Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
-
import
|
|
|
|
| 4 |
from collections import Counter
|
| 5 |
from google import genai
|
| 6 |
from google.genai import types
|
|
@@ -16,13 +18,13 @@ if not GOOGLE_API_KEY:
|
|
| 16 |
client = genai.Client(api_key=GOOGLE_API_KEY)
|
| 17 |
|
| 18 |
# Use the Gemini 2.0 Flash model.
|
| 19 |
-
MODEL_NAME = "gemini-2.0-flash
|
| 20 |
|
| 21 |
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
|
| 22 |
def call_gemini(video_url: str, prompt: str) -> str:
|
| 23 |
"""
|
| 24 |
Call the Gemini model with the provided video URL and prompt.
|
| 25 |
-
The video
|
| 26 |
"""
|
| 27 |
response = client.models.generate_content(
|
| 28 |
model=MODEL_NAME,
|
|
@@ -33,48 +35,100 @@ def call_gemini(video_url: str, prompt: str) -> str:
|
|
| 33 |
)
|
| 34 |
return response.text
|
| 35 |
|
| 36 |
-
def
|
| 37 |
"""
|
| 38 |
-
|
| 39 |
"""
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
ax.set_xlabel("Keyword")
|
| 53 |
-
plt.tight_layout()
|
| 54 |
-
return fig
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
"""
|
| 58 |
-
Perform iterative
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
"""
|
| 62 |
analysis = ""
|
| 63 |
num_iterations = 3
|
| 64 |
|
| 65 |
for i in range(num_iterations):
|
| 66 |
-
base_prompt =
|
|
|
|
|
|
|
|
|
|
| 67 |
if user_query:
|
| 68 |
base_prompt += f" Also, focus on the following query: {user_query}"
|
| 69 |
|
| 70 |
if i == 0:
|
| 71 |
prompt = base_prompt
|
| 72 |
else:
|
| 73 |
-
prompt = (
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
if user_query:
|
| 77 |
-
prompt += f"Remember to focus on: {user_query}"
|
| 78 |
|
| 79 |
try:
|
| 80 |
analysis = call_gemini(video_url, prompt)
|
|
@@ -82,39 +136,45 @@ def analyze_video(video_url: str, user_query: str) -> (str, plt.Figure):
|
|
| 82 |
analysis += f"\n[Error during iteration {i+1}: {e}]"
|
| 83 |
break
|
| 84 |
|
| 85 |
-
# Create a Markdown report
|
| 86 |
markdown_report = f"## Video Analysis Report\n\n**Summary:**\n\n{analysis}\n"
|
| 87 |
-
|
| 88 |
-
# Generate a chart visualization based on the analysis text.
|
| 89 |
-
chart_fig = generate_chart(analysis)
|
| 90 |
-
return markdown_report, chart_fig
|
| 91 |
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
"""
|
| 94 |
-
Gradio interface function that
|
| 95 |
-
then returns a Markdown report and a
|
| 96 |
"""
|
| 97 |
if not video_url:
|
| 98 |
-
return "Please provide a valid video URL.",
|
| 99 |
return analyze_video(video_url, user_query)
|
| 100 |
|
| 101 |
# Define the Gradio interface with two inputs and two outputs.
|
| 102 |
iface = gr.Interface(
|
| 103 |
fn=gradio_interface,
|
| 104 |
inputs=[
|
| 105 |
-
gr.Textbox(label="Video URL (publicly accessible, e.g., YouTube link)"),
|
| 106 |
gr.Textbox(label="Analysis Query (optional): guide the focus of the analysis", placeholder="e.g., focus on unusual movements near the entrance")
|
| 107 |
],
|
| 108 |
outputs=[
|
| 109 |
gr.Markdown(label="Security & Surveillance Analysis Report"),
|
| 110 |
-
gr.
|
| 111 |
],
|
| 112 |
title="AI Video Analysis and Summariser Agent",
|
| 113 |
description=(
|
| 114 |
"This agentic video analysis tool uses Google's Gemini 2.0 Flash model via AI Studio "
|
| 115 |
"to iteratively analyze a video for security and surveillance insights. Provide a video URL and, optionally, "
|
| 116 |
-
"a query to guide the analysis. The tool returns a detailed Markdown report along with a
|
| 117 |
-
"of keyword frequency."
