.text_branch = None # to save memory
|
| 22 |
+
self.freeze = freeze
|
| 23 |
+
if mlp:
|
| 24 |
+
self.lp_layer = MLPLayers(units=[in_ch, in_ch * 2, out_ch])
|
| 25 |
+
else:
|
| 26 |
+
self.lp_layer = nn.Linear(in_ch, out_ch)
|
| 27 |
+
|
| 28 |
+
if self.freeze:
|
| 29 |
+
for param in self.clap_model.parameters():
|
| 30 |
+
param.requires_grad = False
|
| 31 |
+
|
| 32 |
+
if act == "None":
|
| 33 |
+
self.act = None
|
| 34 |
+
elif act == "relu":
|
| 35 |
+
self.act = nn.ReLU()
|
| 36 |
+
elif act == "elu":
|
| 37 |
+
self.act = nn.ELU()
|
| 38 |
+
elif act == "prelu":
|
| 39 |
+
self.act = nn.PReLU(num_parameters=in_ch)
|
| 40 |
+
elif act == "softmax":
|
| 41 |
+
self.act = nn.Softmax(dim=-1)
|
| 42 |
+
elif act == "sigmoid":
|
| 43 |
+
self.act = nn.Sigmoid()
|
| 44 |
+
|
| 45 |
+
def forward(self, x, mix_lambda=None, device=None):
|
| 46 |
+
"""
|
| 47 |
+
Args:
|
| 48 |
+
x: waveform, torch.tensor [batch, t_samples] / batch of mel_spec and longer list
|
| 49 |
+
mix_lambda: torch.tensor [batch], the mixup lambda
|
| 50 |
+
Returns:
|
| 51 |
+
class_prob: torch.tensor [batch, class_num]
|
| 52 |
+
|
| 53 |
+
"""
|
| 54 |
+
# batchnorm cancel grandient
|
| 55 |
+
if self.freeze:
|
| 56 |
+
self.clap_model.eval()
|
| 57 |
+
|
| 58 |
+
x = self.clap_model.audio_projection(
|
| 59 |
+
self.clap_model.audio_branch(x, mixup_lambda=mix_lambda, device=device)[
|
| 60 |
+
"embedding"
|
| 61 |
+
]
|
| 62 |
+
)
|
| 63 |
+
out = self.lp_layer(x)
|
| 64 |
+
if self.act is not None:
|
| 65 |
+
out = self.act(out)
|
| 66 |
+
return out
|
models/CLAP/open_clip/loss.py
ADDED
|
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from multiprocessing.sharedctypes import Value
|
| 2 |
+
import torch
|
| 3 |
+
import torch.distributed.nn
|
| 4 |
+
from torch import distributed as dist, nn as nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
import numpy as np
|
| 7 |
+
from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
import horovod.torch as hvd
|
| 11 |
+
except ImportError:
|
| 12 |
+
hvd = None
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def gather_features(
|
| 16 |
+
audio_features,
|
| 17 |
+
text_features,
|
| 18 |
+
audio_features_mlp=None,
|
| 19 |
+
text_features_mlp=None,
|
| 20 |
+
local_loss=False,
|
| 21 |
+
gather_with_grad=False,
|
| 22 |
+
rank=0,
|
| 23 |
+
world_size=1,
|
| 24 |
+
use_horovod=False,
|
| 25 |
+
mlp_loss=False,
|
| 26 |
+
):
|
| 27 |
+
if use_horovod:
|
| 28 |
+
assert hvd is not None, "Please install horovod"
|
| 29 |
+
if gather_with_grad:
|
| 30 |
+
all_audio_features = hvd.allgather(audio_features)
|
| 31 |
+
all_text_features = hvd.allgather(text_features)
|
| 32 |
+
if mlp_loss:
|
| 33 |
+
all_audio_features_mlp = hvd.allgather(audio_features_mlp)
|
| 34 |
+
all_text_features_mlp = hvd.allgather(text_features_mlp)
|
| 35 |
+
else:
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
all_audio_features = hvd.allgather(audio_features)
|
| 38 |
+
all_text_features = hvd.allgather(text_features)
|
| 39 |
+
if mlp_loss:
|
| 40 |
+
all_audio_features_mlp = hvd.allgather(audio_features_mlp)
|
| 41 |
+
all_text_features_mlp = hvd.allgather(text_features_mlp)
|
| 42 |
+
if not local_loss:
|
| 43 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
| 44 |
+
gathered_audio_features = list(
|
| 45 |
+
all_audio_features.chunk(world_size, dim=0)
|
| 46 |
+
)
|
| 47 |
+
gathered_text_features = list(
|
| 48 |
+
all_text_features.chunk(world_size, dim=0)
|
| 49 |
+
)
|
| 50 |
+
gathered_audio_features[rank] = audio_features
|
| 51 |
+
gathered_text_features[rank] = text_features
|
| 52 |
+
all_audio_features = torch.cat(gathered_audio_features, dim=0)
|
| 53 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
| 54 |
+
if mlp_loss:
|
| 55 |
+
gathered_audio_features_mlp = list(
|
| 56 |
+
all_audio_features_mlp.chunk(world_size, dim=0)
|
| 57 |
+
)
|
| 58 |
+
gathered_text_features_mlp = list(
|
| 59 |
+
all_text_features_mlp.chunk(world_size, dim=0)
|
| 60 |
+
)
|
| 61 |
+
gathered_audio_features_mlp[rank] = audio_features_mlp
|
| 62 |
+
gathered_text_features_mlp[rank] = text_features_mlp
|
| 63 |
+
all_audio_features_mlp = torch.cat(
|
| 64 |
+
gathered_audio_features_mlp, dim=0
|
| 65 |
+
)
|
| 66 |
+
all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
|
| 67 |
+
else:
|
| 68 |
+
# We gather tensors from all gpus
|
| 69 |
+
if gather_with_grad:
|
| 70 |
+
all_audio_features = torch.cat(
|
| 71 |
+
torch.distributed.nn.all_gather(audio_features), dim=0
|
| 72 |
+
)
|
| 73 |
+
all_text_features = torch.cat(
|
| 74 |
+
torch.distributed.nn.all_gather(text_features), dim=0
|
| 75 |
+
)
|
| 76 |
+
if mlp_loss:
|
| 77 |
+
all_audio_features_mlp = torch.cat(
|
| 78 |
+
torch.distributed.nn.all_gather(audio_features_mlp), dim=0
|
| 79 |
+
)
|
| 80 |
+
all_text_features_mlp = torch.cat(
|
| 81 |
+
torch.distributed.nn.all_gather(text_features_mlp), dim=0
|
| 82 |
+
)
|
| 83 |
+
else:
|
| 84 |
+
gathered_audio_features = [
|
| 85 |
+
torch.zeros_like(audio_features) for _ in range(world_size)
|
| 86 |
+
]
|
| 87 |
+
gathered_text_features = [
|
| 88 |
+
torch.zeros_like(text_features) for _ in range(world_size)
|
| 89 |
+
]
|
| 90 |
+
dist.all_gather(gathered_audio_features, audio_features)
|
| 91 |
+
dist.all_gather(gathered_text_features, text_features)
|
| 92 |
+
if mlp_loss:
|
| 93 |
+
gathered_audio_features_mlp = [
|
| 94 |
+
torch.zeros_like(audio_features_mlp) for _ in range(world_size)
|
| 95 |
+
]
|
| 96 |
+
gathered_text_features_mlp = [
|
| 97 |
+
torch.zeros_like(text_features_mlp) for _ in range(world_size)
|
| 98 |
+
]
|
| 99 |
+
dist.all_gather(gathered_audio_features_mlp, audio_features_mlp)
|
| 100 |
+
dist.all_gather(gathered_text_features_mlp, text_features_mlp)
|
| 101 |
+
if not local_loss:
|
| 102 |
+
# ensure grads for local rank when all_* features don't have a gradient
|
| 103 |
+
gathered_audio_features[rank] = audio_features
|
| 104 |
+
gathered_text_features[rank] = text_features
|
| 105 |
+
if mlp_loss:
|
| 106 |
+
gathered_audio_features_mlp[rank] = audio_features_mlp
|
| 107 |
+
gathered_text_features_mlp[rank] = text_features_mlp
|
| 108 |
+
|
| 109 |
+
all_audio_features = torch.cat(gathered_audio_features, dim=0)
|
| 110 |
+
all_text_features = torch.cat(gathered_text_features, dim=0)
|
| 111 |
+
if mlp_loss:
|
| 112 |
+
all_audio_features_mlp = torch.cat(gathered_audio_features_mlp, dim=0)
|
| 113 |
+
all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
|
| 114 |
+
if mlp_loss:
|
| 115 |
+
return (
|
| 116 |
+
all_audio_features,
|
| 117 |
+
all_text_features,
|
| 118 |
+
all_audio_features_mlp,
|
| 119 |
+
all_text_features_mlp,
|
| 120 |
+
)
|
| 121 |
+
else:
|
| 122 |
+
return all_audio_features, all_text_features
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class ClipLoss(nn.Module):
|
| 126 |
+
def __init__(
|
| 127 |
+
self,
|
| 128 |
+
local_loss=False,
|
| 129 |
+
gather_with_grad=False,
|
| 130 |
+
cache_labels=False,
|
| 131 |
+
rank=0,
|
| 132 |
+
world_size=1,
|
| 133 |
+
use_horovod=False,
|
| 134 |
+
mlp_loss=False,
|
| 135 |
+
weight_loss_kappa=0,
|
| 136 |
+
):
|
| 137 |
+
super().__init__()
|
| 138 |
+
self.local_loss = local_loss
|
| 139 |
+
self.gather_with_grad = gather_with_grad
|
| 140 |
+
self.cache_labels = cache_labels
|
| 141 |
+
self.rank = rank
|
| 142 |
+
self.world_size = world_size
|
| 143 |
+
self.use_horovod = use_horovod
|
| 144 |
+
self.mlp_loss = mlp_loss
|
| 145 |
+
self.weighted_loss = bool(weight_loss_kappa != 0)
|
| 146 |
+
self.weight_loss_kappa = weight_loss_kappa
|
| 147 |
+
# cache state
|
| 148 |
+
self.prev_num_logits = 0
|
| 149 |
+
self.labels = {}
|
| 150 |
+
|
| 151 |
+
def forward(
|
| 152 |
+
self,
|
| 153 |
+
audio_features,
|
| 154 |
+
text_features,
|
| 155 |
+
logit_scale_a,
|
| 156 |
+
logit_scale_t=None,
|
| 157 |
+
audio_features_mlp=None,
|
| 158 |
+
text_features_mlp=None,
|
| 159 |
+
):
|
| 160 |
+
device = audio_features.device
|
| 161 |
+
if self.mlp_loss:
|
| 162 |
+
if self.world_size > 1:
|
| 163 |
+
(
|
| 164 |
+
all_audio_features,
|
| 165 |
+
all_text_features,
|
| 166 |
+
all_audio_features_mlp,
|
| 167 |
+
all_text_features_mlp,
|
| 168 |
+
) = gather_features(
|
| 169 |
+
audio_features=audio_features,
|
| 170 |
+
text_features=text_features,
|
| 171 |
+
audio_features_mlp=audio_features_mlp,
|
| 172 |
+
text_features_mlp=text_features_mlp,
|
| 173 |
+
local_loss=self.local_loss,
|
| 174 |
+
gather_with_grad=self.gather_with_grad,
|
| 175 |
+
rank=self.rank,
|
| 176 |
+
world_size=self.world_size,
|
| 177 |
+
use_horovod=self.use_horovod,
|
| 178 |
+
mlp_loss=self.mlp_loss,
|
| 179 |
+
)
|
| 180 |
+
if self.local_loss:
|
| 181 |
+
a_logits_per_audio = (
|
| 182 |
+
logit_scale_a * audio_features @ all_text_features_mlp.T
|
| 183 |
+
)
|
| 184 |
+
a_logits_per_text = (
|
| 185 |
+
logit_scale_a * text_features_mlp @ all_audio_features.T
|
| 186 |
+
)
|
| 187 |
+
t_logits_per_audio = (
|
| 188 |
+
logit_scale_t * audio_features_mlp @ all_text_features.T
|
| 189 |
+
)
|
| 190 |
+
t_logits_per_text = (
|
| 191 |
+
logit_scale_t * text_features @ all_audio_features_mlp.T
|
| 192 |
+
)
|
| 193 |
+
else:
|
| 194 |
+
a_logits_per_audio = (
|
| 195 |
+
logit_scale_a * all_audio_features @ all_text_features_mlp.T
|
| 196 |
+
)
|
| 197 |
+
a_logits_per_text = a_logits_per_audio.T
|
| 198 |
+
t_logits_per_audio = (
|
| 199 |
+
logit_scale_t * all_audio_features_mlp @ all_text_features.T
|
| 200 |
+
)
|
| 201 |
+
t_logits_per_text = t_logits_per_audio.T
|
| 202 |
+
else:
|
| 203 |
+
a_logits_per_audio = (
|
| 204 |
+
logit_scale_a * audio_features @ text_features_mlp.T
|
| 205 |
+
)
|
| 206 |
+
a_logits_per_text = logit_scale_a * text_features_mlp @ audio_features.T
|
| 207 |
+
t_logits_per_audio = (
|
| 208 |
+
logit_scale_t * audio_features_mlp @ text_features.T
|
| 209 |
+
)
|
| 210 |
+
t_logits_per_text = logit_scale_t * text_features @ audio_features_mlp.T
|
| 211 |
+
|
| 212 |
+
# calculated ground-truth and cache if enabled
|
| 213 |
+
num_logits = a_logits_per_audio.shape[0]
|
| 214 |
+
if self.prev_num_logits != num_logits or device not in self.labels:
|
| 215 |
+
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
| 216 |
+
if self.world_size > 1 and self.local_loss:
|
| 217 |
+
labels = labels + num_logits * self.rank
|
| 218 |
+
if self.cache_labels:
|
| 219 |
+
self.labels[device] = labels
|
| 220 |
+
self.prev_num_logits = num_logits
|
| 221 |
+
else:
|
| 222 |
+
labels = self.labels[device]
|
| 223 |
+
|
| 224 |
+
if not self.weighted_loss:
|
| 225 |
+
total_loss = (
|
| 226 |
+
F.cross_entropy(a_logits_per_audio, labels)
|
| 227 |
+
+ F.cross_entropy(a_logits_per_text, labels)
|
| 228 |
+
+ F.cross_entropy(t_logits_per_audio, labels)
|
| 229 |
+
+ F.cross_entropy(t_logits_per_text, labels)
|
| 230 |
+
) / 4
|
| 231 |
+
else:
|
| 232 |
+
audio_weight = (audio_features @ audio_features.T).detach()
|
| 233 |
+
audio_weight = (
|
| 234 |
+
torch.exp(
|
| 235 |
+
torch.sum(audio_weight, axis=1)
|
| 236 |
+
/ (self.weight_loss_kappa * len(audio_weight))
|
| 237 |
+
)
|
| 238 |
+
).detach()
|
| 239 |
+
text_weight = (text_features @ text_features.T).detach()
|
| 240 |
+
text_weight = (
|
| 241 |
+
torch.exp(
|
| 242 |
+
torch.sum(text_weight, axis=1)
|
| 243 |
+
/ (self.weight_loss_kappa * len(text_features))
|
| 244 |
+
)
|
| 245 |
+
).detach()
|
| 246 |
+
total_loss = (
|
| 247 |
+
F.cross_entropy(a_logits_per_audio, labels, weight=audio_weight)
|
| 248 |
+
+ F.cross_entropy(a_logits_per_text, labels, weight=audio_weight)
|
| 249 |
+
+ F.cross_entropy(t_logits_per_audio, labels, weight=text_weight)
|
| 250 |
+
+ F.cross_entropy(t_logits_per_text, labels, weight=text_weight)
|
| 251 |
+
) / 4
|
| 252 |
+
else:
|
| 253 |
+
if self.world_size > 1:
|
| 254 |
+
all_audio_features, all_text_features = gather_features(
|
| 255 |
+
audio_features=audio_features,
|
| 256 |
+
text_features=text_features,
|
| 257 |
+
local_loss=self.local_loss,
|
| 258 |
+
gather_with_grad=self.gather_with_grad,
|
| 259 |
+
rank=self.rank,
|
| 260 |
+
world_size=self.world_size,
|
| 261 |
+
use_horovod=self.use_horovod,
|
| 262 |
+
mlp_loss=self.mlp_loss,
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
if self.local_loss:
|
| 266 |
+
logits_per_audio = (
|
| 267 |
+
logit_scale_a * audio_features @ all_text_features.T
|
| 268 |
+
)
|
| 269 |
+
logits_per_text = (
|
| 270 |
+
logit_scale_a * text_features @ all_audio_features.T
|
| 271 |
+
)
|
| 272 |
+
else:
|
| 273 |
+
logits_per_audio = (
|
| 274 |
+
logit_scale_a * all_audio_features @ all_text_features.T
|
| 275 |
+
)
|
| 276 |
+
logits_per_text = logits_per_audio.T
|
| 277 |
+
else:
|
| 278 |
+
logits_per_audio = logit_scale_a * audio_features @ text_features.T
|
| 279 |
+
logits_per_text = logit_scale_a * text_features @ audio_features.T
|
| 280 |
+
|
| 281 |
+
# calculated ground-truth and cache if enabled
|
| 282 |
+
num_logits = logits_per_audio.shape[0]
|
| 283 |
+
if self.prev_num_logits != num_logits or device not in self.labels:
|
| 284 |
+
labels = torch.arange(num_logits, device=device, dtype=torch.long)
|
| 285 |
+
if self.world_size > 1 and self.local_loss:
|
| 286 |
+
labels = labels + num_logits * self.rank
|
| 287 |
+
if self.cache_labels:
|
| 288 |
+
self.labels[device] = labels
|
| 289 |
+
self.prev_num_logits = num_logits
|
| 290 |
+
else:
|
| 291 |
+
labels = self.labels[device]
|
| 292 |
+
if not self.weighted_loss:
|
| 293 |
+
total_loss = (
|
| 294 |
+
F.cross_entropy(logits_per_audio, labels)
|
| 295 |
+
+ F.cross_entropy(logits_per_text, labels)
|
| 296 |
+
) / 2
|
| 297 |
+
else:
|
| 298 |
+
audio_weight = (all_audio_features @ all_audio_features.T).detach()
|
| 299 |
+
audio_weight = (
|
| 300 |
+
torch.exp(
|
| 301 |
+
torch.sum(audio_weight, axis=1)
|
| 302 |
+
/ (self.weight_loss_kappa * len(all_audio_features))
|
| 303 |
+
)
|
| 304 |
+
).detach()
|
| 305 |
+
text_weight = (all_text_features @ all_text_features.T).detach()
|
| 306 |
+
text_weight = (
|
| 307 |
+
torch.exp(
|
| 308 |
+
torch.sum(text_weight, axis=1)
|
| 309 |
+
/ (self.weight_loss_kappa * len(all_text_features))
|
| 310 |
+
)
|
| 311 |
+
).detach()
|
| 312 |
+
total_loss = (
|
| 313 |
+
F.cross_entropy(logits_per_audio, labels, weight=text_weight)
|
| 314 |
+
+ F.cross_entropy(logits_per_text, labels, weight=audio_weight)
|
| 315 |
+
) / 2
|
| 316 |
+
return total_loss
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def lp_gather_features(pred, target, world_size=1, use_horovod=False):
|
| 320 |
+
if use_horovod:
|
| 321 |
+
assert hvd is not None, "Please install horovod"
|
| 322 |
+
with torch.no_grad():
|
| 323 |
+
all_preds = hvd.allgather(pred)
|
| 324 |
+
all_targets = hvd.allgath(target)
|
| 325 |
+
else:
|
| 326 |
+
gathered_preds = [torch.zeros_like(pred) for _ in range(world_size)]
|
| 327 |
+
gathered_targets = [torch.zeros_like(target) for _ in range(world_size)]
|
| 328 |
+
|
| 329 |
+
dist.all_gather(gathered_preds, pred)
|
| 330 |
+
dist.all_gather(gathered_targets, target)
|
| 331 |
+
all_preds = torch.cat(gathered_preds, dim=0)
|
| 332 |
+
all_targets = torch.cat(gathered_targets, dim=0)
|
| 333 |
+
|
| 334 |
+
return all_preds, all_targets
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def get_map(pred, target):
|
| 338 |
+
pred = torch.sigmoid(pred).numpy()
|
| 339 |
+
target = target.numpy()
|
| 340 |
+
return np.mean(average_precision_score(target, pred, average=None))
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
def get_acc(pred, target):
|
| 344 |
+
pred = torch.argmax(pred, 1).numpy()
|
| 345 |
+
target = torch.argmax(target, 1).numpy()
|
| 346 |
+
return accuracy_score(target, pred)
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def get_mauc(pred, target):
|
| 350 |
+
pred = torch.sigmoid(pred).numpy()
|
| 351 |
+
target = target.numpy()
|
| 352 |
+
return np.mean(roc_auc_score(target, pred, average=None))
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
class LPMetrics(object):
|
| 356 |
+
def __init__(self, metric_names=["map", "acc", "mauc"]):
|
| 357 |
+
self.metrics = []
|
| 358 |
+
for name in metric_names:
|
| 359 |
+
self.metrics.append(self.get_metric(name))
|
| 360 |
+
self.metric_names = metric_names
|
| 361 |
+
|
| 362 |
+
def get_metric(self, name):
|
| 363 |
+
if name == "map":
|
| 364 |
+
return get_map
|
| 365 |
+
elif name == "acc":
|
| 366 |
+
return get_acc
|
| 367 |
+
elif name == "mauc":
|
| 368 |
+
return get_mauc
|
| 369 |
+
else:
|
| 370 |
+
raise ValueError(f"the metric should be at least one of [map, acc, mauc]")
|
| 371 |
+
|
| 372 |
+
def evaluate_mertics(self, pred, target):
|
| 373 |
+
metric_dict = {}
|
| 374 |
+
for i in range(len(self.metric_names)):
|
| 375 |
+
metric_dict[self.metric_names[i]] = self.metrics[i](pred, target)
|
| 376 |
+
return metric_dict
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
def calc_celoss(pred, target):
|
| 380 |
+
target = torch.argmax(target, 1).long()
|
| 381 |
+
return nn.CrossEntropyLoss()(pred, target)
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
class LPLoss(nn.Module):
|
| 385 |
+
def __init__(self, loss_name):
|
| 386 |
+
super().__init__()
|
| 387 |
+
if loss_name == "bce":
|
| 388 |
+
self.loss_func = nn.BCEWithLogitsLoss()
|
| 389 |
+
elif loss_name == "ce":
|
| 390 |
+
self.loss_func = calc_celoss
|
| 391 |
+
elif loss_name == "mse":
|
| 392 |
+
self.loss_func = nn.MSELoss()
|
| 393 |
+
else:
|
| 394 |
+
