Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
# Define stocks with their events and impacts
|
| 4 |
+
stocks = {
|
| 5 |
+
"AAPL": {
|
| 6 |
+
"events": [
|
| 7 |
+
{"name": "New iPhone release", "impact_if_happens": 0.10, "impact_if_not": -0.05},
|
| 8 |
+
{"name": "Positive earnings report", "impact_if_happens": 0.08, "impact_if_not": -0.03},
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
"TSLA": {
|
| 12 |
+
"events": [
|
| 13 |
+
{"name": "Achieves production target", "impact_if_happens": 0.15, "impact_if_not": -0.10},
|
| 14 |
+
{"name": "New model announcement", "impact_if_happens": 0.12, "impact_if_not": -0.02},
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
"GOOG": {
|
| 18 |
+
"events": [
|
| 19 |
+
{"name": "AI breakthrough", "impact_if_happens": 0.20, "impact_if_not": -0.05},
|
| 20 |
+
{"name": "Regulatory approval", "impact_if_happens": 0.05, "impact_if_not": -0.15},
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
def calculate_portfolio(selected_stocks, total_investment,
|
| 26 |
+
aapl_event1_prob, aapl_event2_prob,
|
| 27 |
+
tsla_event1_prob, tsla_event2_prob,
|
| 28 |
+
goog_event1_prob, goog_event2_prob):
|
| 29 |
+
# Check if any stocks are selected
|
| 30 |
+
if not selected_stocks:
|
| 31 |
+
return "Please select at least one stock."
|
| 32 |
+
|
| 33 |
+
# Map user-input probabilities to stocks (convert from percentage to decimal)
|
| 34 |
+
probs = {
|
| 35 |
+
"AAPL": [aapl_event1_prob / 100, aapl_event2_prob / 100],
|
| 36 |
+
"TSLA": [tsla_event1_prob / 100, tsla_event2_prob / 100],
|
| 37 |
+
"GOOG": [goog_event1_prob / 100, goog_event2_prob / 100],
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
# Calculate expected return for each selected stock
|
| 41 |
+
expected_returns = {}
|
| 42 |
+
for stock in selected_stocks:
|
| 43 |
+
events = stocks[stock]["events"]
|
| 44 |
+
exp_return = 0
|
| 45 |
+
for i, event in enumerate(events):
|
| 46 |
+
p = probs[stock][i]
|
| 47 |
+
impact_happens = event["impact_if_happens"]
|
| 48 |
+
impact_not = event["impact_if_not"]
|
| 49 |
+
exp_return += p * impact_happens + (1 - p) * impact_not
|
| 50 |
+
expected_returns[stock] = exp_return
|
| 51 |
+
|
| 52 |
+
# Calculate portfolio metrics assuming equal investment
|
| 53 |
+
num_stocks = len(selected_stocks)
|
| 54 |
+
investment_per_stock = total_investment / num_stocks
|
| 55 |
+
portfolio_expected_return = sum(expected_returns[stock] for stock in selected_stocks) / num_stocks
|
| 56 |
+
expected_future_value = sum(investment_per_stock * (1 + expected_returns[stock]) for stock in selected_stocks)
|
| 57 |
+
|
| 58 |
+
# Format the output
|
| 59 |
+
output = "Expected Returns:\n"
|
| 60 |
+
for stock in selected_stocks:
|
| 61 |
+
output += f"{stock}: {expected_returns[stock]*100:.2f}%\n"
|
| 62 |
+
output += f"\nPortfolio Expected Return: {portfolio_expected_return*100:.2f}%\n"
|
| 63 |
+
output += f"Expected Future Value: ${expected_future_value:.2f}"
|
| 64 |
+
return output
|
| 65 |
+
|
| 66 |
+
# Define Gradio inputs
|
| 67 |
+
selected_stocks = gr.CheckboxGroup(choices=["AAPL", "TSLA", "GOOG"], label="Select Stocks")
|
| 68 |
+
total_investment = gr.Number(label="Total Investment ($)", value=10000)
|
| 69 |
+
|
| 70 |
+
# Probability sliders for each event
|
| 71 |
+
aapl_event1_prob = gr.Slider(0, 100, label="AAPL: Probability of New iPhone release (%)", value=50)
|
| 72 |
+
aapl_event2_prob = gr.Slider(0, 100, label="AAPL: Probability of Positive earnings report (%)", value=50)
|
| 73 |
+
tsla_event1_prob = gr.Slider(0, 100, label="TSLA: Probability of Achieving production target (%)", value=50)
|
| 74 |
+
tsla_event2_prob = gr.Slider(0, 100, label="TSLA: Probability of New model announcement (%)", value=50)
|
| 75 |
+
goog_event1_prob = gr.Slider(0, 100, label="GOOG: Probability of AI breakthrough (%)", value=50)
|
| 76 |
+
goog_event2_prob = gr.Slider(0, 100, label="GOOG: Probability of Regulatory approval (%)", value=50)
|
| 77 |
+
|
| 78 |
+
# Define output
|
| 79 |
+
output = gr.Textbox(label="Results")
|
| 80 |
+
|
| 81 |
+
# Create Gradio interface
|
| 82 |
+
iface = gr.Interface(
|
| 83 |
+
fn=calculate_portfolio,
|
| 84 |
+
inputs=[selected_stocks, total_investment,
|
| 85 |
+
aapl_event1_prob, aapl_event2_prob,
|
| 86 |
+
tsla_event1_prob, tsla_event2_prob,
|
| 87 |
+
goog_event1_prob, goog_event2_prob],
|
| 88 |
+
outputs=output,
|
| 89 |
+
title="Investment Decision Analysis POC",
|
| 90 |
+
description="Select stocks and adjust event probabilities to analyze expected returns based on simulated prediction market data. Event impacts are predefined. Click 'Submit' to see results."
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Launch the app
|
| 94 |
+
if __name__ == "__main__":
|
| 95 |
+
iface.launch()
|