|
| 118 |
)
|
| 119 |
)
|
| 120 |
|
|
|
|
| 1 |
import os
|
| 2 |
+
import json
|
| 3 |
import gradio as gr
|
| 4 |
+
import cv2
|
| 5 |
+
import matplotlib.pyplot as plt # imported for compatibility if needed later
|
| 6 |
from collections import Counter
|
| 7 |
from google import genai
|
| 8 |
from google.genai import types
|
|
|
|
| 18 |
client = genai.Client(api_key=GOOGLE_API_KEY)
|
| 19 |
|
| 20 |
# Use the Gemini 2.0 Flash model.
|
| 21 |
+
MODEL_NAME = "gemini-2.0-flash"
|
| 22 |
|
| 23 |
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
|
| 24 |
def call_gemini(video_url: str, prompt: str) -> str:
|
| 25 |
"""
|
| 26 |
Call the Gemini model with the provided video URL and prompt.
|
| 27 |
+
The video is passed as a URI part with MIME type "video/webm".
|
| 28 |
"""
|
| 29 |
response = client.models.generate_content(
|
| 30 |
model=MODEL_NAME,
|
|
|
|
| 35 |
)
|
| 36 |
return response.text
|
| 37 |
|
| 38 |
+
def hhmmss_to_seconds(time_str: str) -> float:
|
| 39 |
"""
|
| 40 |
+
Convert a HH:MM:SS formatted string into seconds.
|
| 41 |
"""
|
| 42 |
+
parts = time_str.strip().split(":")
|
| 43 |
+
parts = [float(p) for p in parts]
|
| 44 |
+
if len(parts) == 3:
|
| 45 |
+
return parts[0]*3600 + parts[1]*60 + parts[2]
|
| 46 |
+
elif len(parts) == 2:
|
| 47 |
+
return parts[0]*60 + parts[1]
|
| 48 |
+
else:
|
| 49 |
+
return parts[0]
|
| 50 |
+
|
| 51 |
+
def get_key_frames(video_url: str, analysis: str, user_query: str) -> list:
|
| 52 |
+
"""
|
| 53 |
+
Prompt Gemini to return key frame timestamps (in HH:MM:SS) with descriptions,
|
| 54 |
+
then extract those frames from the video using OpenCV.
|
| 55 |
+
|
| 56 |
+
Returns a list of tuples: (image_array, caption)
|
| 57 |
+
"""
|
| 58 |
+
prompt = (
|
| 59 |
+
"Based on the following video analysis, identify key frames that best illustrate "
|
| 60 |
+
"the important events or anomalies. Return a JSON array where each element is an object "
|
| 61 |
+
"with two keys: 'timestamp' (in HH:MM:SS format) and 'description' (a brief explanation of why "
|
| 62 |
+
"this frame is important)."
|
| 63 |
+
)
|
| 64 |
+
prompt += f" Video Analysis: {analysis}"
|
| 65 |
+
if user_query:
|
| 66 |
+
prompt += f" Additional focus: {user_query}"
|
| 67 |
+
|
| 68 |
+
try:
|
| 69 |
+
key_frames_response = call_gemini(video_url, prompt)
|
| 70 |
+
# Attempt to parse the output as JSON.
|
| 71 |
+
key_frames = json.loads(key_frames_response)
|
| 72 |
+
if not isinstance(key_frames, list):
|
| 73 |
+
key_frames = []
|
| 74 |
+
except Exception as e:
|
| 75 |
+
key_frames = []
|
| 76 |
|
| 77 |
+
extracted_frames = []
|
| 78 |
+
cap = cv2.VideoCapture(video_url)
|
| 79 |
+
if not cap.isOpened():
|
| 80 |
+
print("Error: Could not open video.")
|
| 81 |
+
return extracted_frames
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
for frame_obj in key_frames:
|
| 84 |
+
ts = frame_obj.get("timestamp")
|
| 85 |
+
description = frame_obj.get("description", "")
|
| 86 |
+
try:
|
| 87 |
+
seconds = hhmmss_to_seconds(ts)
|
| 88 |
+
except Exception:
|
| 89 |
+
continue
|
| 90 |
+
# Set video position (in milliseconds)
|
| 91 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, seconds * 1000)
|
| 92 |
+
ret, frame = cap.read()
|
| 93 |
+
if ret:
|
| 94 |
+
# Convert BGR to RGB
|
| 95 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 96 |
+
caption = f"{ts}: {description}"
|
| 97 |
+
extracted_frames.append((frame_rgb, caption))
|
| 98 |
+
cap.release()
|
| 99 |
+
return extracted_frames
|
| 100 |
+
|
| 101 |
+
def analyze_video(video_url: str, user_query: str) -> (str, list):
|
| 102 |
"""
|
| 103 |
+
Perform iterative, agentic video analysis.