raise ValueError(f"the loss func should be at least one of [bce, ce, mse]")
|
| 395 |
+
|
| 396 |
+
def forward(self, pred, target):
|
| 397 |
+
loss = self.loss_func(pred, target)
|
| 398 |
+
return loss
|
models/CLAP/open_clip/model.py
ADDED
|
@@ -0,0 +1,935 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" CLAP Model
|
| 2 |
+
|
| 3 |
+
Adapted from CLIP: https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
| 4 |
+
Adapted to the Audio Task.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from collections import OrderedDict
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from email.mime import audio
|
| 10 |
+
from typing import Tuple, Union, Callable, Optional
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
import torch
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
+
from torch import nn
|
| 16 |
+
|
| 17 |
+
from .timm_model import TimmModel
|
| 18 |
+
import logging
|
| 19 |
+
from .utils import freeze_batch_norm_2d
|
| 20 |
+
|
| 21 |
+
from .pann_model import create_pann_model
|
| 22 |
+
from .htsat import create_htsat_model
|
| 23 |
+
from transformers import BertModel, RobertaModel, BartModel, RobertaConfig
|
| 24 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class MLPLayers(nn.Module):
|
| 28 |
+
def __init__(self, units=[512, 512, 512], nonlin=nn.ReLU(), dropout=0.1):
|
| 29 |
+
super(MLPLayers, self).__init__()
|
| 30 |
+
self.nonlin = nonlin
|
| 31 |
+
self.dropout = dropout
|
| 32 |
+
|
| 33 |
+
sequence = []
|
| 34 |
+
for u0, u1 in zip(units[:-1], units[1:]):
|
| 35 |
+
sequence.append(nn.Linear(u0, u1))
|
| 36 |
+
sequence.append(self.nonlin)
|
| 37 |
+
sequence.append(nn.Dropout(self.dropout))
|
| 38 |
+
sequence = sequence[:-2]
|
| 39 |
+
|
| 40 |
+
self.sequential = nn.Sequential(*sequence)
|
| 41 |
+
|
| 42 |
+
def forward(self, X):
|
| 43 |
+
X = self.sequential(X)
|
| 44 |
+
return X
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class Bottleneck(nn.Module):
|
| 48 |
+
expansion = 4
|
| 49 |
+
|
| 50 |
+
def __init__(self, inplanes, planes, stride=1):
|
| 51 |
+
super().__init__()
|
| 52 |
+
|
| 53 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
| 54 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
| 55 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 56 |
+
|
| 57 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
| 58 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 59 |
+
|
| 60 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
| 61 |
+
|
| 62 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
| 63 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
| 64 |
+
|
| 65 |
+
self.relu = nn.ReLU(inplace=True)
|
| 66 |
+
self.downsample = None
|
| 67 |
+
self.stride = stride
|
| 68 |
+
|
| 69 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
| 70 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
| 71 |
+
self.downsample = nn.Sequential(
|
| 72 |
+
OrderedDict(
|
| 73 |
+
[
|
| 74 |
+
("-1", nn.AvgPool2d(stride)),
|
| 75 |
+
(
|
| 76 |
+
"0",
|
| 77 |
+
nn.Conv2d(
|
| 78 |
+
inplanes,
|
| 79 |
+
planes * self.expansion,
|
| 80 |
+
1,
|
| 81 |
+
stride=1,
|
| 82 |
+
bias=False,
|
| 83 |
+
),
|
| 84 |
+
),
|
| 85 |
+
("1", nn.BatchNorm2d(planes * self.expansion)),
|
| 86 |
+
]
|
| 87 |
+
)
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
def forward(self, x: torch.Tensor):
|
| 91 |
+
identity = x
|
| 92 |
+
|
| 93 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
| 94 |
+
out = self.relu(self.bn2(self.conv2(out)))
|
| 95 |
+
out = self.avgpool(out)
|
| 96 |
+
out = self.bn3(self.conv3(out))
|
| 97 |
+
|
| 98 |
+
if self.downsample is not None:
|
| 99 |
+
identity = self.downsample(x)
|
| 100 |
+
|
| 101 |
+
out += identity
|
| 102 |
+
out = self.relu(out)
|
| 103 |
+
return out
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class AttentionPool2d(nn.Module):
|
| 107 |
+
def __init__(
|
| 108 |
+
self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None
|
| 109 |
+
):
|
| 110 |
+
super().__init__()
|
| 111 |
+
self.positional_embedding = nn.Parameter(
|
| 112 |
+
torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5
|
| 113 |
+
)
|
| 114 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
| 115 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
| 116 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
| 117 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
| 118 |
+
self.num_heads = num_heads
|
| 119 |
+
|
| 120 |
+
def forward(self, x):
|
| 121 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(
|
| 122 |
+
2, 0, 1
|
| 123 |
+
) # NCHW -> (HW)NC
|
| 124 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
| 125 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
| 126 |
+
x, _ = F.multi_head_attention_forward(
|
| 127 |
+
query=x,
|
| 128 |
+
key=x,
|
| 129 |
+
value=x,
|
| 130 |
+
embed_dim_to_check=x.shape[-1],
|
| 131 |
+
num_heads=self.num_heads,
|
| 132 |
+
q_proj_weight=self.q_proj.weight,
|
| 133 |
+
k_proj_weight=self.k_proj.weight,
|
| 134 |
+
v_proj_weight=self.v_proj.weight,
|
| 135 |
+
in_proj_weight=None,
|
| 136 |
+
in_proj_bias=torch.cat(
|
| 137 |
+
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]
|
| 138 |
+
),
|
| 139 |
+
bias_k=None,
|
| 140 |
+
bias_v=None,
|
| 141 |
+
add_zero_attn=False,
|
| 142 |
+
dropout_p=0,
|
| 143 |
+
out_proj_weight=self.c_proj.weight,
|
| 144 |
+
out_proj_bias=self.c_proj.bias,
|
| 145 |
+
use_separate_proj_weight=True,
|
| 146 |
+
training=self.training,
|
| 147 |
+
need_weights=False,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
return x[0]
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class ModifiedResNet(nn.Module):
|
| 154 |
+
"""
|
| 155 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
| 156 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
| 157 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
| 158 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
| 159 |
+
"""
|
| 160 |
+
|
| 161 |
+
def __init__(self, layers, output_dim, heads, image_size=224, width=64):
|
| 162 |
+
super().__init__()
|
| 163 |
+
self.output_dim = output_dim
|
| 164 |
+
self.image_size = image_size
|
| 165 |
+
|
| 166 |
+
# the 3-layer stem
|
| 167 |
+
self.conv1 = nn.Conv2d(
|
| 168 |
+
3, width // 2, kernel_size=3, stride=2, padding=1, bias=False
|
| 169 |
+
)
|
| 170 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
| 171 |
+
self.conv2 = nn.Conv2d(
|
| 172 |
+
width // 2, width // 2, kernel_size=3, padding=1, bias=False
|
| 173 |
+
)
|
| 174 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
| 175 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
| 176 |
+
self.bn3 = nn.BatchNorm2d(width)
|
| 177 |
+
self.avgpool = nn.AvgPool2d(2)
|
| 178 |
+
self.relu = nn.ReLU(inplace=True)
|
| 179 |
+
|
| 180 |
+
# residual layers
|
| 181 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
| 182 |
+
self.layer1 = self._make_layer(width, layers[0])
|
| 183 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
| 184 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
| 185 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
| 186 |
+
|
| 187 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
| 188 |
+
self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim)
|
| 189 |
+
|
| 190 |
+
self.init_parameters()
|
| 191 |
+
|
| 192 |
+
def _make_layer(self, planes, blocks, stride=1):
|
| 193 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
| 194 |
+
|
| 195 |
+
self._inplanes = planes * Bottleneck.expansion
|
| 196 |
+
for _ in range(1, blocks):
|
| 197 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
| 198 |
+
|
| 199 |
+
return nn.Sequential(*layers)
|
| 200 |
+
|
| 201 |
+
def init_parameters(self):
|
| 202 |
+
if self.attnpool is not None:
|
| 203 |
+
std = self.attnpool.c_proj.in_features**-0.5
|
| 204 |
+
nn.init.normal_(self.attnpool.q_proj.weight, std=std)
|
| 205 |
+
nn.init.normal_(self.attnpool.k_proj.weight, std=std)
|
| 206 |
+
nn.init.normal_(self.attnpool.v_proj.weight, std=std)
|
| 207 |
+
nn.init.normal_(self.attnpool.c_proj.weight, std=std)
|
| 208 |
+
|
| 209 |
+
for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
|
| 210 |
+
for name, param in resnet_block.named_parameters():
|
| 211 |
+
if name.endswith("bn3.weight"):
|
| 212 |
+
nn.init.zeros_(param)
|
| 213 |
+
|
| 214 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
| 215 |
+
assert (
|
| 216 |
+
unlocked_groups == 0
|
| 217 |
+
), "partial locking not currently supported for this model"
|
| 218 |
+
for param in self.parameters():
|
| 219 |
+
param.requires_grad = False
|
| 220 |
+
if freeze_bn_stats:
|
| 221 |
+
freeze_batch_norm_2d(self)
|
| 222 |
+
|
| 223 |
+
def stem(self, x):
|
| 224 |
+
for conv, bn in [
|
| 225 |
+
(self.conv1, self.bn1),
|
| 226 |
+
(self.conv2, self.bn2),
|
| 227 |
+
(self.conv3, self.bn3),
|
| 228 |
+
]:
|
| 229 |
+
x = self.relu(bn(conv(x)))
|
| 230 |
+
x = self.avgpool(x)
|
| 231 |
+
return x
|
| 232 |
+
|
| 233 |
+
def forward(self, x):
|
| 234 |
+
x = self.stem(x)
|
| 235 |
+
x = self.layer1(x)
|
| 236 |
+
x = self.layer2(x)
|
| 237 |
+
x = self.layer3(x)
|
| 238 |
+
x = self.layer4(x)
|
| 239 |
+
x = self.attnpool(x)
|
| 240 |
+
|
| 241 |
+
return x
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
class LayerNorm(nn.LayerNorm):
|
| 245 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
| 246 |
+
|
| 247 |
+
def forward(self, x: torch.Tensor):
|
| 248 |
+
orig_type = x.dtype
|
| 249 |
+
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
| 250 |
+
return x.to(orig_type)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
class QuickGELU(nn.Module):
|
| 254 |
+
# NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
|
| 255 |
+
def forward(self, x: torch.Tensor):
|
| 256 |
+
return x * torch.sigmoid(1.702 * x)
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
class ResidualAttentionBlock(nn.Module):
|
| 260 |
+
def __init__(self, d_model: int, n_head: int, act_layer: Callable = nn.GELU):
|
| 261 |
+
super().__init__()
|
| 262 |
+
|
| 263 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
| 264 |
+
self.ln_1 = LayerNorm(d_model)
|
| 265 |
+
self.mlp = nn.Sequential(
|
| 266 |
+
OrderedDict(
|
| 267 |
+
[
|
| 268 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
| 269 |
+
("gelu", act_layer()),
|
| 270 |
+
("c_proj", nn.Linear(d_model * 4, d_model)),
|
| 271 |
+
]
|
| 272 |
+
)
|
| 273 |
+
)
|
| 274 |
+
self.ln_2 = LayerNorm(d_model)
|
| 275 |
+
|
| 276 |
+
def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
| 277 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]
|
| 278 |
+
|
| 279 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
| 280 |
+
x = x + self.attention(self.ln_1(x), attn_mask=attn_mask)
|
| 281 |
+
x = x + self.mlp(self.ln_2(x))
|
| 282 |
+
return x
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
class Transformer(nn.Module):
|
| 286 |
+
def __init__(
|
| 287 |
+
self, width: int, layers: int, heads: int, act_layer: Callable = nn.GELU
|
| 288 |
+
):
|
| 289 |
+
super().__init__()
|
| 290 |
+
self.width = width
|
| 291 |
+
self.layers = layers
|
| 292 |
+
self.resblocks = nn.ModuleList(
|
| 293 |
+
[
|
| 294 |
+
ResidualAttentionBlock(width, heads, act_layer=act_layer)
|
| 295 |
+
for _ in range(layers)
|
| 296 |
+
]
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
| 300 |
+
for r in self.resblocks:
|
| 301 |
+
x = r(x, attn_mask=attn_mask)
|
| 302 |
+
return x
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
class VisualTransformer(nn.Module):
|
| 306 |
+
def __init__(
|
| 307 |
+
self,
|
| 308 |
+
image_size: int,
|
| 309 |
+
patch_size: int,
|
| 310 |
+
width: int,
|
| 311 |
+
layers: int,
|
| 312 |
+
heads: int,
|
| 313 |
+
output_dim: int,
|
| 314 |
+
act_layer: Callable = nn.GELU,
|
| 315 |
+
):
|
| 316 |
+
super().__init__()
|
| 317 |
+
self.image_size = image_size
|
| 318 |
+
self.output_dim = output_dim
|
| 319 |
+
self.conv1 = nn.Conv2d(
|
| 320 |
+
in_channels=3,
|
| 321 |
+
out_channels=width,
|
| 322 |
+
kernel_size=patch_size,
|
| 323 |
+
stride=patch_size,
|
| 324 |
+
bias=False,
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
scale = width**-0.5
|
| 328 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
| 329 |
+
self.positional_embedding = nn.Parameter(
|
| 330 |
+
scale * torch.randn((image_size // patch_size) ** 2 + 1, width)
|
| 331 |
+
)
|
| 332 |
+
self.ln_pre = LayerNorm(width)
|
| 333 |
+
|
| 334 |
+
self.text_branch = Transformer(width, layers, heads, act_layer=act_layer)
|
| 335 |
+
|
| 336 |
+
self.ln_post = LayerNorm(width)
|
| 337 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
| 338 |
+
|
| 339 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
| 340 |
+
assert (
|
| 341 |
+
unlocked_groups == 0
|
| 342 |
+
), "partial locking not currently supported for this model"
|
| 343 |
+
for param in self.parameters():
|
| 344 |
+
param.requires_grad = False
|
| 345 |
+
|
| 346 |
+
def forward(self, x: torch.Tensor):
|
| 347 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
| 348 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
| 349 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
| 350 |
+
x = torch.cat(
|
| 351 |
+
[
|
| 352 |
+
self.class_embedding.to(x.dtype)
|
| 353 |
+
+ torch.zeros(
|
| 354 |
+
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device
|
| 355 |
+
),
|
| 356 |
+
x,
|
| 357 |
+
],
|
| 358 |
+
dim=1,
|
| 359 |
+
) # shape = [*, grid ** 2 + 1, width]
|
| 360 |
+
x = x + self.positional_embedding.to(x.dtype)
|
| 361 |
+
x = self.ln_pre(x)
|
| 362 |
+
|
| 363 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 364 |
+
x = self.text_branch(x)
|
| 365 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 366 |
+
|
| 367 |
+
x = self.ln_post(x[:, 0, :])
|
| 368 |
+
|
| 369 |
+
if self.proj is not None:
|
| 370 |
+
x = x @ self.proj
|
| 371 |
+
|
| 372 |
+
return x
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
@dataclass
|
| 376 |
+
class CLAPVisionCfg:
|
| 377 |
+
layers: Union[Tuple[int, int, int, int], int] = 12
|
| 378 |
+
width: int = 768
|
| 379 |
+
patch_size: int = 16
|
| 380 |
+
image_size: Union[Tuple[int, int], int] = 224
|
| 381 |
+
timm_model_name: str = (
|
| 382 |
+
None # a valid model name overrides layers, width, patch_size
|
| 383 |
+
)
|
| 384 |
+
timm_model_pretrained: bool = (
|
| 385 |
+
False # use (imagenet) pretrained weights for named model
|
| 386 |
+
)
|
| 387 |
+
timm_pool: str = (
|
| 388 |
+
"avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
| 389 |
+
)
|
| 390 |
+
timm_proj: str = (
|
| 391 |
+
"linear" # linear projection for timm model output ('linear', 'mlp', '')
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
# Audio Config Class
|
| 396 |
+
@dataclass
|
| 397 |
+
class CLAPAudioCfp:
|
| 398 |
+
model_type: str = "PANN"
|
| 399 |
+
model_name: str = "Cnn14"
|
| 400 |
+
sample_rate: int = 48000
|
| 401 |
+
# Param
|
| 402 |
+
audio_length: int = 1024
|
| 403 |
+
window_size: int = 1024
|
| 404 |
+
hop_size: int = 1024
|
| 405 |
+
fmin: int = 50
|
| 406 |
+
fmax: int = 14000
|
| 407 |
+
class_num: int = 527
|
| 408 |
+
mel_bins: int = 64
|
| 409 |
+
clip_samples: int = 480000
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
@dataclass
|
| 413 |
+
class CLAPTextCfg:
|
| 414 |
+
context_length: int
|
| 415 |
+
vocab_size: int
|
| 416 |
+
width: int
|
| 417 |
+
heads: int
|
| 418 |
+
layers: int
|
| 419 |
+
model_type: str
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
class CLAP(nn.Module):
|
| 423 |
+
def __init__(
|
| 424 |
+
self,
|
| 425 |
+
embed_dim: int,
|
| 426 |
+
audio_cfg: CLAPAudioCfp,
|
| 427 |
+
text_cfg: CLAPTextCfg,
|
| 428 |
+
quick_gelu: bool = False,
|
| 429 |
+
enable_fusion: bool = False,
|
| 430 |
+
fusion_type: str = "None",
|
| 431 |
+
joint_embed_shape: int = 512,
|
| 432 |
+
mlp_act: str = "relu",
|
| 433 |
+
):
|
| 434 |
+
super().__init__()
|
| 435 |
+
if isinstance(audio_cfg, dict):
|
| 436 |
+
audio_cfg = CLAPAudioCfp(**audio_cfg)
|
| 437 |
+
if isinstance(text_cfg, dict):
|
| 438 |
+
text_cfg = CLAPTextCfg(**text_cfg)
|
| 439 |
+
|
| 440 |
+
self.audio_cfg = audio_cfg
|
| 441 |
+
self.text_cfg = text_cfg
|
| 442 |
+
self.enable_fusion = enable_fusion
|
| 443 |
+
self.fusion_type = fusion_type
|
| 444 |
+
self.joint_embed_shape = joint_embed_shape
|
| 445 |
+
self.mlp_act = mlp_act
|
| 446 |
+
|
| 447 |
+
self.context_length = text_cfg.context_length
|
| 448 |
+
|
| 449 |
+
# OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
|
| 450 |
+
# memory efficient in recent PyTorch releases (>= 1.10).
|
| 451 |
+
# NOTE: timm models always use native GELU regardless of quick_gelu flag.
|
| 452 |
+
act_layer = QuickGELU if quick_gelu else nn.GELU
|
| 453 |
+
|
| 454 |
+
if mlp_act == "relu":
|
| 455 |
+
mlp_act_layer = nn.ReLU()
|
| 456 |
+
elif mlp_act == "gelu":
|
| 457 |
+
mlp_act_layer = nn.GELU()
|
| 458 |
+
else:
|
| 459 |
+
raise NotImplementedError
|
| 460 |
+
|
| 461 |
+
# audio branch
|
| 462 |
+
# audio branch parameters
|
| 463 |
+
if audio_cfg.model_type == "PANN":
|
| 464 |
+
self.audio_branch = create_pann_model(audio_cfg, enable_fusion, fusion_type)
|
| 465 |
+
elif audio_cfg.model_type == "HTSAT":
|
| 466 |
+
self.audio_branch = create_htsat_model(
|
| 467 |
+
audio_cfg, enable_fusion, fusion_type
|
| 468 |
+
)
|
| 469 |
+
else:
|
| 470 |
+
logging.error(f"Model config for {audio_cfg.model_type} not found")
|
| 471 |
+
raise RuntimeError(f"Model config for {audio_cfg.model_type} not found.")
