Spaces:
Runtime error
Runtime error
gradio UI fix (#2)
Browse files- gradio UI fix (a2643c3ac77c686954c806729defdeb0a6f1231b)
Co-authored-by: Morpheus <6Morpheus6@users.noreply.huggingface.co>
app.py
CHANGED
|
@@ -3,6 +3,7 @@ sys.path.append('./')
|
|
| 3 |
|
| 4 |
|
| 5 |
import os
|
|
|
|
| 6 |
import cv2
|
| 7 |
import torch
|
| 8 |
import random
|
|
@@ -161,7 +162,9 @@ def create_image(image_pil,
|
|
| 161 |
seed,
|
| 162 |
target="Load only style blocks",
|
| 163 |
neg_content_prompt=None,
|
| 164 |
-
neg_content_scale=0
|
|
|
|
|
|
|
| 165 |
|
| 166 |
if target =="Load original IP-Adapter":
|
| 167 |
# target_blocks=["blocks"] for original IP-Adapter
|
|
@@ -211,13 +214,27 @@ def create_image(image_pil,
|
|
| 211 |
image=canny_map,
|
| 212 |
controlnet_conditioning_scale=float(control_scale),
|
| 213 |
)
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
def pil_to_cv2(image_pil):
|
| 217 |
image_np = np.array(image_pil)
|
| 218 |
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
| 219 |
return image_cv2
|
| 220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
# Description
|
| 222 |
title = r"""
|
| 223 |
<h1 align="center">InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</h1>
|
|
@@ -258,53 +275,58 @@ If our work is helpful for your research or applications, please cite us via:
|
|
| 258 |
If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>.
|
| 259 |
"""
|
| 260 |
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
with block:
|
| 263 |
|
| 264 |
# description
|
| 265 |
gr.Markdown(title)
|
| 266 |
#gr.Markdown(description)
|
| 267 |
|
| 268 |
-
with gr.
|
| 269 |
-
with gr.
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
-
with gr.
|
| 273 |
-
|
| 274 |
-
|
| 275 |
|
| 276 |
-
|
| 277 |
-
value="Load only style blocks",
|
| 278 |
-
label="Style mode")
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
src_image_pil = gr.Image(label="Source Image (optional)", type='pil')
|
| 289 |
-
control_scale = gr.Slider(minimum=0,maximum=1.0, step=0.01,value=0.5, label="Controlnet conditioning scale")
|
| 290 |
-
|
| 291 |
-
n_prompt = gr.Textbox(label="Neg Prompt", value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry")
|
| 292 |
-
|
| 293 |
-
neg_content_prompt = gr.Textbox(label="Neg Content Prompt", value="")
|
| 294 |
-
neg_content_scale = gr.Slider(minimum=0, maximum=1.0, step=0.01,value=0.5, label="Neg Content Scale")
|
| 295 |
-
|
| 296 |
-
guidance_scale = gr.Slider(minimum=1,maximum=15.0, step=0.01,value=5.0, label="guidance scale")
|
| 297 |
-
num_samples= gr.Slider(minimum=1,maximum=4.0, step=1.0,value=1.0, label="num samples")
|
| 298 |
-
num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=20, label="num inference steps")
|
| 299 |
-
seed = gr.Slider(minimum=-1000000,maximum=1000000,value=1, step=1, label="Seed Value")
|
| 300 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 301 |
-
|
| 302 |
-
#generate_button = gr.Button("Generate Image")
|
| 303 |
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
generate_button.click(
|
| 310 |
fn=randomize_seed_fn,
|
|
@@ -327,7 +349,12 @@ with block:
|
|
| 327 |
target,
|
| 328 |
neg_content_prompt,
|
| 329 |
neg_content_scale],
|
| 330 |
-
outputs=[generated_image]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
gr.Examples(
|
| 333 |
examples=get_example(),
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
import os
|
| 6 |
+
import gc
|
| 7 |
import cv2
|
| 8 |
import torch
|
| 9 |
import random
|
|
|
|
| 162 |
seed,
|
| 163 |
target="Load only style blocks",
|
| 164 |
neg_content_prompt=None,
|
| 165 |
+
neg_content_scale=0,
|
| 166 |
+
progress=gr.Progress(track_tqdm=True)
|
| 167 |
+
):
|
| 168 |
|
| 169 |
if target =="Load original IP-Adapter":
|
| 170 |
# target_blocks=["blocks"] for original IP-Adapter
|
|
|
|
| 214 |
image=canny_map,
|
| 215 |
controlnet_conditioning_scale=float(control_scale),
|
| 216 |
)
|
| 217 |
+
|
| 218 |
+
gradio_temp_dir = os.environ['GRADIO_TEMP_DIR']
|
| 219 |
+
temp_file_path = os.path.join(gradio_temp_dir, "image.png")
|
| 220 |
+
images[0].save(temp_file_path, format="PNG")
|
| 221 |
+
print(f"Image saved in: {temp_file_path}")
|
| 222 |
+
|
| 223 |
+
return images, temp_file_path
|
| 224 |
|
| 225 |
def pil_to_cv2(image_pil):
|
| 226 |
image_np = np.array(image_pil)
|
| 227 |
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
| 228 |
return image_cv2
|
| 229 |
|
| 230 |
+
def clear_cache(device="cuda"):
|
| 231 |
+
gc.collect()
|
| 232 |
+
if device == 'mps':
|
| 233 |
+
torch.mps.empty_cache()
|
| 234 |
+
elif device == 'cuda':
|
| 235 |
+
torch.cuda.empty_cache()
|
| 236 |
+
print(f"{device} cache cleared!")