|
| 104 |
+
First, refine the video analysis over several iterations.
|
| 105 |
+
Then, prompt the model to identify key frames.
|
| 106 |
+
|
| 107 |
+
Returns:
|
| 108 |
+
- A Markdown report as a string.
|
| 109 |
+
- A gallery list of key frames (each as a tuple of (image, caption)).
|
| 110 |
"""
|
| 111 |
analysis = ""
|
| 112 |
num_iterations = 3
|
| 113 |
|
| 114 |
for i in range(num_iterations):
|
| 115 |
+
base_prompt = (
|
| 116 |
+
"You are a video analysis agent focusing on security and surveillance. "
|
| 117 |
+
"Provide a detailed summary of the video, highlighting key events, suspicious activities, or anomalies."
|
| 118 |
+
)
|
| 119 |
if user_query:
|
| 120 |
base_prompt += f" Also, focus on the following query: {user_query}"
|
| 121 |
|
| 122 |
if i == 0:
|
| 123 |
prompt = base_prompt
|
| 124 |
else:
|
| 125 |
+
prompt = (
|
| 126 |
+
f"Based on the previous analysis: \"{analysis}\". "
|
| 127 |
+
"Provide further elaboration and refined insights, focusing on potential security threats, anomalous events, "
|
| 128 |
+
"and details that would help a security team understand the situation better."
|
| 129 |
+
)
|
| 130 |
if user_query:
|
| 131 |
+
prompt += f" Remember to focus on: {user_query}"
|
| 132 |
|
| 133 |
try:
|
| 134 |
analysis = call_gemini(video_url, prompt)
|
|
|
|
| 136 |
analysis += f"\n[Error during iteration {i+1}: {e}]"
|
| 137 |
break
|
| 138 |
|
| 139 |
+
# Create a Markdown report
|
| 140 |
markdown_report = f"## Video Analysis Report\n\n**Summary:**\n\n{analysis}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
# Get key frames based on the analysis and optional query.
|
| 143 |
+
key_frames_gallery = get_key_frames(video_url, analysis, user_query)
|
| 144 |
+
if not key_frames_gallery:
|
| 145 |
+
markdown_report += "\n*No key frames were extracted.*\n"
|
| 146 |
+
else:
|
| 147 |
+
markdown_report += "\n**Key Frames Extracted:**\n"
|
| 148 |
+
for idx, (img, caption) in enumerate(key_frames_gallery, start=1):
|
| 149 |
+
markdown_report += f"- **Frame {idx}:** {caption}\n"
|
| 150 |
+
|
| 151 |
+
return markdown_report, key_frames_gallery
|
| 152 |
+
|
| 153 |
+
def gradio_interface(video_url: str, user_query: str) -> (str, list):
|
| 154 |
"""
|
| 155 |
+
Gradio interface function that accepts a video URL and an optional query,
|
| 156 |
+
then returns a Markdown report and a gallery of key frame images with captions.
|
| 157 |
"""
|
| 158 |
if not video_url:
|
| 159 |
+
return "Please provide a valid video URL.", []
|
| 160 |
return analyze_video(video_url, user_query)
|
| 161 |
|
| 162 |
# Define the Gradio interface with two inputs and two outputs.
|
| 163 |
iface = gr.Interface(
|
| 164 |
fn=gradio_interface,
|
| 165 |
inputs=[
|
| 166 |
+
gr.Textbox(label="Video URL (publicly accessible, e.g., YouTube direct link or video file URL)"),
|
| 167 |
gr.Textbox(label="Analysis Query (optional): guide the focus of the analysis", placeholder="e.g., focus on unusual movements near the entrance")
|
| 168 |
],
|
| 169 |
outputs=[
|
| 170 |
gr.Markdown(label="Security & Surveillance Analysis Report"),
|
| 171 |
+
gr.Gallery(label="Extracted Key Frames").style(grid=[2], height="auto")
|
| 172 |
],
|
| 173 |
title="AI Video Analysis and Summariser Agent",
|
| 174 |
description=(
|
| 175 |
"This agentic video analysis tool uses Google's Gemini 2.0 Flash model via AI Studio "
|
| 176 |
"to iteratively analyze a video for security and surveillance insights. Provide a video URL and, optionally, "
|
| 177 |
+
"a query to guide the analysis. The tool returns a detailed Markdown report along with a gallery of key frame images."
|
|
|
|
| 178 |
)
|
| 179 |
)
|
| 180 |
|