|
| 472 |
+
|
| 473 |
+
# text branch
|
| 474 |
+
# text branch parameters
|
| 475 |
+
if text_cfg.model_type == "transformer":
|
| 476 |
+
self.text_branch = Transformer(
|
| 477 |
+
width=text_cfg.width,
|
| 478 |
+
layers=text_cfg.layers,
|
| 479 |
+
heads=text_cfg.heads,
|
| 480 |
+
act_layer=act_layer,
|
| 481 |
+
)
|
| 482 |
+
self.vocab_size = text_cfg.vocab_size
|
| 483 |
+
self.token_embedding = nn.Embedding(text_cfg.vocab_size, text_cfg.width)
|
| 484 |
+
self.positional_embedding = nn.Parameter(
|
| 485 |
+
torch.empty(self.context_length, text_cfg.width)
|
| 486 |
+
)
|
| 487 |
+
self.ln_final = LayerNorm(text_cfg.width)
|
| 488 |
+
self.text_transform = MLPLayers(
|
| 489 |
+
units=[
|
| 490 |
+
self.joint_embed_shape,
|
| 491 |
+
self.joint_embed_shape,
|
| 492 |
+
self.joint_embed_shape,
|
| 493 |
+
],
|
| 494 |
+
dropout=0.1,
|
| 495 |
+
)
|
| 496 |
+
self.text_projection = nn.Sequential(
|
| 497 |
+
nn.Linear(text_cfg.width, self.joint_embed_shape),
|
| 498 |
+
mlp_act_layer,
|
| 499 |
+
nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
|
| 500 |
+
)
|
| 501 |
+
elif text_cfg.model_type == "bert":
|
| 502 |
+
self.text_branch = BertModel.from_pretrained("bert-base-uncased")
|
| 503 |
+
self.text_transform = MLPLayers(
|
| 504 |
+
units=[
|
| 505 |
+
self.joint_embed_shape,
|
| 506 |
+
self.joint_embed_shape,
|
| 507 |
+
self.joint_embed_shape,
|
| 508 |
+
],
|
| 509 |
+
dropout=0.1,
|
| 510 |
+
)
|
| 511 |
+
self.text_projection = nn.Sequential(
|
| 512 |
+
nn.Linear(768, self.joint_embed_shape),
|
| 513 |
+
mlp_act_layer,
|
| 514 |
+
nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
|
| 515 |
+
)
|
| 516 |
+
elif text_cfg.model_type == "roberta":
|
| 517 |
+
self.text_branch = RobertaModel.from_pretrained("roberta-base")
|
| 518 |
+
|
| 519 |
+
self.text_transform = MLPLayers(
|
| 520 |
+
units=[
|
| 521 |
+
self.joint_embed_shape,
|
| 522 |
+
self.joint_embed_shape,
|
| 523 |
+
self.joint_embed_shape,
|
| 524 |
+
],
|
| 525 |
+
dropout=0.1,
|
| 526 |
+
)
|
| 527 |
+
self.text_projection = nn.Sequential(
|
| 528 |
+
nn.Linear(768, self.joint_embed_shape),
|
| 529 |
+
mlp_act_layer,
|
| 530 |
+
nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
|
| 531 |
+
)
|
| 532 |
+
elif text_cfg.model_type == "bart":
|
| 533 |
+
self.text_branch = BartModel.from_pretrained("facebook/bart-base")
|
| 534 |
+
self.text_transform = MLPLayers(
|
| 535 |
+
units=[
|
| 536 |
+
self.joint_embed_shape,
|
| 537 |
+
self.joint_embed_shape,
|
| 538 |
+
self.joint_embed_shape,
|
| 539 |
+
],
|
| 540 |
+
dropout=0.1,
|
| 541 |
+
)
|
| 542 |
+
self.text_projection = nn.Sequential(
|
| 543 |
+
nn.Linear(768, self.joint_embed_shape),
|
| 544 |
+
mlp_act_layer,
|
| 545 |
+
nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
|
| 546 |
+
)
|
| 547 |
+
else:
|
| 548 |
+
logging.error(f"Model config for {text_cfg.model_type} not found")
|
| 549 |
+
raise RuntimeError(f"Model config for {text_cfg.model_type} not found.")
|
| 550 |
+
self.text_branch_type = text_cfg.model_type
|
| 551 |
+
# text branch parameters
|
| 552 |
+
|
| 553 |
+
# audio branch parameters
|
| 554 |
+
self.audio_transform = MLPLayers(
|
| 555 |
+
units=[
|
| 556 |
+
self.joint_embed_shape,
|
| 557 |
+
self.joint_embed_shape,
|
| 558 |
+
self.joint_embed_shape,
|
| 559 |
+
],
|
| 560 |
+
dropout=0.1,
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
# below here is text branch parameters
|
| 564 |
+
|
| 565 |
+
# ============================================================================================================
|
| 566 |
+
self.audio_projection = nn.Sequential(
|
| 567 |
+
nn.Linear(embed_dim, self.joint_embed_shape),
|
| 568 |
+
mlp_act_layer,
|
| 569 |
+
nn.Linear(self.joint_embed_shape, self.joint_embed_shape),
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
self.logit_scale_a = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 573 |
+
self.logit_scale_t = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 574 |
+
self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False)
|
| 575 |
+
|
| 576 |
+
self.init_text_branch_parameters()
|
| 577 |
+
|
| 578 |
+
def init_text_branch_parameters(self):
|
| 579 |
+
if self.text_branch_type == "transformer":
|
| 580 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
| 581 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
| 582 |
+
proj_std = (self.text_branch.width**-0.5) * (
|
| 583 |
+
(2 * self.text_branch.layers) ** -0.5
|
| 584 |
+
)
|
| 585 |
+
attn_std = self.text_branch.width**-0.5
|
| 586 |
+
fc_std = (2 * self.text_branch.width) ** -0.5
|
| 587 |
+
for block in self.text_branch.resblocks:
|
| 588 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
| 589 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
| 590 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
| 591 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
| 592 |
+
if self.text_branch_type == "bert" or self.text_branch_type == "roberta":
|
| 593 |
+
width = self.text_branch.embeddings.word_embeddings.weight.shape[-1]
|
| 594 |
+
elif self.text_branch_type == "bart":
|
| 595 |
+
width = self.text_branch.shared.weight.shape[-1]
|
| 596 |
+
else:
|
| 597 |
+
width = self.text_branch.width
|
| 598 |
+
nn.init.constant_(self.logit_scale_a, np.log(1 / 0.07))
|
| 599 |
+
nn.init.constant_(self.logit_scale_t, np.log(1 / 0.07))
|
| 600 |
+
|
| 601 |
+
# deprecated
|
| 602 |
+
# if hasattr(self.visual, 'init_parameters'):
|
| 603 |
+
# self.visual.init_parameters()
|
| 604 |
+
|
| 605 |
+
# if self.text_projection is not None:
|
| 606 |
+
# nn.init.normal_(self.text_projection, std=width**-0.5)
|
| 607 |
+
|
| 608 |
+
def build_attention_mask(self):
|
| 609 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
| 610 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 611 |
+
mask = torch.empty(self.context_length, self.context_length)
|
| 612 |
+
mask.fill_(float("-inf"))
|
| 613 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 614 |
+
return mask
|
| 615 |
+
|
| 616 |
+
def encode_audio(self, audio, device):
|
| 617 |
+
return self.audio_branch(
|
| 618 |
+
audio, mixup_lambda=None, device=device
|
| 619 |
+
) # mix lambda needs to add
|
| 620 |
+
|
| 621 |
+
# def list_of_dict_of_tensor2dict_of_tensor(self, x, device):
|
| 622 |
+
# tmp = {}
|
| 623 |
+
# for k in x[0].keys():
|
| 624 |
+
# tmp[k] = []
|
| 625 |
+
# for i in range(len(x)):
|
| 626 |
+
# tmp[k].append(x[i][k][:77])
|
| 627 |
+
# for k in x[0].keys():
|
| 628 |
+
# tmp[k] = torch.tensor(tmp[k]).to(device=device, non_blocking=True)
|
| 629 |
+
# return tmp
|
| 630 |
+
|
| 631 |
+
def encode_text(self, text, device):
|
| 632 |
+
if self.text_branch_type == "transformer":
|
| 633 |
+
text = text.to(device=device, non_blocking=True)
|
| 634 |
+
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
|
| 635 |
+
|
| 636 |
+
x = x + self.positional_embedding
|
| 637 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 638 |
+
x = self.text_branch(x, attn_mask=self.attn_mask)
|
| 639 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 640 |
+
x = self.ln_final(x)
|
| 641 |
+
|
| 642 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
| 643 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 644 |
+
x = self.text_projection(x[torch.arange(x.shape[0]), text.argmax(dim=-1)])
|
| 645 |
+
elif self.text_branch_type == "bert":
|
| 646 |
+
# text = self.list_of_dict_of_tensor2dict_of_tensor(text, device)
|
| 647 |
+
# text = BatchEncoding(text)
|
| 648 |
+
x = self.text_branch(
|
| 649 |
+
input_ids=text["input_ids"].to(device=device, non_blocking=True),
|
| 650 |
+
attention_mask=text["attention_mask"].to(
|
| 651 |
+
device=device, non_blocking=True
|
| 652 |
+
),
|
| 653 |
+
token_type_ids=text["token_type_ids"].to(
|
| 654 |
+
device=device, non_blocking=True
|
| 655 |
+
),
|
| 656 |
+
)["pooler_output"]
|
| 657 |
+
x = self.text_projection(x)
|
| 658 |
+
elif self.text_branch_type == "roberta":
|
| 659 |
+
x = self.text_branch(
|
| 660 |
+
input_ids=text["input_ids"].to(device=device, non_blocking=True),
|
| 661 |
+
attention_mask=text["attention_mask"].to(
|
| 662 |
+
device=device, non_blocking=True
|
| 663 |
+
),
|
| 664 |
+
)["pooler_output"]
|
| 665 |
+
x = self.text_projection(x)
|
| 666 |
+
elif self.text_branch_type == "bart":
|
| 667 |
+
x = torch.mean(
|
| 668 |
+
self.text_branch(
|
| 669 |
+
input_ids=text["input_ids"].to(device=device, non_blocking=True),
|
| 670 |
+
attention_mask=text["attention_mask"].to(
|
| 671 |
+
device=device, non_blocking=True
|
| 672 |
+
),
|
| 673 |
+
)["encoder_last_hidden_state"],
|
| 674 |
+
axis=1,
|
| 675 |
+
)
|
| 676 |
+
x = self.text_projection(x)
|
| 677 |
+
else:
|
| 678 |
+
logging.error(f"Model type {self.text_branch_type} not found")
|
| 679 |
+
raise RuntimeError(f"Model type {self.text_branch_type} not found.")
|
| 680 |
+
return x
|
| 681 |
+
|
| 682 |
+
def forward(self, audio, text, device=None):
|
| 683 |
+
"""Forward audio and text into the CLAP
|
| 684 |
+
|
| 685 |
+
Parameters
|
| 686 |
+
----------
|
| 687 |
+
audio: torch.Tensor (batch_size, audio_length)
|
| 688 |
+
the time-domain audio input / the batch of mel_spec and longer list.
|
| 689 |
+
text: torch.Tensor () // need to add
|
| 690 |
+
the text token input
|
| 691 |
+
"""
|
| 692 |
+
if device is None:
|
| 693 |
+
if audio is not None:
|
| 694 |
+
device = audio.device
|
| 695 |
+
elif text is not None:
|
| 696 |
+
device = text.device
|
| 697 |
+
if audio is None and text is None:
|
| 698 |
+
# a hack to get the logit scale
|
| 699 |
+
return self.logit_scale_a.exp(), self.logit_scale_t.exp()
|
| 700 |
+
elif audio is None:
|
| 701 |
+
return self.encode_text(text, device=device)
|
| 702 |
+
elif text is None:
|
| 703 |
+
return self.audio_projection(
|
| 704 |
+
self.encode_audio(audio, device=device)["embedding"]
|
| 705 |
+
)
|
| 706 |
+
audio_features = self.audio_projection(
|
| 707 |
+
self.encode_audio(audio, device=device)["embedding"]
|
| 708 |
+
)
|
| 709 |
+
audio_features = F.normalize(audio_features, dim=-1)
|
| 710 |
+
|
| 711 |
+
text_features = self.encode_text(text, device=device)
|
| 712 |
+
# print("text_features", text_features)
|
| 713 |
+
# print("text_features.shape", text_features.shape)
|
| 714 |
+
# print("text_features.type", type(text_features))
|
| 715 |
+
text_features = F.normalize(text_features, dim=-1)
|
| 716 |
+
|
| 717 |
+
audio_features_mlp = self.audio_transform(audio_features)
|
| 718 |
+
text_features_mlp = self.text_transform(text_features)
|
| 719 |
+
# Four outputs: audio features (basic & MLP), text features (basic & MLP)
|
| 720 |
+
return (
|
| 721 |
+
audio_features,
|
| 722 |
+
text_features,
|
| 723 |
+
audio_features_mlp,
|
| 724 |
+
text_features_mlp,
|
| 725 |
+
self.logit_scale_a.exp(),
|
| 726 |
+
self.logit_scale_t.exp(),
|
| 727 |
+
)
|
| 728 |
+
|
| 729 |
+
def get_logit_scale(self):
|
| 730 |
+
return self.logit_scale_a.exp(), self.logit_scale_t.exp()
|
| 731 |
+
|
| 732 |
+
def get_text_embedding(self, data):
|
| 733 |
+
"""Get the text embedding from the model
|
| 734 |
+
|
| 735 |
+
Parameters
|
| 736 |
+
----------
|
| 737 |
+
data: torch.Tensor
|
| 738 |
+
a tensor of text embedding
|
| 739 |
+
|
| 740 |
+
Returns
|
| 741 |
+
----------
|
| 742 |
+
text_embed: torch.Tensor
|
| 743 |
+
a tensor of text_embeds (N, D)
|
| 744 |
+
|
| 745 |
+
"""
|
| 746 |
+
device = next(self.parameters()).device
|
| 747 |
+
for k in data:
|
| 748 |
+
data[k] = data[k].to(device)
|
| 749 |
+
text_embeds = self.encode_text(data, device=device)
|
| 750 |
+
text_embeds = F.normalize(text_embeds, dim=-1)
|
| 751 |
+
|
| 752 |
+
return text_embeds
|
| 753 |
+
|
| 754 |
+
def get_audio_embedding(self, data):
|
| 755 |
+
"""Get the audio embedding from the model
|
| 756 |
+
|
| 757 |
+
Parameters
|
| 758 |
+
----------
|
| 759 |
+
data: a list of dict
|
| 760 |
+
the audio input dict list from 'get_audio_feature' method
|
| 761 |
+
|
| 762 |
+
Returns
|
| 763 |
+
----------
|
| 764 |
+
audio_embed: torch.Tensor
|
| 765 |
+
a tensor of audio_embeds (N, D)
|
| 766 |
+
|
| 767 |
+
"""
|
| 768 |
+
device = next(self.parameters()).device
|
| 769 |
+
input_dict = {}
|
| 770 |
+
keys = data[0].keys()
|
| 771 |
+
for k in keys:
|
| 772 |
+
input_dict[k] = torch.cat([d[k].unsqueeze(0) for d in data], dim=0).to(
|
| 773 |
+
device
|
| 774 |
+
)
|
| 775 |
+
|
| 776 |
+
audio_embeds = self.audio_projection(
|
| 777 |
+
self.encode_audio(input_dict, device=device)["embedding"]
|
| 778 |
+
)
|
| 779 |
+
audio_embeds = F.normalize(audio_embeds, dim=-1)
|
| 780 |
+
|
| 781 |
+
return audio_embeds
|
| 782 |
+
|
| 783 |
+
def audio_infer(self, audio, hopsize=None, device=None):
|
| 784 |
+
"""Forward one audio and produce the audio embedding
|
| 785 |
+
|
| 786 |
+
Parameters
|
| 787 |
+
----------
|
| 788 |
+
audio: (audio_length)
|
| 789 |
+
the time-domain audio input, notice that it must be only one input
|
| 790 |
+
hopsize: int
|
| 791 |
+
the overlap hopsize as the sliding window
|
| 792 |
+
|
| 793 |
+
Returns
|
| 794 |
+
----------
|
| 795 |
+
output_dict: {
|
| 796 |
+
key: [n, (embedding_shape)] if "HTS-AT"
|
| 797 |
+
or
|
| 798 |
+
key: [(embedding_shape)] if "PANN"
|
| 799 |
+
}
|
| 800 |
+
the list of key values of the audio branch
|
| 801 |
+
|
| 802 |
+
"""
|
| 803 |
+
|
| 804 |
+
assert not self.training, "the inference mode must be run at eval stage"
|
| 805 |
+
output_dict = {}
|
| 806 |
+
# PANN
|
| 807 |
+
if self.audio_cfg.model_type == "PANN":
|
| 808 |
+
audio_input = audio.unsqueeze(dim=0)
|
| 809 |
+
output_dict[key] = self.encode_audio(audio_input, device=device)[
|
| 810 |
+
key
|
| 811 |
+
].squeeze(dim=0)
|
| 812 |
+
elif self.audio_cfg.model_type == "HTSAT":
|
| 813 |
+
# repeat
|
| 814 |
+
audio_len = len(audio)
|
| 815 |
+
k = self.audio_cfg.clip_samples // audio_len
|
| 816 |
+
if k > 1:
|
| 817 |
+
audio = audio.repeat(k)
|
| 818 |
+
audio_len = len(audio)
|
| 819 |
+
|
| 820 |
+
if hopsize is None:
|
| 821 |
+
hopsize = min(hopsize, audio_len)
|
| 822 |
+
|
| 823 |
+
if audio_len > self.audio_cfg.clip_samples:
|
| 824 |
+
audio_input = [
|
| 825 |
+
audio[pos : pos + self.audio_cfg.clip_samples].clone()
|
| 826 |
+
for pos in range(
|
| 827 |
+
0, audio_len - self.audio_cfg.clip_samples, hopsize
|
| 828 |
+
)
|
| 829 |
+
]
|
| 830 |
+
audio_input.append(audio[-self.audio_cfg.clip_samples :].clone())
|
| 831 |
+
audio_input = torch.stack(audio_input)
|
| 832 |
+
output_dict[key] = self.encode_audio(audio_input, device=device)[key]
|
| 833 |
+
else:
|
| 834 |
+
audio_input = audio.unsqueeze(dim=0)
|
| 835 |
+
output_dict[key] = self.encode_audio(audio_input, device=device)[
|
| 836 |
+
key
|
| 837 |
+
].squeeze(dim=0)
|
| 838 |
+
|
| 839 |
+
return output_dict
|
| 840 |
+
|
| 841 |
+
|
| 842 |
+
def convert_weights_to_fp16(model: nn.Module):
|
| 843 |
+
"""Convert applicable model parameters to fp16"""
|
| 844 |
+
|
| 845 |
+
def _convert_weights_to_fp16(l):
|
| 846 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
| 847 |
+
l.weight.data = l.weight.data.half()
|
| 848 |
+
if l.bias is not None:
|
| 849 |
+
l.bias.data = l.bias.data.half()
|
| 850 |
+
|
| 851 |
+
if isinstance(l, nn.MultiheadAttention):
|
| 852 |
+
for attr in [
|
| 853 |
+
*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]],
|
| 854 |
+
"in_proj_bias",
|
| 855 |
+
"bias_k",
|
| 856 |
+
"bias_v",
|
| 857 |
+
]:
|
| 858 |
+
tensor = getattr(l, attr)
|
| 859 |
+
if tensor is not None:
|
| 860 |
+
tensor.data = tensor.data.half()
|
| 861 |
+
|
| 862 |
+
for name in ["text_projection", "proj"]:
|
| 863 |
+
if hasattr(l, name):
|
| 864 |
+
attr = getattr(l, name)
|
| 865 |
+
if attr is not None:
|
| 866 |
+
attr.data = attr.data.half()
|
| 867 |
+
|
| 868 |
+
model.apply(_convert_weights_to_fp16)
|
| 869 |
+
|
| 870 |
+
|
| 871 |
+
# Ignore the state dict of the vision part
|
| 872 |
+
def build_model_from_openai_state_dict(
|
| 873 |
+
state_dict: dict, model_cfg, enable_fusion: bool = False, fusion_type: str = "None"
|
| 874 |
+
):
|
| 875 |
+
|
| 876 |
+
embed_dim = model_cfg["embed_dim"]
|
| 877 |
+
audio_cfg = model_cfg["audio_cfg"]
|
| 878 |
+
text_cfg = model_cfg["text_cfg"]
|
| 879 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
| 880 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
| 881 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
| 882 |
+
transformer_heads = transformer_width // 64
|
| 883 |
+
transformer_layers = len(
|
| 884 |
+
set(
|
| 885 |
+
k.split(".")[2]
|
| 886 |
+
for k in state_dict
|
| 887 |
+
if k.startswith(f"transformer.resblocks")
|
| 888 |
+
)
|
| 889 |
+
)
|
| 890 |
+
|
| 891 |
+
audio_cfg = CLAPAudioCfp(**audio_cfg)
|
| 892 |
+
text_cfg = CLAPTextCfg(**text_cfg)
|
| 893 |
+
|
| 894 |
+
model = CLAP(
|
| 895 |
+
embed_dim,
|
| 896 |
+
audio_cfg=audio_cfg,
|
| 897 |
+
text_cfg=text_cfg,
|
| 898 |
+
quick_gelu=True, # OpenAI models were trained with QuickGELU
|
| 899 |
+
enable_fusion=enable_fusion,
|
| 900 |
+
fusion_type=fusion_type,
|
| 901 |
+
)
|
| 902 |
+
state_dict["logit_scale_a"] = state_dict["logit_scale"]
|
| 903 |
+
state_dict["logit_scale_t"] = state_dict["logit_scale"]
|
| 904 |
+
pop_keys = list(state_dict.keys())[::]
|
| 905 |
+
# pop the visual branch saved weights
|
| 906 |
+
for key in pop_keys:
|
| 907 |
+
if key.startswith("visual."):
|
| 908 |
+
state_dict.pop(key, None)
|
| 909 |
+
|
| 910 |
+
for key in ["logit_scale", "input_resolution", "context_length", "vocab_size"]:
|
| 911 |
+
state_dict.pop(key, None)
|
| 912 |
+
|
| 913 |
+
# not use fp16
|
| 914 |
+
# convert_weights_to_fp16(model)
|
| 915 |
+
model.load_state_dict(state_dict, strict=False)
|
| 916 |
+
return model.eval()
|
| 917 |
+
|
| 918 |
+
|
| 919 |
+
def trace_model(model, batch_size=256, device=torch.device("cpu")):
|
| 920 |
+
model.eval()
|
| 921 |
+
audio_length = model.audio_cfg.audio_length
|
| 922 |
+
example_audio = torch.ones((batch_size, audio_length), device=device)
|
| 923 |
+
example_text = torch.zeros(
|
| 924 |
+
(batch_size, model.context_length), dtype=torch.int, device=device
|
| 925 |
+
)
|
| 926 |
+
model = torch.jit.trace_module(
|
| 927 |
+
model,
|
| 928 |
+
inputs=dict(
|
| 929 |
+
forward=(example_audio, example_text),
|
| 930 |
+
encode_text=(example_text,),
|
| 931 |
+
encode_image=(example_audio,),
|
| 932 |
+
),
|
| 933 |
+
)
|
| 934 |
+
model.audio_cfg.audio_length = audio_length # Question: what does this do?