|
| 237 |
+
|
| 238 |
# Description
|
| 239 |
title = r"""
|
| 240 |
<h1 align="center">InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation</h1>
|
|
|
|
| 275 |
If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>.
|
| 276 |
"""
|
| 277 |
|
| 278 |
+
css = """
|
| 279 |
+
footer { visibility: hidden }
|
| 280 |
+
#row-height { height: 65px !important }
|
| 281 |
+
"""
|
| 282 |
+
|
| 283 |
+
block = gr.Blocks(css=css).queue(max_size=10, api_open=False)
|
| 284 |
with block:
|
| 285 |
|
| 286 |
# description
|
| 287 |
gr.Markdown(title)
|
| 288 |
#gr.Markdown(description)
|
| 289 |
|
| 290 |
+
with gr.Row(equal_height=True):
|
| 291 |
+
with gr.Column():
|
| 292 |
+
|
| 293 |
+
with gr.Row():
|
| 294 |
+
with gr.Column():
|
| 295 |
+
image_pil = gr.Image(label="Style Image", type='pil')
|
| 296 |
+
|
| 297 |
+
target = gr.Radio(["Load only style blocks", "Load style+layout block", "Load original IP-Adapter"],
|
| 298 |
+
value="Load only style blocks",
|
| 299 |
+
label="Style mode")
|
| 300 |
+
|
| 301 |
+
prompt = gr.Textbox(label="Prompt",
|
| 302 |
+
value="a cat, masterpiece, best quality, high quality")
|
| 303 |
+
|
| 304 |
+
scale = gr.Slider(minimum=0,maximum=2.0, step=0.01,value=1.0, label="Scale")
|
| 305 |
+
|
| 306 |
+
with gr.Accordion(open=False, label="Advanced Options"):
|
| 307 |
|
| 308 |
+
with gr.Column():
|
| 309 |
+
src_image_pil = gr.Image(label="Source Image (optional)", type='pil')
|
| 310 |
+
control_scale = gr.Slider(minimum=0,maximum=1.0, step=0.01,value=0.5, label="Controlnet conditioning scale")
|
| 311 |
|
| 312 |
+
n_prompt = gr.Textbox(label="Neg Prompt", value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry")
|
|
|
|
|
|
|
| 313 |
|
| 314 |
+
neg_content_prompt = gr.Textbox(label="Neg Content Prompt", value="")
|
| 315 |
+
neg_content_scale = gr.Slider(minimum=0, maximum=1.0, step=0.01,value=0.5, label="Neg Content Scale")
|
| 316 |
+
|
| 317 |
+
guidance_scale = gr.Slider(minimum=1,maximum=15.0, step=0.01,value=5.0, label="guidance scale")
|
| 318 |
+
num_samples= gr.Slider(minimum=1,maximum=4.0, step=1.0,value=1.0, label="num samples")
|
| 319 |
+
num_inference_steps = gr.Slider(minimum=5,maximum=50.0, step=1.0,value=20, label="num inference steps")
|
| 320 |
+
seed = gr.Slider(minimum=-1000000,maximum=1000000,value=1, step=1, label="Seed Value")
|
| 321 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
|
| 323 |
+
#generate_button = gr.Button("Generate Image")
|
| 324 |
+
|
| 325 |
+
with gr.Column():
|
| 326 |
+
generated_image = gr.Gallery(label="Generated Image", scale=0.3)
|
| 327 |
+
download_image = gr.File(label="Download Image", elem_id="row-height", scale=0)
|
| 328 |
+
generate_button = gr.Button("Generate Image", min_width=2000, scale=0)
|
| 329 |
+
gr.Markdown(description)
|
| 330 |
|
| 331 |
generate_button.click(
|
| 332 |
fn=randomize_seed_fn,
|
|
|
|
| 349 |
target,
|
| 350 |
neg_content_prompt,
|
| 351 |
neg_content_scale],
|
| 352 |
+
outputs=[generated_image, download_image]
|
| 353 |
+
).then(
|
| 354 |
+
fn=clear_cache,
|
| 355 |
+
inputs=[],
|
| 356 |
+
outputs=None
|
| 357 |
+
)
|
| 358 |
|
| 359 |
gr.Examples(
|
| 360 |
examples=get_example(),
|