|
| 935 |
+
return model
|
models/CLAP/open_clip/model_configs/HTSAT-base.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 1024,
|
| 3 |
+
"audio_cfg": {
|
| 4 |
+
"audio_length": 1024,
|
| 5 |
+
"clip_samples": 480000,
|
| 6 |
+
"mel_bins": 64,
|
| 7 |
+
"sample_rate": 48000,
|
| 8 |
+
"window_size": 1024,
|
| 9 |
+
"hop_size": 480,
|
| 10 |
+
"fmin": 50,
|
| 11 |
+
"fmax": 14000,
|
| 12 |
+
"class_num": 527,
|
| 13 |
+
"model_type": "HTSAT",
|
| 14 |
+
"model_name": "base"
|
| 15 |
+
},
|
| 16 |
+
"text_cfg": {
|
| 17 |
+
"context_length": 77,
|
| 18 |
+
"vocab_size": 49408,
|
| 19 |
+
"width": 512,
|
| 20 |
+
"heads": 8,
|
| 21 |
+
"layers": 12
|
| 22 |
+
}
|
| 23 |
+
}
|
models/CLAP/open_clip/model_configs/HTSAT-large.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 2048,
|
| 3 |
+
"audio_cfg": {
|
| 4 |
+
"audio_length": 1024,
|
| 5 |
+
"clip_samples": 480000,
|
| 6 |
+
"mel_bins": 64,
|
| 7 |
+
"sample_rate": 48000,
|
| 8 |
+
"window_size": 1024,
|
| 9 |
+
"hop_size": 480,
|
| 10 |
+
"fmin": 50,
|
| 11 |
+
"fmax": 14000,
|
| 12 |
+
"class_num": 527,
|
| 13 |
+
"model_type": "HTSAT",
|
| 14 |
+
"model_name": "large"
|
| 15 |
+
},
|
| 16 |
+
"text_cfg": {
|
| 17 |
+
"context_length": 77,
|
| 18 |
+
"vocab_size": 49408,
|
| 19 |
+
"width": 512,
|
| 20 |
+
"heads": 8,
|
| 21 |
+
"layers": 12
|
| 22 |
+
}
|
| 23 |
+
}
|
models/CLAP/open_clip/model_configs/HTSAT-tiny-win-1536.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 768,
|
| 3 |
+
"audio_cfg": {
|
| 4 |
+
"audio_length": 1024,
|
| 5 |
+
"clip_samples": 480000,
|
| 6 |
+
"mel_bins": 64,
|
| 7 |
+
"sample_rate": 48000,
|
| 8 |
+
"window_size": 1536,
|
| 9 |
+
"hop_size": 480,
|
| 10 |
+
"fmin": 50,
|
| 11 |
+
"fmax": 14000,
|
| 12 |
+
"class_num": 527,
|
| 13 |
+
"model_type": "HTSAT",
|
| 14 |
+
"model_name": "tiny"
|
| 15 |
+
},
|
| 16 |
+
"text_cfg": {
|
| 17 |
+
"context_length": 77,
|
| 18 |
+
"vocab_size": 49408,
|
| 19 |
+
"width": 512,
|
| 20 |
+
"heads": 8,
|
| 21 |
+
"layers": 12
|
| 22 |
+
}
|
| 23 |
+
}
|
models/CLAP/open_clip/model_configs/HTSAT-tiny.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 768,
|
| 3 |
+
"audio_cfg": {
|
| 4 |
+
"audio_length": 1024,
|
| 5 |
+
"clip_samples": 480000,
|
| 6 |
+
"mel_bins": 64,
|
| 7 |
+
"sample_rate": 48000,
|
| 8 |
+
"window_size": 1024,
|
| 9 |
+
"hop_size": 480,
|
| 10 |
+
"fmin": 50,
|
| 11 |
+
"fmax": 14000,
|
| 12 |
+
"class_num": 527,
|
| 13 |
+
"model_type": "HTSAT",
|
| 14 |
+
"model_name": "tiny"
|
| 15 |
+
},
|
| 16 |
+
"text_cfg": {
|
| 17 |
+
"context_length": 77,
|
| 18 |
+
"vocab_size": 49408,
|
| 19 |
+
"width": 512,
|
| 20 |
+
"heads": 8,
|
| 21 |
+
"layers": 12
|
| 22 |
+
}
|
| 23 |
+
}
|
models/CLAP/open_clip/model_configs/PANN-10.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 1024,
|
| 3 |
+
"audio_cfg": {
|
| 4 |
+
"audio_length": 1024,
|
| 5 |
+
"clip_samples": 480000,
|
| 6 |
+
"mel_bins": 64,
|
| 7 |
+
"sample_rate": 48000,
|
| 8 |
+
"window_size": 1024,
|
| 9 |
+
"hop_size": 480,
|
| 10 |
+
"fmin": 50,
|
| 11 |
+
"fmax": 14000,
|
| 12 |
+
"class_num": 527,
|
| 13 |
+
"model_type": "PANN",
|
| 14 |
+
"model_name": "Cnn10"
|
| 15 |
+
},
|
| 16 |
+
"text_cfg": {
|
| 17 |
+
"context_length": 77,
|
| 18 |
+
"vocab_size": 49408,
|
| 19 |
+
"width": 512,
|
| 20 |
+
"heads": 8,
|
| 21 |
+
"layers": 12
|
| 22 |
+
}
|
| 23 |
+
}
|
models/CLAP/open_clip/model_configs/PANN-14-fmax-18k.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 2048,
|
| 3 |
+
"audio_cfg": {
|
| 4 |
+
"audio_length": 1024,
|
| 5 |
+
"clip_samples": 480000,
|
| 6 |
+
"mel_bins": 64,
|
| 7 |
+
"sample_rate": 48000,
|
| 8 |
+
"window_size": 1024,
|
| 9 |
+
"hop_size": 480,
|
| 10 |
+
"fmin": 50,
|
| 11 |
+
"fmax": 18000,
|
| 12 |
+
"class_num": 527,
|
| 13 |
+
"model_type": "PANN",
|
| 14 |
+
"model_name": "Cnn14"
|
| 15 |
+
},
|
| 16 |
+
"text_cfg": {
|
| 17 |
+
"context_length": 77,
|
| 18 |
+
"vocab_size": 49408,
|
| 19 |
+
"width": 512,
|
| 20 |
+
"heads": 8,
|
| 21 |
+
"layers": 12
|
| 22 |
+
}
|
| 23 |
+
}
|
models/CLAP/open_clip/model_configs/PANN-14-fmax-8k-20s.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 2048,
|
| 3 |
+
"audio_cfg": {
|
| 4 |
+
"audio_length": 1024,
|
| 5 |
+
"clip_samples": 960000,
|
| 6 |
+
"mel_bins": 64,
|
| 7 |
+
"sample_rate": 48000,
|
| 8 |
+
"window_size": 1024,
|
| 9 |
+
"hop_size": 360,
|
| 10 |
+
"fmin": 50,
|
| 11 |
+
"fmax": 8000,
|
| 12 |
+
"class_num": 527,
|
| 13 |
+
"model_type": "PANN",
|
| 14 |
+
"model_name": "Cnn14"
|
| 15 |
+
},
|
| 16 |
+
"text_cfg": {
|
| 17 |
+
"context_length": 77,
|
| 18 |
+
"vocab_size": 49408,
|
| 19 |
+
"width": 512,
|
| 20 |
+
"heads": 8,
|
| 21 |
+
"layers": 12
|
| 22 |
+
}
|
| 23 |
+
}
|
models/CLAP/open_clip/model_configs/PANN-14-tiny-transformer.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 2048,
|
| 3 |
+
"audio_cfg": {
|
| 4 |
+
"audio_length": 1024,
|
| 5 |
+
"clip_samples": 480000,
|
| 6 |
+
"mel_bins": 64,
|
| 7 |
+
"sample_rate": 48000,
|
| 8 |
+
"window_size": 1024,
|
| 9 |
+
"hop_size": 480,
|
| 10 |
+
"fmin": 50,
|
| 11 |
+
"fmax": 14000,
|
| 12 |
+
"class_num": 527,
|
| 13 |
+
"model_type": "PANN",
|
| 14 |
+
"model_name": "Cnn14"
|
| 15 |
+
},
|
| 16 |
+
"text_cfg": {
|
| 17 |
+
"context_length": 77,
|
| 18 |
+
"vocab_size": 49408,
|
| 19 |
+
"width": 512,
|
| 20 |
+
"heads": 8,
|
| 21 |
+
"layers": 4
|
| 22 |
+
}
|
| 23 |
+
}
|
models/CLAP/open_clip/model_configs/PANN-14-win-1536.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 2048,
|
| 3 |
+
"audio_cfg": {
|
| 4 |
+
"audio_length": 1024,
|
| 5 |
+
"clip_samples": 480000,
|
| 6 |
+
"mel_bins": 64,
|
| 7 |
+
"sample_rate": 48000,
|
| 8 |
+
"window_size": 1536,
|
| 9 |
+
"hop_size": 480,
|
| 10 |
+
"fmin": 50,
|
| 11 |
+
"fmax": 14000,
|
| 12 |
+
"class_num": 527,
|
| 13 |
+
"model_type": "PANN",
|
| 14 |
+
"model_name": "Cnn14"
|
| 15 |
+
},
|
| 16 |
+
"text_cfg": {
|
| 17 |
+
"context_length": 77,
|
| 18 |
+
"vocab_size": 49408,
|
| 19 |
+
"width": 512,
|
| 20 |
+
"heads": 8,
|
| 21 |
+
"layers": 12
|
| 22 |
+
}
|
| 23 |
+
}
|
models/CLAP/open_clip/model_configs/PANN-14.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 2048,
|
| 3 |
+
"audio_cfg": {
|
| 4 |
+
"audio_length": 1024,
|
| 5 |
+
"clip_samples": 480000,
|
| 6 |
+
"mel_bins": 64,
|
| 7 |
+
"sample_rate": 48000,
|
| 8 |
+
"window_size": 1024,
|
| 9 |
+
"hop_size": 480,
|
| 10 |
+
"fmin": 50,
|
| 11 |
+
"fmax": 14000,
|
| 12 |
+
"class_num": 527,
|
| 13 |
+
"model_type": "PANN",
|
| 14 |
+
"model_name": "Cnn14"
|
| 15 |
+
},
|
| 16 |
+
"text_cfg": {
|
| 17 |
+
"context_length": 77,
|
| 18 |
+
"vocab_size": 49408,
|
| 19 |
+
"width": 512,
|
| 20 |
+
"heads": 8,
|
| 21 |
+
"layers": 12
|
| 22 |
+
}
|
| 23 |
+
}
|
models/CLAP/open_clip/model_configs/PANN-6.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 512,
|
| 3 |
+
"audio_cfg": {
|
| 4 |
+
"audio_length": 1024,
|
| 5 |
+
"clip_samples": 480000,
|
| 6 |
+
"mel_bins": 64,
|
| 7 |
+
"sample_rate": 48000,
|
| 8 |
+
"window_size": 1024,
|
| 9 |
+
"hop_size": 480,
|
| 10 |
+
"fmin": 50,
|
| 11 |
+
"fmax": 14000,
|
| 12 |
+
"class_num": 527,
|
| 13 |
+
"model_type": "PANN",
|
| 14 |
+
"model_name": "Cnn6"
|
| 15 |
+
},
|
| 16 |
+
"text_cfg": {
|
| 17 |
+
"context_length": 77,
|
| 18 |
+
"vocab_size": 49408,
|
| 19 |
+
"width": 512,
|
| 20 |
+
"heads": 8,
|
| 21 |
+
"layers": 12
|
| 22 |
+
}
|
| 23 |
+
}
|
models/CLAP/open_clip/model_configs/RN101-quickgelu.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 512,
|
| 3 |
+
"quick_gelu": true,
|
| 4 |
+
"vision_cfg": {
|
| 5 |
+
"image_size": 224,
|
| 6 |
+
"layers": [
|
| 7 |
+
3,
|
| 8 |
+
4,
|
| 9 |
+
23,
|
| 10 |
+
3
|
| 11 |
+
],
|
| 12 |
+
"width": 64,
|
| 13 |
+
"patch_size": null
|
| 14 |
+
},
|
| 15 |
+
"text_cfg": {
|
| 16 |
+
"context_length": 77,
|
| 17 |
+
"vocab_size": 49408,
|
| 18 |
+
"width": 512,
|
| 19 |
+
"heads": 8,
|
| 20 |
+
"layers": 12
|
| 21 |
+
}
|
| 22 |
+
}
|
models/CLAP/open_clip/model_configs/RN101.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 512,
|
| 3 |
+
"vision_cfg": {
|
| 4 |
+
"image_size": 224,
|
| 5 |
+
"layers": [
|
| 6 |
+
3,
|
| 7 |
+
4,
|
| 8 |
+
23,
|
| 9 |
+
3
|
| 10 |
+
],
|
| 11 |
+
"width": 64,
|
| 12 |
+
"patch_size": null
|
| 13 |
+
},
|
| 14 |
+
"text_cfg": {
|
| 15 |
+
"context_length": 77,
|
| 16 |
+
"vocab_size": 49408,
|
| 17 |
+
"width": 512,
|
| 18 |
+
"heads": 8,
|
| 19 |
+
"layers": 12
|
| 20 |
+
}
|
| 21 |
+
}
|
models/CLAP/open_clip/model_configs/RN50-quickgelu.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 1024,
|
| 3 |
+
"quick_gelu": true,
|
| 4 |
+
"vision_cfg": {
|
| 5 |
+
"image_size": 224,
|
| 6 |
+
"layers": [
|
| 7 |
+
3,
|
| 8 |
+
4,
|
| 9 |
+
6,
|
| 10 |
+
3
|
| 11 |
+
],
|
| 12 |
+
"width": 64,
|
| 13 |
+
"patch_size": null
|
| 14 |
+
},
|
| 15 |
+
"text_cfg": {
|
| 16 |
+
"context_length": 77,
|
| 17 |
+
"vocab_size": 49408,
|
| 18 |
+
"width": 512,
|
| 19 |
+
"heads": 8,
|
| 20 |
+
"layers": 12
|
| 21 |
+
}
|
| 22 |
+
}
|
models/CLAP/open_clip/model_configs/RN50.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 1024,
|
| 3 |
+
"vision_cfg": {
|
| 4 |
+
"image_size": 224,
|
| 5 |
+
"layers": [
|
| 6 |
+
3,
|
| 7 |
+
4,
|
| 8 |
+
6,
|
| 9 |
+
3
|
| 10 |
+
],
|
| 11 |
+
"width": 64,
|
| 12 |
+
"patch_size": null
|
| 13 |
+
},
|
| 14 |
+
"text_cfg": {
|
| 15 |
+
"context_length": 77,
|
| 16 |
+
"vocab_size": 49408,
|
| 17 |
+
"width": 512,
|
| 18 |
+
"heads": 8,
|
| 19 |
+
"layers": 12
|
| 20 |
+
}
|
| 21 |
+
}
|
models/CLAP/open_clip/model_configs/RN50x16.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 768,
|
| 3 |
+
"vision_cfg": {
|
| 4 |
+
"image_size": 384,
|
| 5 |
+
"layers": [
|
| 6 |
+
6,
|
| 7 |
+
8,
|
| 8 |
+
18,
|
| 9 |
+
8
|
| 10 |
+
],
|
| 11 |
+
"width": 96,
|
| 12 |
+
"patch_size": null
|
| 13 |
+
},
|
| 14 |
+
"text_cfg": {
|
| 15 |
+
"context_length": 77,
|
| 16 |
+
"vocab_size": 49408,
|
| 17 |
+
"width": 768,
|
| 18 |
+
"heads": 12,
|
| 19 |
+
"layers": 12
|
| 20 |
+
}
|
| 21 |
+
}
|
models/CLAP/open_clip/model_configs/RN50x4.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 640,
|
| 3 |
+
"vision_cfg": {
|
| 4 |
+
"image_size": 288,
|
| 5 |
+
"layers": [
|
| 6 |
+
4,
|
| 7 |
+
6,
|
| 8 |
+
10,
|
| 9 |
+
6
|
| 10 |
+
],
|
| 11 |
+
"width": 80,
|
| 12 |
+
"patch_size": null
|
| 13 |
+
},
|
| 14 |
+
"text_cfg": {
|
| 15 |
+
"context_length": 77,
|
| 16 |
+
"vocab_size": 49408,
|
| 17 |
+
"width": 640,
|
| 18 |
+
"heads": 10,
|
| 19 |
+
"layers": 12
|
| 20 |
+
}
|
| 21 |
+
}
|
models/CLAP/open_clip/model_configs/ViT-B-16.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 512,
|
| 3 |
+
"vision_cfg": {
|
| 4 |
+
"image_size": 224,
|
| 5 |
+
"layers": 12,
|
| 6 |
+
"width": 768,
|
| 7 |
+
"patch_size": 16
|
| 8 |
+
},
|
| 9 |
+
"text_cfg": {
|
| 10 |
+
"context_length": 77,
|
| 11 |
+
"vocab_size": 49408,
|
| 12 |
+
"width": 512,
|
| 13 |
+
"heads": 8,
|
| 14 |
+
"layers": 12
|
| 15 |
+
}
|
| 16 |
+
}
|
models/CLAP/open_clip/model_configs/ViT-B-32-quickgelu.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 512,
|
| 3 |
+
"quick_gelu": true,
|
| 4 |
+
"vision_cfg": {
|
| 5 |
+
"image_size": 224,
|
| 6 |
+
"layers": 12,
|
| 7 |
+
"width": 768,
|
| 8 |
+
"patch_size": 32
|
| 9 |
+
},
|
| 10 |
+
"text_cfg": {
|
| 11 |
+
"context_length": 77,
|
| 12 |
+
"vocab_size": 49408,
|
| 13 |
+
"width": 512,
|
| 14 |
+
"heads": 8,
|
| 15 |
+
"layers": 12
|
| 16 |
+
}
|
| 17 |
+
}
|
models/CLAP/open_clip/model_configs/ViT-B-32.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 512,
|
| 3 |
+
"vision_cfg": {
|
| 4 |
+
"image_size": 224,
|
| 5 |
+
"layers": 12,
|
| 6 |
+
"width": 768,
|
| 7 |
+
"patch_size": 32
|
| 8 |
+
},
|
| 9 |
+
"text_cfg": {
|
| 10 |
+
"context_length": 77,
|
| 11 |
+
"vocab_size": 49408,
|
| 12 |
+
"width": 512,
|
| 13 |
+
"heads": 8,
|
| 14 |
+
"layers": 12
|
| 15 |
+
}
|
| 16 |
+
}
|
models/CLAP/open_clip/model_configs/ViT-L-14.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"embed_dim": 768,
|
| 3 |
+
"vision_cfg": {
|
| 4 |
+
"image_size": 224,
|
| 5 |
+
"layers": 24,
|
| 6 |
+
"width": 1024,
|
| 7 |
+
"patch_size": 14
|
| 8 |
+
},
|
| 9 |
+
"text_cfg": {
|
| 10 |
+
"context_length": 77,
|
| 11 |
+
"vocab_size": 49408,
|
| 12 |
+
"width": 768,
|
| 13 |
+
"heads": 12,
|
| 14 |
+
"layers": 12
|
| 15 |
+
}
|
| 16 |
+
}
|
models/CLAP/open_clip/openai.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" OpenAI pretrained model functions
|
| 2 |
+
|
| 3 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import warnings
|
| 8 |
+
from typing import Union, List
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
from .model import build_model_from_openai_state_dict
|
| 13 |
+
from .pretrained import (
|
| 14 |
+
get_pretrained_url,
|
| 15 |
+
list_pretrained_tag_models,
|
| 16 |
+
download_pretrained,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
__all__ = ["list_openai_models", "load_openai_model"]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def list_openai_models() -> List[str]:
|
| 23 |
+
"""Returns the names of available CLIP models"""
|
| 24 |
+
return list_pretrained_tag_models("openai")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def load_openai_model(
|
| 28 |
+
name: str,
|
| 29 |
+
model_cfg,
|
| 30 |
+
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
|
| 31 |
+
jit=True,
|
| 32 |
+
cache_dir=os.path.expanduser("~/.cache/clip"),
|
| 33 |
+
enable_fusion: bool = False,
|
| 34 |
+
fusion_type: str = "None",
|
| 35 |
+
):
|
| 36 |
+
"""Load a CLIP model, preserve its text pretrained part, and set in the CLAP model
|
| 37 |
+
|
| 38 |
+
Parameters
|
| 39 |
+
----------
|
| 40 |
+
name : str
|
| 41 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
| 42 |
+
device : Union[str, torch.device]
|
| 43 |
+
The device to put the loaded model
|
| 44 |
+
jit : bool
|
| 45 |
+
Whether to load the optimized JIT model (default) or more hackable non-JIT model.
|
| 46 |
+
|
| 47 |
+
Returns
|
| 48 |
+
-------
|
| 49 |
+
model : torch.nn.Module
|
| 50 |
+
The CLAP model
|
| 51 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
| 52 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
| 53 |
+
"""
|
| 54 |
+
if get_pretrained_url(name, "openai"):
|
| 55 |
+
model_path = download_pretrained(
|
| 56 |
+
get_pretrained_url(name, "openai"), root=cache_dir
|
| 57 |
+
)
|
| 58 |
+
elif os.path.isfile(name):
|
| 59 |
+
model_path = name
|
| 60 |
+
else:
|
| 61 |
+
raise RuntimeError(
|
| 62 |
+
f"Model {name} not found; available models = {list_openai_models()}"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
# loading JIT archive
|
| 67 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
| 68 |
+
state_dict = None
|
| 69 |
+
except RuntimeError:
|
| 70 |
+
# loading saved state dict
|
| 71 |
+
if jit:
|
| 72 |
+
warnings.warn(
|
| 73 |
+
f"File {model_path} is not a JIT archive. Loading as a state dict instead"
|
| 74 |
+
)
|
| 75 |
+
jit = False
|
| 76 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
| 77 |
+
|
| 78 |
+
if not jit:
|
| 79 |
+
try:
|
| 80 |
+
model = build_model_from_openai_state_dict(
|
| 81 |
+
state_dict or model.state_dict(), model_cfg, enable_fusion, fusion_type
|
| 82 |
+
).to(device)
|
| 83 |
+
except KeyError:
|
| 84 |
+
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
|
| 85 |
+
model = build_model_from_openai_state_dict(
|
| 86 |
+
sd, model_cfg, enable_fusion, fusion_type
|
| 87 |
+
).to(device)
|
| 88 |
+
|
| 89 |
+
if str(device) == "cpu":
|
| 90 |
+
model.float()
|
| 91 |
+
return model
|
| 92 |
+
|
| 93 |
+
# patch the device names
|
| 94 |
+
device_holder = torch.jit.trace(
|
| 95 |
+
lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]
|
| 96 |
+
)
|
| 97 |
+
device_node = [
|
| 98 |
+
n
|
| 99 |
+
for n in device_holder.graph.findAllNodes("prim::Constant")
|
| 100 |
+
if "Device" in repr(n)
|
| 101 |
+
][-1]
|
| 102 |
+
|
| 103 |
+
def patch_device(module):
|
| 104 |
+
try:
|
| 105 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
| 106 |
+
except RuntimeError:
|
| 107 |
+
graphs = []
|
| 108 |
+
|
| 109 |
+
if hasattr(module, "forward1"):
|
| 110 |
+
graphs.append(module.forward1.graph)
|
| 111 |
+
|
| 112 |
+
for graph in graphs:
|
| 113 |
+
for node in graph.findAllNodes("prim::Constant"):
|
| 114 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith(
|
| 115 |
+
"cuda"
|
| 116 |
+
):
|
| 117 |
+
node.copyAttributes(device_node)
|
| 118 |
+
|
| 119 |
+
model.apply(patch_device)
|
| 120 |
+
patch_device(model.encode_audio)
|
| 121 |
+
patch_device(model.encode_text)
|
| 122 |
+
|
| 123 |
+
# patch dtype to float32 on CPU
|
| 124 |
+
if str(device) == "cpu":
|
| 125 |
+
float_holder = torch.jit.trace(
|
| 126 |
+
lambda: torch.ones([]).float(), example_inputs=[]
|
| 127 |
+
)
|
| 128 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
| 129 |
+
float_node = float_input.node()
|
| 130 |
+
|
| 131 |
+
def patch_float(module):
|
| 132 |
+
try:
|
| 133 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
| 134 |
+
except RuntimeError:
|
| 135 |
+
graphs = []
|
| 136 |
+
|
| 137 |
+
if hasattr(module, "forward1"):
|
| 138 |
+
graphs.append(module.forward1.graph)
|
| 139 |
+
|
| 140 |
+
for graph in graphs:
|
| 141 |
+
for node in graph.findAllNodes("aten::to"):
|
| 142 |
+
inputs = list(node.inputs())
|
| 143 |
+
for i in [
|
| 144 |
+
1,
|
| 145 |
+
2,
|
| 146 |
+
]: # dtype can be the second or third argument to aten::to()
|
| 147 |
+
if inputs[i].node()["value"] == 5:
|
| 148 |
+
inputs[i].node().copyAttributes(float_node)
|
| 149 |
+
|
| 150 |
+
model.apply(patch_float)
|
| 151 |
+
patch_float(model.encode_audio)
|
| 152 |
+
patch_float(model.encode_text)
|
| 153 |
+
model.float()
|
| 154 |
+
|
| 155 |
+
model.audio_branch.audio_length = model.audio_cfg.audio_length
|
| 156 |
+
return model
|
models/CLAP/open_clip/pann_model.py
ADDED
|
@@ -0,0 +1,704 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
|
| 2 |
+
# Reference from https://github.com/qiuqiangkong/audioset_tagging_cnn
|
| 3 |
+
# Some layers are re-designed for CLAP
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
os.environ["NUMBA_CACHE_DIR"] = "/tmp/"
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
|
| 12 |
+
from torchlibrosa.augmentation import SpecAugmentation
|
| 13 |
+
|
| 14 |
+
from .utils import do_mixup, interpolate, pad_framewise_output
|
| 15 |
+
from .feature_fusion import iAFF, AFF, DAF
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def init_layer(layer):
|
| 19 |
+
"""Initialize a Linear or Convolutional layer."""
|
| 20 |
+
nn.init.xavier_uniform_(layer.weight)
|
| 21 |
+
|
| 22 |
+
if hasattr(layer, "bias"):
|
| 23 |
+
if layer.bias is not None:
|
| 24 |
+
layer.bias.data.fill_(0.0)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def init_bn(bn):
|
| 28 |
+
"""Initialize a Batchnorm layer."""
|
| 29 |
+
bn.bias.data.fill_(0.0)
|
| 30 |
+
bn.weight.data.fill_(1.0)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class ConvBlock(nn.Module):
|
| 34 |
+
def __init__(self, in_channels, out_channels):
|
| 35 |
+
|
| 36 |
+
super(ConvBlock, self).__init__()
|
| 37 |
+
|
| 38 |
+
self.conv1 = nn.Conv2d(
|
| 39 |
+
in_channels=in_channels,
|
| 40 |
+
out_channels=out_channels,
|
| 41 |
+
kernel_size=(3, 3),
|
| 42 |
+
stride=(1, 1),
|
| 43 |
+
padding=(1, 1),
|
| 44 |
+
bias=False,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
self.conv2 = nn.Conv2d(
|
| 48 |
+
in_channels=out_channels,
|
| 49 |
+
out_channels=out_channels,
|
| 50 |
+
kernel_size=(3, 3),
|
| 51 |
+
stride=(1, 1),
|
| 52 |
+
padding=(1, 1),
|
| 53 |
+
bias=False,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
| 57 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
| 58 |
+
|
| 59 |
+
self.init_weight()
|
| 60 |
+
|
| 61 |
+
def init_weight(self):
|
| 62 |
+
init_layer(self.conv1)
|
| 63 |
+
init_layer(self.conv2)
|
| 64 |
+
init_bn(self.bn1)
|
| 65 |
+
init_bn(self.bn2)
|
| 66 |
+
|
| 67 |
+
def forward(self, input, pool_size=(2, 2), pool_type="avg"):
|
| 68 |
+
|
| 69 |
+
x = input
|
| 70 |
+
x = F.relu_(self.bn1(self.conv1(x)))
|
| 71 |
+
x = F.relu_(self.bn2(self.conv2(x)))
|
| 72 |
+
if pool_type == "max":
|
| 73 |
+
x = F.max_pool2d(x, kernel_size=pool_size)
|
| 74 |
+
elif pool_type == "avg":
|
| 75 |
+
x = F.avg_pool2d(x, kernel_size=pool_size)
|
| 76 |
+
elif pool_type == "avg+max":
|
| 77 |
+
x1 = F.avg_pool2d(x, kernel_size=pool_size)
|
| 78 |
+
x2 = F.max_pool2d(x, kernel_size=pool_size)
|
| 79 |
+
x = x1 + x2
|
| 80 |
+
else:
|
| 81 |
+
raise Exception("Incorrect argument!")
|
| 82 |
+
|
| 83 |
+
return x
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class ConvBlock5x5(nn.Module):
|
| 87 |
+
def __init__(self, in_channels, out_channels):
|
| 88 |
+
|
| 89 |
+
super(ConvBlock5x5, self).__init__()
|
| 90 |
+
|
| 91 |
+
self.conv1 = nn.Conv2d(
|
| 92 |
+
in_channels=in_channels,
|
| 93 |
+
out_channels=out_channels,
|
| 94 |
+
kernel_size=(5, 5),
|
| 95 |
+
stride=(1, 1),
|
| 96 |
+
padding=(2, 2),
|
| 97 |
+
bias=False,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
| 101 |
+
|
| 102 |
+
self.init_weight()
|
| 103 |
+
|
| 104 |
+
def init_weight(self):
|
| 105 |
+
init_layer(self.conv1)
|
| 106 |
+
init_bn(self.bn1)
|
| 107 |
+
|
| 108 |
+
def forward(self, input, pool_size=(2, 2), pool_type="avg"):
|
| 109 |
+
|
| 110 |
+
x = input
|
| 111 |
+
x = F.relu_(self.bn1(self.conv1(x)))
|
| 112 |
+
if pool_type == "max":
|
| 113 |
+
x = F.max_pool2d(x, kernel_size=pool_size)
|
| 114 |
+
elif pool_type == "avg":
|
| 115 |
+
x = F.avg_pool2d(x, kernel_size=pool_size)
|
| 116 |
+
elif pool_type == "avg+max":
|
| 117 |
+
x1 = F.avg_pool2d(x, kernel_size=pool_size)
|
| 118 |
+
x2 = F.max_pool2d(x, kernel_size=pool_size)
|
| 119 |
+
x = x1 + x2
|
| 120 |
+
else:
|
| 121 |
+
raise Exception("Incorrect argument!")
|
| 122 |
+
|
| 123 |
+
return x
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class AttBlock(nn.Module):
|
| 127 |
+
def __init__(self, n_in, n_out, activation="linear", temperature=1.0):
|
| 128 |
+
super(AttBlock, self).__init__()
|
| 129 |
+
|
| 130 |
+
self.activation = activation
|
| 131 |
+
self.temperature = temperature
|
| 132 |
+
self.att = nn.Conv1d(
|
| 133 |
+
in_channels=n_in,
|
| 134 |
+
out_channels=n_out,
|
| 135 |
+
kernel_size=1,
|
| 136 |
+
stride=1,
|
| 137 |
+
padding=0,
|
| 138 |
+
bias=True,
|
| 139 |
+
)
|
| 140 |
+
self.cla = nn.Conv1d(
|
| 141 |
+
in_channels=n_in,
|
| 142 |
+
out_channels=n_out,
|
| 143 |
+
kernel_size=1,
|
| 144 |
+
stride=1,
|
| 145 |
+
padding=0,
|
| 146 |
+
bias=True,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
self.bn_att = nn.BatchNorm1d(n_out)
|
| 150 |
+
self.init_weights()
|
| 151 |
+
|
| 152 |
+
def init_weights(self):
|
| 153 |
+
init_layer(self.att)
|
| 154 |
+
init_layer(self.cla)
|
| 155 |
+
init_bn(self.bn_att)
|
| 156 |
+
|
| 157 |
+
def forward(self, x):
|
| 158 |
+
# x: (n_samples, n_in, n_time)
|
| 159 |
+
norm_att = torch.softmax(torch.clamp(self.att(x), -10, 10), dim=-1)
|
| 160 |
+
cla = self.nonlinear_transform(self.cla(x))
|
| 161 |
+
x = torch.sum(norm_att * cla, dim=2)
|
| 162 |
+
return x, norm_att, cla
|
| 163 |
+
|
| 164 |
+
def nonlinear_transform(self, x):
|
| 165 |
+
if self.activation == "linear":
|
| 166 |
+
return x
|
| 167 |
+
elif self.activation == "sigmoid":
|
| 168 |
+
return torch.sigmoid(x)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class Cnn14(nn.Module):
|
| 172 |
+
def __init__(
|
| 173 |
+
self,
|
| 174 |
+
sample_rate,
|
| 175 |
+
window_size,
|
| 176 |
+
hop_size,
|
| 177 |
+
mel_bins,
|
| 178 |
+
fmin,
|
| 179 |
+
fmax,
|
| 180 |
+
classes_num,
|
| 181 |
+
enable_fusion=False,
|
| 182 |
+
fusion_type="None",
|
| 183 |
+
):
|
| 184 |
+
|
| 185 |
+
super(Cnn14, self).__init__()
|
| 186 |
+
|
| 187 |
+
window = "hann"
|
| 188 |
+
center = True
|
| 189 |
+
pad_mode = "reflect"
|
| 190 |
+
ref = 1.0
|
| 191 |
+
amin = 1e-10
|
| 192 |
+
top_db = None
|
| 193 |
+
|
| 194 |
+
self.enable_fusion = enable_fusion
|
| 195 |
+
self.fusion_type = fusion_type
|
| 196 |
+
|
| 197 |
+
# Spectrogram extractor
|
| 198 |
+
self.spectrogram_extractor = Spectrogram(
|
| 199 |
+
n_fft=window_size,
|
| 200 |
+
hop_length=hop_size,
|
| 201 |
+
win_length=window_size,
|
| 202 |
+
window=window,
|
| 203 |
+
center=center,
|
| 204 |
+
pad_mode=pad_mode,
|
| 205 |
+
freeze_parameters=True,
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# Logmel feature extractor
|
| 209 |
+
self.logmel_extractor = LogmelFilterBank(
|
| 210 |
+
sr=sample_rate,
|
| 211 |
+
n_fft=window_size,
|
| 212 |
+
n_mels=mel_bins,
|
| 213 |
+
fmin=fmin,
|
| 214 |
+
fmax=fmax,
|
| 215 |
+
ref=ref,
|
| 216 |
+
amin=amin,
|
| 217 |
+
top_db=top_db,
|
| 218 |
+
freeze_parameters=True,
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
# Spec augmenter
|
| 222 |
+
self.spec_augmenter = SpecAugmentation(
|
| 223 |
+
time_drop_width=64,
|
| 224 |
+
time_stripes_num=2,
|
| 225 |
+
freq_drop_width=8,
|
| 226 |
+
freq_stripes_num=2,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
self.bn0 = nn.BatchNorm2d(64)
|
| 230 |
+
|
| 231 |
+
if (self.enable_fusion) and (self.fusion_type == "channel_map"):
|
| 232 |
+
self.conv_block1 = ConvBlock(in_channels=4, out_channels=64)
|
| 233 |
+
else:
|
| 234 |
+
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
|
| 235 |
+
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
|
| 236 |
+
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
|
| 237 |
+
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
|
| 238 |
+
self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
|
| 239 |
+
self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)
|
| 240 |
+
|
| 241 |
+
self.fc1 = nn.Linear(2048, 2048, bias=True)
|
| 242 |
+
self.fc_audioset = nn.Linear(2048, classes_num, bias=True)
|
| 243 |
+
|
| 244 |
+
if (self.enable_fusion) and (
|
| 245 |
+
self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]
|
| 246 |
+
):
|
| 247 |
+
self.mel_conv1d = nn.Sequential(
|
| 248 |
+
nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2),
|
| 249 |
+
nn.BatchNorm1d(64), # No Relu
|
| 250 |
+
)
|
| 251 |
+
if self.fusion_type == "daf_1d":
|
| 252 |
+
self.fusion_model = DAF()
|
| 253 |
+
elif self.fusion_type == "aff_1d":
|
| 254 |
+
self.fusion_model = AFF(channels=64, type="1D")
|
| 255 |
+
elif self.fusion_type == "iaff_1d":
|
| 256 |
+
self.fusion_model = iAFF(channels=64, type="1D")
|
| 257 |
+
|
| 258 |
+
if (self.enable_fusion) and (
|
| 259 |
+
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
|
| 260 |
+
):
|
| 261 |
+
self.mel_conv2d = nn.Sequential(
|
| 262 |
+
nn.Conv2d(1, 64, kernel_size=(5, 5), stride=(6, 2), padding=(2, 2)),
|
| 263 |
+
nn.BatchNorm2d(64),
|
| 264 |
+
nn.ReLU(inplace=True),
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
if self.fusion_type == "daf_2d":
|
| 268 |
+
self.fusion_model = DAF()
|
| 269 |
+
elif self.fusion_type == "aff_2d":
|
| 270 |
+
self.fusion_model = AFF(channels=64, type="2D")
|
| 271 |
+
elif self.fusion_type == "iaff_2d":
|
| 272 |
+
self.fusion_model = iAFF(channels=64, type="2D")
|
| 273 |
+
self.init_weight()
|
| 274 |
+
|
| 275 |
+
def init_weight(self):
|
| 276 |
+
init_bn(self.bn0)
|
| 277 |
+
init_layer(self.fc1)
|
| 278 |
+
init_layer(self.fc_audioset)
|
| 279 |
+
|
| 280 |
+
def forward(self, input, mixup_lambda=None, device=None):
|
| 281 |
+
"""
|
| 282 |
+
Input: (batch_size, data_length)"""
|
| 283 |
+
|
| 284 |
+
if self.enable_fusion and input["longer"].sum() == 0:
|
| 285 |
+
# if no audio is longer than 10s, then randomly select one audio to be longer
|
| 286 |
+
input["longer"][torch.randint(0, input["longer"].shape[0], (1,))] = True
|
| 287 |
+
|
| 288 |
+
if not self.enable_fusion:
|
| 289 |
+
x = self.spectrogram_extractor(
|
| 290 |
+
input["waveform"].to(device=device, non_blocking=True)
|
| 291 |
+
) # (batch_size, 1, time_steps, freq_bins)
|
| 292 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
| 293 |
+
|
| 294 |
+
x = x.transpose(1, 3)
|
| 295 |
+
x = self.bn0(x)
|
| 296 |
+
x = x.transpose(1, 3)
|
| 297 |
+
else:
|
| 298 |
+
longer_list = input["longer"].to(device=device, non_blocking=True)
|
| 299 |
+
x = input["mel_fusion"].to(device=device, non_blocking=True)
|
| 300 |
+
longer_list_idx = torch.where(longer_list)[0]
|
| 301 |
+
x = x.transpose(1, 3)
|
| 302 |
+
x = self.bn0(x)
|
| 303 |
+
x = x.transpose(1, 3)
|
| 304 |
+
if self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]:
|
| 305 |
+
new_x = x[:, 0:1, :, :].clone().contiguous()
|
| 306 |
+
# local processing
|
| 307 |
+
if len(longer_list_idx) > 0:
|
| 308 |
+
fusion_x_local = x[longer_list_idx, 1:, :, :].clone().contiguous()
|
| 309 |
+
FB, FC, FT, FF = fusion_x_local.size()
|
| 310 |
+
fusion_x_local = fusion_x_local.view(FB * FC, FT, FF)
|
| 311 |
+
fusion_x_local = torch.permute(
|
| 312 |
+
fusion_x_local, (0, 2, 1)
|
| 313 |
+
).contiguous()
|
| 314 |
+
fusion_x_local = self.mel_conv1d(fusion_x_local)
|
| 315 |
+
fusion_x_local = fusion_x_local.view(
|
| 316 |
+
FB, FC, FF, fusion_x_local.size(-1)
|
| 317 |
+
)
|
| 318 |
+
fusion_x_local = (
|
| 319 |
+
torch.permute(fusion_x_local, (0, 2, 1, 3))
|
| 320 |
+
.contiguous()
|
| 321 |
+
.flatten(2)
|
| 322 |
+
)
|
| 323 |
+
if fusion_x_local.size(-1) < FT:
|
| 324 |
+
fusion_x_local = torch.cat(
|
| 325 |
+
[
|
| 326 |
+
fusion_x_local,
|
| 327 |
+
torch.zeros(
|
| 328 |
+
(FB, FF, FT - fusion_x_local.size(-1)),
|
| 329 |
+
device=device,
|
| 330 |
+
),
|
| 331 |
+
],
|
| 332 |
+
dim=-1,
|
| 333 |
+
)
|
| 334 |
+
else:
|
| 335 |
+
fusion_x_local = fusion_x_local[:, :, :FT]
|
| 336 |
+
# 1D fusion
|
| 337 |
+
new_x = new_x.squeeze(1).permute((0, 2, 1)).contiguous()
|
| 338 |
+
new_x[longer_list_idx] = self.fusion_model(
|
| 339 |
+
new_x[longer_list_idx], fusion_x_local
|
| 340 |
+
)
|
| 341 |
+
x = new_x.permute((0, 2, 1)).contiguous()[:, None, :, :]
|
| 342 |
+
else:
|
| 343 |
+
x = new_x
|
| 344 |
+
elif self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d", "channel_map"]:
|
| 345 |
+
x = x # no change
|
| 346 |
+
|
| 347 |
+
if self.training:
|
| 348 |
+
x = self.spec_augmenter(x)
|
| 349 |
+
# Mixup on spectrogram
|
| 350 |
+
if self.training and mixup_lambda is not None:
|
| 351 |
+
x = do_mixup(x, mixup_lambda)
|
| 352 |
+
if (self.enable_fusion) and (
|
| 353 |
+
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"]
|
| 354 |
+
):
|
| 355 |
+
global_x = x[:, 0:1, :, :]
|
| 356 |
+
|
| 357 |
+
# global processing
|
| 358 |
+
B, C, H, W = global_x.shape
|
| 359 |
+
global_x = self.conv_block1(global_x, pool_size=(2, 2), pool_type="avg")
|
| 360 |
+
if len(longer_list_idx) > 0:
|
| 361 |
+
local_x = x[longer_list_idx, 1:, :, :].contiguous()
|
| 362 |
+
TH = global_x.size(-2)
|
| 363 |
+
# local processing
|
| 364 |
+
B, C, H, W = local_x.shape
|
| 365 |
+
local_x = local_x.view(B * C, 1, H, W)
|
| 366 |
+
local_x = self.mel_conv2d(local_x)
|
| 367 |
+
local_x = local_x.view(
|
| 368 |
+
B, C, local_x.size(1), local_x.size(2), local_x.size(3)
|
| 369 |
+
)
|
| 370 |
+
local_x = local_x.permute((0, 2, 1, 3, 4)).contiguous().flatten(2, 3)
|
| 371 |
+
TB, TC, _, TW = local_x.size()
|
| 372 |
+
if local_x.size(-2) < TH:
|
| 373 |
+
local_x = torch.cat(
|
| 374 |
+
[
|
| 375 |
+
local_x,
|
| 376 |
+
torch.zeros(
|
| 377 |
+
(TB, TC, TH - local_x.size(-2), TW),
|
| 378 |
+
device=global_x.device,
|
| 379 |
+
),
|
| 380 |
+
],
|
| 381 |
+
dim=-2,
|
| 382 |
+
)
|
| 383 |
+
else:
|
| 384 |
+
local_x = local_x[:, :, :TH, :]
|
| 385 |
+
|
| 386 |
+
global_x[longer_list_idx] = self.fusion_model(
|
| 387 |
+
global_x[longer_list_idx], local_x
|
| 388 |
+
)
|
| 389 |
+
x = global_x
|
| 390 |
+
else:
|
| 391 |
+
x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
|
| 392 |
+
|
| 393 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 394 |
+
x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
|
| 395 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 396 |
+
x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
|
| 397 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 398 |
+
x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
|
| 399 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 400 |
+
x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg")
|
| 401 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 402 |
+
x = self.conv_block6(x, pool_size=(1, 1), pool_type="avg")
|
| 403 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 404 |
+
x = torch.mean(x, dim=3)
|
| 405 |
+
|
| 406 |
+
latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1)
|
| 407 |
+
latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1)
|
| 408 |
+
latent_x = latent_x1 + latent_x2
|
| 409 |
+
latent_x = latent_x.transpose(1, 2)
|
| 410 |
+
latent_x = F.relu_(self.fc1(latent_x))
|
| 411 |
+
latent_output = interpolate(latent_x, 32)
|
| 412 |
+
|
| 413 |
+
(x1, _) = torch.max(x, dim=2)
|
| 414 |
+
x2 = torch.mean(x, dim=2)
|
| 415 |
+
x = x1 + x2
|
| 416 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
| 417 |
+
x = F.relu_(self.fc1(x))
|
| 418 |
+
embedding = F.dropout(x, p=0.5, training=self.training)
|
| 419 |
+
clipwise_output = torch.sigmoid(self.fc_audioset(x))
|
| 420 |
+
|
| 421 |
+
output_dict = {
|
| 422 |
+
"clipwise_output": clipwise_output,
|
| 423 |
+
"embedding": embedding,
|
| 424 |
+
"fine_grained_embedding": latent_output,
|
| 425 |
+
}
|
| 426 |
+
return output_dict
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
class Cnn6(nn.Module):
|
| 430 |
+
def __init__(
|
| 431 |
+
self,
|
| 432 |
+
sample_rate,
|
| 433 |
+
window_size,
|
| 434 |
+
hop_size,
|
| 435 |
+
mel_bins,
|
| 436 |
+
fmin,
|
| 437 |
+
fmax,
|
| 438 |
+
classes_num,
|
| 439 |
+
enable_fusion=False,
|
| 440 |
+
fusion_type="None",
|
| 441 |
+
):
|
| 442 |
+
|
| 443 |
+
super(Cnn6, self).__init__()
|
| 444 |
+
|
| 445 |
+
window = "hann"
|
| 446 |
+
center = True
|
| 447 |
+
pad_mode = "reflect"
|
| 448 |
+
ref = 1.0
|
| 449 |
+
amin = 1e-10
|
| 450 |
+
top_db = None
|
| 451 |
+
|
| 452 |
+
self.enable_fusion = enable_fusion
|
| 453 |
+
self.fusion_type = fusion_type
|
| 454 |
+
|
| 455 |
+
# Spectrogram extractor
|
| 456 |
+
self.spectrogram_extractor = Spectrogram(
|
| 457 |
+
n_fft=window_size,
|
| 458 |
+
hop_length=hop_size,
|
| 459 |
+
win_length=window_size,
|
| 460 |
+
window=window,
|
| 461 |
+
center=center,
|
| 462 |
+
pad_mode=pad_mode,
|
| 463 |
+
freeze_parameters=True,
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
# Logmel feature extractor
|
| 467 |
+
self.logmel_extractor = LogmelFilterBank(
|
| 468 |
+
sr=sample_rate,
|
| 469 |
+
n_fft=window_size,
|
| 470 |
+
n_mels=mel_bins,
|
| 471 |
+
fmin=fmin,
|
| 472 |
+
fmax=fmax,
|
| 473 |
+
ref=ref,
|
| 474 |
+
amin=amin,
|
| 475 |
+
top_db=top_db,
|
| 476 |
+
freeze_parameters=True,
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
# Spec augmenter
|
| 480 |
+
self.spec_augmenter = SpecAugmentation(
|
| 481 |
+
time_drop_width=64,
|
| 482 |
+
time_stripes_num=2,
|
| 483 |
+
freq_drop_width=8,
|
| 484 |
+
freq_stripes_num=2,
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
self.bn0 = nn.BatchNorm2d(64)
|
| 488 |
+
|
| 489 |
+
self.conv_block1 = ConvBlock5x5(in_channels=1, out_channels=64)
|
| 490 |
+
self.conv_block2 = ConvBlock5x5(in_channels=64, out_channels=128)
|
| 491 |
+
self.conv_block3 = ConvBlock5x5(in_channels=128, out_channels=256)
|
| 492 |
+
self.conv_block4 = ConvBlock5x5(in_channels=256, out_channels=512)
|
| 493 |
+
|
| 494 |
+
self.fc1 = nn.Linear(512, 512, bias=True)
|
| 495 |
+
self.fc_audioset = nn.Linear(512, classes_num, bias=True)
|
| 496 |
+
|
| 497 |
+
self.init_weight()
|
| 498 |
+
|
| 499 |
+
def init_weight(self):
|
| 500 |
+
init_bn(self.bn0)
|
| 501 |
+
init_layer(self.fc1)
|
| 502 |
+
init_layer(self.fc_audioset)
|
| 503 |
+
|
| 504 |
+
def forward(self, input, mixup_lambda=None, device=None):
|
| 505 |
+
"""
|
| 506 |
+
Input: (batch_size, data_length)"""
|
| 507 |
+
|
| 508 |
+
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
|
| 509 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
| 510 |
+
|
| 511 |
+
x = x.transpose(1, 3)
|
| 512 |
+
x = self.bn0(x)
|
| 513 |
+
x = x.transpose(1, 3)
|
| 514 |
+
|
| 515 |
+
if self.training:
|
| 516 |
+
x = self.spec_augmenter(x)
|
| 517 |
+
|
| 518 |
+
# Mixup on spectrogram
|
| 519 |
+
if self.training and mixup_lambda is not None:
|
| 520 |
+
x = do_mixup(x, mixup_lambda)
|
| 521 |
+
|
| 522 |
+
x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
|
| 523 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 524 |
+
x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
|
| 525 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 526 |
+
x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
|
| 527 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 528 |
+
x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
|
| 529 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 530 |
+
x = torch.mean(x, dim=3)
|
| 531 |
+
|
| 532 |
+
latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1)
|
| 533 |
+
latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1)
|
| 534 |
+
latent_x = latent_x1 + latent_x2
|
| 535 |
+
latent_x = latent_x.transpose(1, 2)
|
| 536 |
+
latent_x = F.relu_(self.fc1(latent_x))
|
| 537 |
+
latent_output = interpolate(latent_x, 16)
|
| 538 |
+
|
| 539 |
+
(x1, _) = torch.max(x, dim=2)
|
| 540 |
+
x2 = torch.mean(x, dim=2)
|
| 541 |
+
x = x1 + x2
|
| 542 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
| 543 |
+
x = F.relu_(self.fc1(x))
|
| 544 |
+
embedding = F.dropout(x, p=0.5, training=self.training)
|
| 545 |
+
clipwise_output = torch.sigmoid(self.fc_audioset(x))
|
| 546 |
+
|
| 547 |
+
output_dict = {
|
| 548 |
+
"clipwise_output": clipwise_output,
|
| 549 |
+
"embedding": embedding,
|
| 550 |
+
"fine_grained_embedding": latent_output,
|
| 551 |
+
}
|
| 552 |
+
|
| 553 |
+
return output_dict
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
class Cnn10(nn.Module):
|
| 557 |
+
def __init__(
|
| 558 |
+
self,
|
| 559 |
+
sample_rate,
|
| 560 |
+
window_size,
|
| 561 |
+
hop_size,
|
| 562 |
+
mel_bins,
|
| 563 |
+
fmin,
|
| 564 |
+
fmax,
|
| 565 |
+
classes_num,
|
| 566 |
+
enable_fusion=False,
|
| 567 |
+
fusion_type="None",
|
| 568 |
+
):
|
| 569 |
+
|
| 570 |
+
super(Cnn10, self).__init__()
|
| 571 |
+
|
| 572 |
+
window = "hann"
|
| 573 |
+
center = True
|
| 574 |
+
pad_mode = "reflect"
|
| 575 |
+
ref = 1.0
|
| 576 |
+
amin = 1e-10
|
| 577 |
+
top_db = None
|
| 578 |
+
|
| 579 |
+
self.enable_fusion = enable_fusion
|
| 580 |
+
self.fusion_type = fusion_type
|
| 581 |
+
|
| 582 |
+
# Spectrogram extractor
|
| 583 |
+
self.spectrogram_extractor = Spectrogram(
|
| 584 |
+
n_fft=window_size,
|
| 585 |
+
hop_length=hop_size,
|
| 586 |
+
win_length=window_size,
|
| 587 |
+
window=window,
|
| 588 |
+
center=center,
|
| 589 |
+
pad_mode=pad_mode,
|
| 590 |
+
freeze_parameters=True,
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
# Logmel feature extractor
|
| 594 |
+
self.logmel_extractor = LogmelFilterBank(
|
| 595 |
+
sr=sample_rate,
|
| 596 |
+
n_fft=window_size,
|
| 597 |
+
n_mels=mel_bins,
|
| 598 |
+
fmin=fmin,
|
| 599 |
+
fmax=fmax,
|
| 600 |
+
ref=ref,
|
| 601 |
+
amin=amin,
|
| 602 |
+
top_db=top_db,
|
| 603 |
+
freeze_parameters=True,
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
# Spec augmenter
|
| 607 |
+
self.spec_augmenter = SpecAugmentation(
|
| 608 |
+
time_drop_width=64,
|
| 609 |
+
time_stripes_num=2,
|
| 610 |
+
freq_drop_width=8,
|
| 611 |
+
freq_stripes_num=2,
|
| 612 |
+
)
|
| 613 |
+
|
| 614 |
+
self.bn0 = nn.BatchNorm2d(64)
|
| 615 |
+
|
| 616 |
+
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
|
| 617 |
+
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
|
| 618 |
+
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
|
| 619 |
+
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
|
| 620 |
+
self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
|
| 621 |
+
|
| 622 |
+
self.fc1 = nn.Linear(1024, 1024, bias=True)
|
| 623 |
+
self.fc_audioset = nn.Linear(1024, classes_num, bias=True)
|
| 624 |
+
|
| 625 |
+
self.init_weight()
|
| 626 |
+
|
| 627 |
+
def init_weight(self):
|
| 628 |
+
init_bn(self.bn0)
|
| 629 |
+
init_layer(self.fc1)
|
| 630 |
+
init_layer(self.fc_audioset)
|
| 631 |
+
|
| 632 |
+
def forward(self, input, mixup_lambda=None, device=None):
|
| 633 |
+
"""
|
| 634 |
+
Input: (batch_size, data_length)"""
|
| 635 |
+
|
| 636 |
+
x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins)
|
| 637 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
| 638 |
+
|
| 639 |
+
x = x.transpose(1, 3)
|
| 640 |
+
x = self.bn0(x)
|
| 641 |
+
x = x.transpose(1, 3)
|
| 642 |
+
|
| 643 |
+
if self.training:
|
| 644 |
+
x = self.spec_augmenter(x)
|
| 645 |
+
|
| 646 |
+
# Mixup on spectrogram
|
| 647 |
+
if self.training and mixup_lambda is not None:
|
| 648 |
+
x = do_mixup(x, mixup_lambda)
|
| 649 |
+
|
| 650 |
+
x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
|
| 651 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 652 |
+
x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
|
| 653 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 654 |
+
x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
|
| 655 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 656 |
+
x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
|
| 657 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 658 |
+
x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg")
|
| 659 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
| 660 |
+
x = torch.mean(x, dim=3)
|
| 661 |
+
|
| 662 |
+
latent_x1 = F.max_pool1d(x, kernel_size=3, stride=1, padding=1)
|
| 663 |
+
latent_x2 = F.avg_pool1d(x, kernel_size=3, stride=1, padding=1)
|
| 664 |
+
latent_x = latent_x1 + latent_x2
|
| 665 |
+
latent_x = latent_x.transpose(1, 2)
|
| 666 |
+
latent_x = F.relu_(self.fc1(latent_x))
|
| 667 |
+
latent_output = interpolate(latent_x, 32)
|
| 668 |
+
|
| 669 |
+
(x1, _) = torch.max(x, dim=2)
|
| 670 |
+
x2 = torch.mean(x, dim=2)
|
| 671 |
+
x = x1 + x2
|
| 672 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
| 673 |
+
x = F.relu_(self.fc1(x))
|
| 674 |
+
embedding = F.dropout(x, p=0.5, training=self.training)
|
| 675 |
+
clipwise_output = torch.sigmoid(self.fc_audioset(x))
|
| 676 |
+
|
| 677 |
+
output_dict = {
|
| 678 |
+
"clipwise_output": clipwise_output,
|
| 679 |
+
"embedding": embedding,
|
| 680 |
+
"fine_grained_embedding": latent_output,
|
| 681 |
+
}
|
| 682 |
+
|
| 683 |
+
return output_dict
|
| 684 |
+
|
| 685 |
+
|
| 686 |
+
def create_pann_model(audio_cfg, enable_fusion=False, fusion_type="None"):
|
| 687 |
+
try:
|
| 688 |
+
ModelProto = eval(audio_cfg.model_name)
|
| 689 |
+
model = ModelProto(
|
| 690 |
+
sample_rate=audio_cfg.sample_rate,
|
| 691 |
+
window_size=audio_cfg.window_size,
|
| 692 |
+
hop_size=audio_cfg.hop_size,
|
| 693 |
+
mel_bins=audio_cfg.mel_bins,
|
| 694 |
+
fmin=audio_cfg.fmin,
|
| 695 |
+
fmax=audio_cfg.fmax,
|
| 696 |
+
classes_num=audio_cfg.class_num,
|
| 697 |
+
enable_fusion=enable_fusion,
|
| 698 |
+
fusion_type=fusion_type,
|
| 699 |
+
)
|
| 700 |
+
return model
|
| 701 |
+
except:
|
| 702 |
+
raise RuntimeError(
|
| 703 |
+
f"Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough."
|
| 704 |
+
)
|
models/CLAP/open_clip/pretrained.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import hashlib
|
| 2 |
+
import os
|
| 3 |
+
import urllib
|
| 4 |
+
import warnings
|
| 5 |
+
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
_RN50 = dict(
|
| 9 |
+
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
| 10 |
+
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
|
| 11 |
+
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt",
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
_RN50_quickgelu = dict(
|
| 15 |
+
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
| 16 |
+
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt",
|
| 17 |
+
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt",
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
_RN101 = dict(
|
| 21 |
+
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
| 22 |
+
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt",
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
_RN101_quickgelu = dict(
|
| 26 |
+
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
| 27 |
+
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt",
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
_RN50x4 = dict(
|
| 31 |
+
openai="https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
_RN50x16 = dict(
|
| 35 |
+
openai="https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
_RN50x64 = dict(
|
| 39 |
+
openai="https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
_VITB32 = dict(
|
| 43 |
+
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
| 44 |
+
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
|
| 45 |
+
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
|
| 46 |
+
laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt",
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
_VITB32_quickgelu = dict(
|
| 50 |
+
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
| 51 |
+
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt",
|
| 52 |
+
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt",
|
| 53 |
+
laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt",
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
_VITB16 = dict(
|
| 57 |
+
openai="https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
_VITL14 = dict(
|
| 61 |
+
openai="https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
_PRETRAINED = {
|
| 65 |
+
"RN50": _RN50,
|
| 66 |
+
"RN50-quickgelu": _RN50_quickgelu,
|
| 67 |
+
"RN101": _RN101,
|
| 68 |
+
"RN101-quickgelu": _RN101_quickgelu,
|
| 69 |
+
"RN50x4": _RN50x4,
|
| 70 |
+
"RN50x16": _RN50x16,
|
| 71 |
+
"ViT-B-32": _VITB32,
|
| 72 |
+
"ViT-B-32-quickgelu": _VITB32_quickgelu,
|
| 73 |
+
"ViT-B-16": _VITB16,
|
| 74 |
+
"ViT-L-14": _VITL14,
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def list_pretrained(as_str: bool = False):
|
| 79 |
+
"""returns list of pretrained models
|
| 80 |
+
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
|
| 81 |
+
"""
|
| 82 |
+
return [
|
| 83 |
+
":".join([k, t]) if as_str else (k, t)
|
| 84 |
+
for k in _PRETRAINED.keys()
|
| 85 |
+
for t in _PRETRAINED[k].keys()
|
| 86 |
+
]
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def list_pretrained_tag_models(tag: str):
|
| 90 |
+
"""return all models having the specified pretrain tag"""
|
| 91 |
+
models = []
|
| 92 |
+
for k in _PRETRAINED.keys():
|
| 93 |
+
if tag in _PRETRAINED[k]:
|
| 94 |
+
models.append(k)
|
| 95 |
+
return models
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def list_pretrained_model_tags(model: str):
|
| 99 |
+
"""return all pretrain tags for the specified model architecture"""
|
| 100 |
+
tags = []
|
| 101 |
+
if model in _PRETRAINED:
|
| 102 |
+
tags.extend(_PRETRAINED[model].keys())
|
| 103 |
+
return tags
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def get_pretrained_url(model: str, tag: str):
|
| 107 |
+
if model not in _PRETRAINED:
|
| 108 |
+
return ""
|
| 109 |
+
model_pretrained = _PRETRAINED[model]
|
| 110 |
+
if tag not in model_pretrained:
|
| 111 |
+
return ""
|
| 112 |
+
return model_pretrained[tag]
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def download_pretrained(url: str, root: str = os.path.expanduser("~/.cache/clip")):
|
| 116 |
+
os.makedirs(root, exist_ok=True)
|
| 117 |
+
filename = os.path.basename(url)
|
| 118 |
+
|
| 119 |
+
if "openaipublic" in url:
|
| 120 |
+
expected_sha256 = url.split("/")[-2]
|
| 121 |
+
else:
|
| 122 |
+
expected_sha256 = ""
|
| 123 |
+
|
| 124 |
+
download_target = os.path.join(root, filename)
|
| 125 |
+
|
| 126 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
| 127 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
| 128 |
+
|
| 129 |
+
if os.path.isfile(download_target):
|
| 130 |
+
if expected_sha256:
|
| 131 |
+
if (
|
| 132 |
+
hashlib.sha256(open(download_target, "rb").read()).hexdigest()
|
| 133 |
+
== expected_sha256
|
| 134 |
+
):
|
| 135 |
+
return download_target
|
| 136 |
+
else:
|
| 137 |
+
warnings.warn(
|
| 138 |
+
f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file"
|
| 139 |
+
)
|
| 140 |
+
else:
|
| 141 |
+
return download_target
|
| 142 |
+
|
| 143 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
| 144 |
+
with tqdm(
|
| 145 |
+
total=int(source.info().get("Content-Length")),
|
| 146 |
+
ncols=80,
|
| 147 |
+
unit="iB",
|
| 148 |
+
unit_scale=True,
|
| 149 |
+
) as loop:
|
| 150 |
+
while True:
|
| 151 |
+
buffer = source.read(8192)
|
| 152 |
+
if not buffer:
|
| 153 |
+
break
|
| 154 |
+
|
| 155 |
+
output.write(buffer)
|
| 156 |
+
loop.update(len(buffer))
|
| 157 |
+
|
| 158 |
+
if (
|
| 159 |
+
expected_sha256
|
| 160 |
+
and hashlib.sha256(open(download_target, "rb").read()).hexdigest()
|
| 161 |
+
!= expected_sha256
|
| 162 |
+
):
|
| 163 |
+
raise RuntimeError(
|
| 164 |
+
f"Model has been downloaded but the SHA256 checksum does not not match"
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
return download_target
|
models/CLAP/open_clip/timm_model.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" timm model adapter
|
| 2 |
+
|
| 3 |
+
Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
|
| 4 |
+
"""
|
| 5 |
+
from collections import OrderedDict
|
| 6 |
+
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
import timm
|
| 11 |
+
from timm.models.layers import Mlp, to_2tuple
|
| 12 |
+
from timm.models.layers.attention_pool2d import RotAttentionPool2d
|
| 13 |
+
from timm.models.layers.attention_pool2d import (
|
| 14 |
+
AttentionPool2d as AbsAttentionPool2d,
|
| 15 |
+
)
|
| 16 |
+
except ImportError as e:
|
| 17 |
+
timm = None
|
| 18 |
+
|
| 19 |
+
from .utils import freeze_batch_norm_2d
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class TimmModel(nn.Module):
|
| 23 |
+
"""timm model adapter
|
| 24 |
+
# FIXME this adapter is a work in progress, may change in ways that break weight compat
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
model_name,
|
| 30 |
+
embed_dim,
|
| 31 |
+
image_size=224,
|
| 32 |
+
pool="avg",
|
| 33 |
+
proj="linear",
|
| 34 |
+
drop=0.0,
|
| 35 |
+
pretrained=False,
|
| 36 |
+
):
|
| 37 |
+
super().__init__()
|
| 38 |
+
if timm is None:
|
| 39 |
+
raise RuntimeError("Please `pip install timm` to use timm models.")
|
| 40 |
+
|
| 41 |
+
self.image_size = to_2tuple(image_size)
|
| 42 |
+
self.trunk = timm.create_model(model_name, pretrained=pretrained)
|
| 43 |
+
feat_size = self.trunk.default_cfg.get("pool_size", None)
|
| 44 |
+
feature_ndim = 1 if not feat_size else 2
|
| 45 |
+
if pool in ("abs_attn", "rot_attn"):
|
| 46 |
+
assert feature_ndim == 2
|
| 47 |
+
# if attn pooling used, remove both classifier and default pool
|
| 48 |
+
self.trunk.reset_classifier(0, global_pool="")
|
| 49 |
+
else:
|
| 50 |
+
# reset global pool if pool config set, otherwise leave as network default
|
| 51 |
+
reset_kwargs = dict(global_pool=pool) if pool else {}
|
| 52 |
+
self.trunk.reset_classifier(0, **reset_kwargs)
|
| 53 |
+
prev_chs = self.trunk.num_features
|
| 54 |
+
|
| 55 |
+
head_layers = OrderedDict()
|
| 56 |
+
if pool == "abs_attn":
|
| 57 |
+
head_layers["pool"] = AbsAttentionPool2d(
|
| 58 |
+
prev_chs, feat_size=feat_size, out_features=embed_dim
|
| 59 |
+
)
|
| 60 |
+
prev_chs = embed_dim
|
| 61 |
+
elif pool == "rot_attn":
|
| 62 |
+
head_layers["pool"] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
|
| 63 |
+
prev_chs = embed_dim
|
| 64 |
+
else:
|
| 65 |
+
assert proj, "projection layer needed if non-attention pooling is used."
|
| 66 |
+
|
| 67 |
+
# NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
|
| 68 |
+
if proj == "linear":
|
| 69 |
+
head_layers["drop"] = nn.Dropout(drop)
|
| 70 |
+
head_layers["proj"] = nn.Linear(prev_chs, embed_dim)
|
| 71 |
+
elif proj == "mlp":
|
| 72 |
+
head_layers["mlp"] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop)
|
| 73 |
+
|
| 74 |
+
self.head = nn.Sequential(head_layers)
|
| 75 |
+
|
| 76 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
| 77 |
+
"""lock modules
|
| 78 |
+
Args:
|
| 79 |
+
unlocked_groups (int): leave last n layer groups unlocked (default: 0)
|
| 80 |
+
"""
|
| 81 |
+
if not unlocked_groups:
|
| 82 |
+
# lock full model
|
| 83 |
+
for param in self.trunk.parameters():
|
| 84 |
+
param.requires_grad = False
|
| 85 |
+
if freeze_bn_stats:
|
| 86 |
+
freeze_batch_norm_2d(self.trunk)
|
| 87 |
+
else:
|
| 88 |
+
# NOTE: partial freeze requires latest timm (master) branch and is subject to change
|
| 89 |
+
try:
|
| 90 |
+
# FIXME import here until API stable and in an official release
|
| 91 |
+
from timm.models.helpers import group_parameters, group_modules
|
| 92 |
+
except ImportError:
|
| 93 |
+
raise RuntimeError(
|
| 94 |
+
"Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`"
|
| 95 |
+
)
|
| 96 |
+
matcher = self.trunk.group_matcher()
|
| 97 |
+
gparams = group_parameters(self.trunk, matcher)
|
| 98 |
+
max_layer_id = max(gparams.keys())
|
| 99 |
+
max_layer_id = max_layer_id - unlocked_groups
|
| 100 |
+
for group_idx in range(max_layer_id + 1):
|
| 101 |
+
group = gparams[group_idx]
|
| 102 |
+
for param in group:
|
| 103 |
+
self.trunk.get_parameter(param).requires_grad = False
|
| 104 |
+
if freeze_bn_stats:
|
| 105 |
+
gmodules = group_modules(self.trunk, matcher, reverse=True)
|
| 106 |
+
gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
|
| 107 |
+
freeze_batch_norm_2d(self.trunk, gmodules)
|
| 108 |
+
|
| 109 |
+
def forward(self, x):
|
| 110 |
+
x = self.trunk(x)
|
| 111 |
+
x = self.head(x)
|
| 112 |
+
return x
|
models/CLAP/open_clip/tokenizer.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" CLIP tokenizer
|
| 2 |
+
|
| 3 |
+
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
| 4 |
+
"""
|
| 5 |
+
import gzip
|
| 6 |
+
import html
|
| 7 |
+
import os
|
| 8 |
+
from functools import lru_cache
|
| 9 |
+
from typing import Union, List
|
| 10 |
+
|
| 11 |
+
import ftfy
|
| 12 |
+
import regex as re
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@lru_cache()
|
| 17 |
+
def default_bpe():
|
| 18 |
+
return os.path.join(
|
| 19 |
+
os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz"
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@lru_cache()
|
| 24 |
+
def bytes_to_unicode():
|
| 25 |
+
"""
|
| 26 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
| 27 |
+
The reversible bpe codes work on unicode strings.
|
| 28 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
| 29 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
| 30 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
| 31 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
| 32 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
| 33 |
+
"""
|
| 34 |
+
bs = (
|
| 35 |
+
list(range(ord("!"), ord("~") + 1))
|
| 36 |
+
+ list(range(ord("¡"), ord("¬") + 1))
|
| 37 |
+
+ list(range(ord("®"), ord("ÿ") + 1))
|
| 38 |
+
)
|
| 39 |
+
cs = bs[:]
|
| 40 |
+
n = 0
|
| 41 |
+
for b in range(2**8):
|
| 42 |
+
if b not in bs:
|
| 43 |
+
bs.append(b)
|
| 44 |
+
cs.append(2**8 + n)
|
| 45 |
+
n += 1
|
| 46 |
+
cs = [chr(n) for n in cs]
|
| 47 |
+
return dict(zip(bs, cs))
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def get_pairs(word):
|
| 51 |
+
"""Return set of symbol pairs in a word.
|
| 52 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 53 |
+
"""
|
| 54 |
+
pairs = set()
|
| 55 |
+
prev_char = word[0]
|
| 56 |
+
for char in word[1:]:
|
| 57 |
+
pairs.add((prev_char, char))
|
| 58 |
+
prev_char = char
|
| 59 |
+
return pairs
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def basic_clean(text):
|
| 63 |
+
text = ftfy.fix_text(text)
|
| 64 |
+
text = html.unescape(html.unescape(text))
|
| 65 |
+
return text.strip()
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def whitespace_clean(text):
|
| 69 |
+
text = re.sub(r"\s+", " ", text)
|
| 70 |
+
text = text.strip()
|
| 71 |
+
return text
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class SimpleTokenizer(object):
|
| 75 |
+
def __init__(self, bpe_path: str = default_bpe(), special_tokens=None):
|
| 76 |
+
self.byte_encoder = bytes_to_unicode()
|
| 77 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 78 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split("\n")
|
| 79 |
+
merges = merges[1 : 49152 - 256 - 2 + 1]
|
| 80 |
+
merges = [tuple(merge.split()) for merge in merges]
|
| 81 |
+
vocab = list(bytes_to_unicode().values())
|
| 82 |
+
vocab = vocab + [v + "</w>" for v in vocab]
|
| 83 |
+
for merge in merges:
|
| 84 |
+
vocab.append("".join(merge))
|
| 85 |
+
if not special_tokens:
|
| 86 |
+
special_tokens = ["<start_of_text>", "<end_of_text>"]
|
| 87 |
+
else:
|
| 88 |
+
special_tokens = ["<start_of_text>", "<end_of_text>"] + special_tokens
|
| 89 |
+
vocab.extend(special_tokens)
|
| 90 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
| 91 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 92 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
| 93 |
+
self.cache = {t: t for t in special_tokens}
|
| 94 |
+
special = "|".join(special_tokens)
|
| 95 |
+
self.pat = re.compile(
|
| 96 |
+
special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
|
| 97 |
+
re.IGNORECASE,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
self.vocab_size = len(self.encoder)
|
| 101 |
+
self.all_special_ids = [self.encoder[t] for t in special_tokens]
|
| 102 |
+
|
| 103 |
+
def bpe(self, token):
|
| 104 |
+
if token in self.cache:
|
| 105 |
+
return self.cache[token]
|
| 106 |
+
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
| 107 |
+
pairs = get_pairs(word)
|
| 108 |
+
|
| 109 |
+
if not pairs:
|
| 110 |
+
return token + "</w>"
|
| 111 |
+
|
| 112 |
+
while True:
|
| 113 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
| 114 |
+
if bigram not in self.bpe_ranks:
|
| 115 |
+
break
|
| 116 |
+
first, second = bigram
|
| 117 |
+
new_word = []
|
| 118 |
+
i = 0
|
| 119 |
+
while i < len(word):
|
| 120 |
+
try:
|
| 121 |
+
j = word.index(first, i)
|
| 122 |
+
new_word.extend(word[i:j])
|
| 123 |
+
i = j
|
| 124 |
+
except:
|
| 125 |
+
new_word.extend(word[i:])
|
| 126 |
+
break
|
| 127 |
+
|
| 128 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
| 129 |
+
new_word.append(first + second)
|
| 130 |
+
i += 2
|
| 131 |
+
else:
|
| 132 |
+
new_word.append(word[i])
|
| 133 |
+
i += 1
|
| 134 |
+
new_word = tuple(new_word)
|
| 135 |
+
word = new_word
|
| 136 |
+
if len(word) == 1:
|
| 137 |
+
break
|
| 138 |
+
else:
|
| 139 |
+
pairs = get_pairs(word)
|
| 140 |
+
word = " ".join(word)
|
| 141 |
+
self.cache[token] = word
|
| 142 |
+
return word
|
| 143 |
+
|
| 144 |
+
def encode(self, text):
|
| 145 |
+
bpe_tokens = []
|
| 146 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
| 147 |
+
for token in re.findall(self.pat, text):
|
| 148 |
+
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
|
| 149 |
+
bpe_tokens.extend(
|
| 150 |
+
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
|
| 151 |
+
)
|
| 152 |
+
return bpe_tokens
|
| 153 |
+
|
| 154 |
+
def decode(self, tokens):
|
| 155 |
+
text = "".join([self.decoder[token] for token in tokens])
|
| 156 |
+
text = (
|
| 157 |
+
bytearray([self.byte_decoder[c] for c in text])
|
| 158 |
+
.decode("utf-8", errors="replace")
|
| 159 |
+
.replace("</w>", " ")
|
| 160 |
+
)
|
| 161 |
+
return text
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
_tokenizer = SimpleTokenizer()
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def tokenize(
|
| 168 |
+
texts: Union[str, List[str]], context_length: int = 77
|
| 169 |
+
) -> torch.LongTensor:
|
| 170 |
+
"""
|
| 171 |
+
Returns the tokenized representation of given input string(s)
|
| 172 |
+
|
| 173 |
+
Parameters
|
| 174 |
+
----------
|
| 175 |
+
texts : Union[str, List[str]]
|
| 176 |
+
An input string or a list of input strings to tokenize
|
| 177 |
+
context_length : int
|
| 178 |
+
The context length to use; all CLIP models use 77 as the context length
|
| 179 |
+
|
| 180 |
+
Returns
|
| 181 |
+
-------
|
| 182 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
| 183 |
+
"""
|
| 184 |
+
if isinstance(texts, str):
|
| 185 |
+
texts = [texts]
|
| 186 |
+
|
| 187 |
+
sot_token = _tokenizer.encoder["<start_of_text>"]
|
| 188 |
+
eot_token = _tokenizer.encoder["<end_of_text>"]
|
| 189 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
| 190 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 191 |
+
|
| 192 |
+
for i, tokens in enumerate(all_tokens):
|
| 193 |
+
if len(tokens) > context_length:
|
| 194 |
+
tokens = tokens[:context_length] # Truncate
|
| 195 |
+
result[i, : len(tokens)] = torch.tensor(tokens)
|
| 196 |
+
|
| 197 |
+
return result
|
models/CLAP/open_clip/transform.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torchvision.transforms import (
|
| 2 |
+
Normalize,
|
| 3 |
+
Compose,
|
| 4 |
+
RandomResizedCrop,
|
| 5 |
+
InterpolationMode,
|
| 6 |
+
ToTensor,
|
| 7 |
+
Resize,
|
| 8 |
+
CenterCrop,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def _convert_to_rgb(image):
|
| 13 |
+
return image.convert("RGB")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def image_transform(
|
| 17 |
+
image_size: int,
|
| 18 |
+
is_train: bool,
|
| 19 |
+
mean=(0.48145466, 0.4578275, 0.40821073),
|
| 20 |
+
std=(0.26862954, 0.26130258, 0.27577711),
|
| 21 |
+
):
|
| 22 |
+
normalize = Normalize(mean=mean, std=std)
|
| 23 |
+
if is_train:
|
| 24 |
+
return Compose(
|
| 25 |
+
[
|
| 26 |
+
RandomResizedCrop(
|
| 27 |
+
image_size,
|
| 28 |
+
scale=(0.9, 1.0),
|
| 29 |
+
interpolation=InterpolationMode.BICUBIC,
|
| 30 |
+
),
|
| 31 |
+
_convert_to_rgb,
|
| 32 |
+
ToTensor(),
|
| 33 |
+
normalize,
|
| 34 |
+
]
|
| 35 |
+
)
|
| 36 |
+
else:
|
| 37 |
+
return Compose(
|
| 38 |
+
[
|
| 39 |
+
Resize(image_size, interpolation=InterpolationMode.BICUBIC),
|
| 40 |
+
CenterCrop(image_size),
|
| 41 |
+
_convert_to_rgb,
|
| 42 |
+
ToTensor(),
|
| 43 |
+
normalize,
|
| 44 |
+
]
|
| 45 |
+
)
|
models/CLAP/open_clip/utils.py
ADDED
|
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn as nn
|
| 4 |
+
from torchvision.ops.misc import FrozenBatchNorm2d
|
| 5 |
+
import logging
|
| 6 |
+
import h5py
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import random
|
| 9 |
+
import json
|
| 10 |
+
import os
|
| 11 |
+
import pathlib
|
| 12 |
+
|
| 13 |
+
# TODO: (yusong) this not a good place to store those information and does not scale. Need to be fixed later.
|
| 14 |
+
dataset_split = {
|
| 15 |
+
"audiocaps": ["train", "valid", "test"],
|
| 16 |
+
"audioset": ["balanced_train", "unbalanced_train", "eval"],
|
| 17 |
+
"BBCSoundEffects": ["train", "test"],
|
| 18 |
+
"Clotho": ["train", "test", "valid"],
|
| 19 |
+
"free_to_use_sounds": ["train", "test"],
|
| 20 |
+
"paramount_motion": ["train", "test"],
|
| 21 |
+
"sonniss_game_effects": ["train", "test"],
|
| 22 |
+
"wesoundeffects": ["train", "test"],
|
| 23 |
+
"MACS": ["train", "test"],
|
| 24 |
+
"freesound": ["train", "test"],
|
| 25 |
+
"FSD50K": ["train", "test", "valid"],
|
| 26 |
+
"fsd50k_class_label": ["train", "test", "valid"],
|
| 27 |
+
"esc50": ["train", "test"],
|
| 28 |
+
"audiostock": ["train", "test"],
|
| 29 |
+
"freesound_no_overlap_noesc50": ["train", "test"],
|
| 30 |
+
"epidemic_sound_effects": ["train", "test"],
|
| 31 |
+
"VGGSound": ["train", "test"],
|
| 32 |
+
"urbansound8k_class_label": ["train", "test"],
|
| 33 |
+
"audioset_t5": ["balanced_train", "unbalanced_train", "eval"],
|
| 34 |
+
"epidemic_sound_effects_t5": ["train", "test"],
|
| 35 |
+
"WavText5K": ["train", "test"],
|
| 36 |
+
"esc50_no_overlap": ["train", "test"],
|
| 37 |
+
"usd8k_no_overlap": ["train", "test"],
|
| 38 |
+
"fsd50k_200_class_label": ["train", "test", "valid"],
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def freeze_batch_norm_2d(module, module_match={}, name=""):
|
| 43 |
+
"""
|
| 44 |
+
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
|
| 45 |
+
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
|
| 46 |
+
returned. Otherwise, the module is walked recursively and submodules are converted in place.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
module (torch.nn.Module): Any PyTorch module.
|
| 50 |
+
module_match (dict): Dictionary of full module names to freeze (all if empty)
|
| 51 |
+
name (str): Full module name (prefix)
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
torch.nn.Module: Resulting module
|
| 55 |
+
|
| 56 |
+
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
|
| 57 |
+
"""
|
| 58 |
+
res = module
|
| 59 |
+
is_match = True
|
| 60 |
+
if module_match:
|
| 61 |
+
is_match = name in module_match
|
| 62 |
+
if is_match and isinstance(
|
| 63 |
+
module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)
|
| 64 |
+
):
|
| 65 |
+
res = FrozenBatchNorm2d(module.num_features)
|
| 66 |
+
res.num_features = module.num_features
|
| 67 |
+
res.affine = module.affine
|
| 68 |
+
if module.affine:
|
| 69 |
+
res.weight.data = module.weight.data.clone().detach()
|
| 70 |
+
res.bias.data = module.bias.data.clone().detach()
|
| 71 |
+
res.running_mean.data = module.running_mean.data
|
| 72 |
+
res.running_var.data = module.running_var.data
|
| 73 |
+
res.eps = module.eps
|
| 74 |
+
else:
|
| 75 |
+
for child_name, child in module.named_children():
|
| 76 |
+
full_child_name = ".".join([name, child_name]) if name else child_name
|
| 77 |
+
new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
|
| 78 |
+
if new_child is not child:
|
| 79 |
+
res.add_module(child_name, new_child)
|
| 80 |
+
return res
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def exist(dataset_name, dataset_type):
|
| 84 |
+
"""
|
| 85 |
+
Check if dataset exists
|
| 86 |
+
"""
|
| 87 |
+
if dataset_type in dataset_split[dataset_name]:
|
| 88 |
+
return True
|
| 89 |
+
else:
|
| 90 |
+
return False
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def get_tar_path_from_dataset_name(
|
| 94 |
+
dataset_names, dataset_types, islocal, dataset_path, proportion=1, full_dataset=None
|
| 95 |
+
):
|
| 96 |
+
"""
|
| 97 |
+
Get tar path from dataset name and type
|
| 98 |
+
"""
|
| 99 |
+
output = []
|
| 100 |
+
for n in dataset_names:
|
| 101 |
+
if full_dataset is not None and n in full_dataset:
|
| 102 |
+
current_dataset_types = dataset_split[n]
|
| 103 |
+
else:
|
| 104 |
+
current_dataset_types = dataset_types
|
| 105 |
+
for s in current_dataset_types:
|
| 106 |
+
tmp = []
|
| 107 |
+
if islocal:
|
| 108 |
+
sizefilepath_ = f"{dataset_path}/{n}/{s}/sizes.json"
|
| 109 |
+
if not os.path.exists(sizefilepath_):
|
| 110 |
+
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
|
| 111 |
+
else:
|
| 112 |
+
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
|
| 113 |
+
if not os.path.exists(sizefilepath_):
|
| 114 |
+
continue
|
| 115 |
+
sizes = json.load(open(sizefilepath_, "r"))
|
| 116 |
+
for k in sizes.keys():
|
| 117 |
+
if islocal:
|
| 118 |
+
tmp.append(f"{dataset_path}/{n}/{s}/{k}")
|
| 119 |
+
else:
|
| 120 |
+
tmp.append(
|
| 121 |
+
f"pipe:aws s3 --cli-connect-timeout 0 cp s3://s-laion-audio/webdataset_tar/{n}/{s}/{k} -"
|
| 122 |
+
)
|
| 123 |
+
if proportion != 1:
|
| 124 |
+
tmp = random.sample(tmp, int(proportion * len(tmp)))
|
| 125 |
+
output.append(tmp)
|
| 126 |
+
return sum(output, [])
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def get_tar_path_from_txts(txt_path, islocal, proportion=1):
|
| 130 |
+
"""
|
| 131 |
+
Get tar path from txt path
|
| 132 |
+
"""
|
| 133 |
+
if isinstance(txt_path, (list, tuple)):
|
| 134 |
+
return sum(
|
| 135 |
+
[
|
| 136 |
+
get_tar_path_from_txts(
|
| 137 |
+
txt_path[i], islocal=islocal, proportion=proportion
|
| 138 |
+
)
|
| 139 |
+
for i in range(len(txt_path))
|
| 140 |
+
],
|
| 141 |
+
[],
|
| 142 |
+
)
|
| 143 |
+
if isinstance(txt_path, str):
|
| 144 |
+
with open(txt_path) as f:
|
| 145 |
+
lines = f.readlines()
|
| 146 |
+
if islocal:
|
| 147 |
+
lines = [
|
| 148 |
+
lines[i]
|
| 149 |
+
.split("\n")[0]
|
| 150 |
+
.replace("pipe:aws s3 cp s3://s-laion-audio/", "/mnt/audio_clip/")
|
| 151 |
+
for i in range(len(lines))
|
| 152 |
+
]
|
| 153 |
+
else:
|
| 154 |
+
lines = [
|
| 155 |
+
lines[i].split("\n")[0].replace(".tar", ".tar -")
|
| 156 |
+
for i in range(len(lines))
|
| 157 |
+
]
|
| 158 |
+
if proportion != 1:
|
| 159 |
+
print("Sampling tars with proportion of {}".format(proportion))
|
| 160 |
+
lines = random.sample(lines, int(proportion * len(lines)))
|
| 161 |
+
return lines
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def get_mix_lambda(mixup_alpha, batch_size):
|
| 165 |
+
mixup_lambdas = [
|
| 166 |
+
np.random.beta(mixup_alpha, mixup_alpha, 1)[0] for _ in range(batch_size)
|
| 167 |
+
]
|
| 168 |
+
return np.array(mixup_lambdas).astype(np.float32)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def do_mixup(x, mixup_lambda):
|
| 172 |
+
"""
|
| 173 |
+
Args:
|
| 174 |
+
x: (batch_size , ...)
|
| 175 |
+
mixup_lambda: (batch_size,)
|
| 176 |
+
Returns:
|
| 177 |
+
out: (batch_size, ...)
|
| 178 |
+
"""
|
| 179 |
+
out = (
|
| 180 |
+
x.transpose(0, -1) * mixup_lambda
|
| 181 |
+
+ torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda)
|
| 182 |
+
).transpose(0, -1)
|
| 183 |
+
return out
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def interpolate(x, ratio):
|
| 187 |
+
"""Interpolate data in time domain. This is used to compensate the
|
| 188 |
+
resolution reduction in downsampling of a CNN.
|
| 189 |
+
|
| 190 |
+
Args:
|
| 191 |
+
x: (batch_size, time_steps, classes_num)
|
| 192 |
+
ratio: int, ratio to interpolate
|
| 193 |
+
Returns:
|
| 194 |
+
upsampled: (batch_size, time_steps * ratio, classes_num)
|
| 195 |
+
"""
|
| 196 |
+
(batch_size, time_steps, classes_num) = x.shape
|
| 197 |
+
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
|
| 198 |
+
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
|
| 199 |
+
return upsampled
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def pad_framewise_output(framewise_output, frames_num):
|
| 203 |
+
"""Pad framewise_output to the same length as input frames. The pad value
|
| 204 |
+
is the same as the value of the last frame.
|
| 205 |
+
Args:
|
| 206 |
+
framewise_output: (batch_size, frames_num, classes_num)
|
| 207 |
+
frames_num: int, number of frames to pad
|
| 208 |
+
Outputs:
|
| 209 |
+
output: (batch_size, frames_num, classes_num)
|
| 210 |
+
"""
|
| 211 |
+
pad = framewise_output[:, -1:, :].repeat(
|
| 212 |
+
1, frames_num - framewise_output.shape[1], 1
|
| 213 |
+
)
|
| 214 |
+
"""tensor for padding"""
|
| 215 |
+
|
| 216 |
+
output = torch.cat((framewise_output, pad), dim=1)
|
| 217 |
+
"""(batch_size, frames_num, classes_num)"""
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def process_ipc(index_path, classes_num, filename):
|
| 221 |
+
# load data
|
| 222 |
+
logging.info("Load Data...............")
|
| 223 |
+
ipc = [[] for _ in range(classes_num)]
|
| 224 |
+
with h5py.File(index_path, "r") as f:
|
| 225 |
+
for i in tqdm(range(len(f["target"]))):
|
| 226 |
+
t_class = np.where(f["target"][i])[0]
|
| 227 |
+
for t in t_class:
|
| 228 |
+
ipc[t].append(i)
|
| 229 |
+
print(ipc)
|
| 230 |
+
np.save(filename, ipc)
|
| 231 |
+
logging.info("Load Data Succeed...............")
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def save_to_dict(s, o_={}):
|
| 235 |
+
sp = s.split(": ")
|
| 236 |
+
o_.update({sp[0]: float(sp[1])})
|
| 237 |
+
return o_
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def get_data_from_log(txt_path):
|
| 241 |
+
"""
|
| 242 |
+
Output dictionary from out.txt log file
|
| 243 |
+
"""
|
| 244 |
+
with open(txt_path) as f:
|
| 245 |
+
lines = f.readlines()
|
| 246 |
+
val_data = {}
|
| 247 |
+
train_data = {}
|
| 248 |
+
train_losses = []
|
| 249 |
+
train_losses_epoch = []
|
| 250 |
+
for i in range(len(lines)):
|
| 251 |
+
if "| INFO |" in lines[i]:
|
| 252 |
+
if "Eval Epoch" in lines[i]:
|
| 253 |
+
if "val_loss" in lines[i]:
|
| 254 |
+
# float(regex.sub("", lines[310].split(" ")[-1]).replace(" ", ""))
|
| 255 |
+
line = lines[i].split("Eval Epoch: ")[-1]
|
| 256 |
+
num_epoch = int(line.split(" ")[0].split(" ")[0])
|
| 257 |
+
d = {
|
| 258 |
+
line.split(" ")[0]
|
| 259 |
+
.split(" ")[1]
|
| 260 |
+
.replace(":", ""): float(line.split(" ")[0].split(" ")[-1])
|
| 261 |
+
}
|
| 262 |
+
for i in range(1, len(line.split(" "))):
|
| 263 |
+
d = save_to_dict(line.split(" ")[i], d)
|
| 264 |
+
val_data[num_epoch] = d
|
| 265 |
+
elif "Train Epoch" in lines[i]:
|
| 266 |
+
num_epoch = int(lines[i].split("Train Epoch: ")[1][0])
|
| 267 |
+
loss = float(lines[i].split("Loss: ")[-1].split(" (")[0])
|
| 268 |
+
train_losses.append(loss)
|
| 269 |
+
train_losses_epoch.append(num_epoch)
|
| 270 |
+
for i in range(len(train_losses)):
|
| 271 |
+
train_data[i] = {
|
| 272 |
+
"num_epoch": train_losses_epoch[i],
|
| 273 |
+
"train_loss": train_losses[i],
|
| 274 |
+
}
|
| 275 |
+
return train_data, val_data
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def save_p(obj, filename):
|
| 279 |
+
import pickle
|
| 280 |
+
|
| 281 |
+
try:
|
| 282 |
+
from deepdiff import DeepDiff
|
| 283 |
+
except:
|
| 284 |
+
os.system("pip install deepdiff")
|
| 285 |
+
from deepdiff import DeepDiff
|
| 286 |
+
with open(filename, "wb") as file:
|
| 287 |
+
pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL) # highest protocol
|
| 288 |
+
with open(filename, "rb") as file:
|
| 289 |
+
z = pickle.load(file)
|
| 290 |
+
assert (
|
| 291 |
+
DeepDiff(obj, z, ignore_string_case=True) == {}
|
| 292 |
+
), "there is something wrong with the saving process"
|
| 293 |
+
return
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def load_p(filename):
|
| 297 |
+
import pickle
|
| 298 |
+
|
| 299 |
+
with open(filename, "rb") as file:
|
| 300 |
+
z = pickle.load(file)
|
| 301 |
+
return z
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def save_json(data, name="data.json"):
|
| 305 |
+
import json
|
| 306 |
+
|
| 307 |
+
with open(name, "w") as fp:
|
| 308 |
+
json.dump(data, fp)
|
| 309 |
+
return
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
def load_json(name):
|
| 313 |
+
import json
|
| 314 |
+
|
| 315 |
+
with open(name, "r") as fp:
|
| 316 |
+
data = json.load(fp)
|
| 317 |
+
return data
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
from multiprocessing import Process, Manager
|
| 321 |
+
from multiprocessing import Process, Value, Array
|
| 322 |
+
from ctypes import c_wchar
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def load_class_label(path):
|
| 326 |
+
# https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing
|
| 327 |
+
# https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array
|
| 328 |
+
out = None
|
| 329 |
+
if path is not None:
|
| 330 |
+
if pathlib.Path(path).suffix in [".pkl", ".pickle"]:
|
| 331 |
+
out = load_p(path)
|
| 332 |
+
elif pathlib.Path(path).suffix in [".json", ".txt"]:
|
| 333 |
+
out = load_json(path)
|
| 334 |
+
elif pathlib.Path(path).suffix in [".npy", ".npz"]:
|
| 335 |
+
out = np.load(path)
|
| 336 |
+
elif pathlib.Path(path).suffix in [".csv"]:
|
| 337 |
+
import pandas as pd
|
| 338 |
+
|
| 339 |
+
out = pd.read_csv(path)
|
| 340 |
+
return out
|
| 341 |
+
# if out is None:
|
| 342 |
+
# return None
|
| 343 |
+
# else:
|
| 344 |
+
# key = Array(c_wchar, '\n'.join(list(out.keys())), lock=False)
|
| 345 |
+
# val = Array('i', out.values(), lock=False)
|
| 346 |
+
# return (key, val)
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
from torch import optim
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def get_optimizer(params, lr, betas, eps, momentum, optimizer_name):
|
| 353 |
+
if optimizer_name.lower() == "adamw":
|
| 354 |
+
optimizer = optim.AdamW(params, lr=lr, betas=betas, eps=eps)
|
| 355 |
+
elif optimizer_name.lower() == "sgd":
|
| 356 |
+
optimizer = optim.SGD(params, lr=lr, momentum=momentum)
|
| 357 |
+
elif optimizer_name.lower() == "adam":
|
| 358 |
+
optimizer = optim.Adam(params, lr=lr, betas=betas, eps=eps)
|
| 359 |
+
else:
|
| 360 |
+
raise ValueError("optimizer name is not correct")
|
| 361 |
+
return optimizer
|