Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import cv2
|
|
|
|
| 5 |
from google import genai
|
| 6 |
from google.genai import types
|
| 7 |
from google.genai.types import Part
|
|
@@ -16,7 +19,7 @@ if not GOOGLE_API_KEY:
|
|
| 16 |
client = genai.Client(api_key=GOOGLE_API_KEY)
|
| 17 |
|
| 18 |
# Use the Gemini 2.0 Flash model.
|
| 19 |
-
MODEL_NAME = "gemini-2.0-flash"
|
| 20 |
|
| 21 |
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
|
| 22 |
def call_gemini(video_url: str, prompt: str) -> str:
|
|
@@ -46,10 +49,40 @@ def hhmmss_to_seconds(time_str: str) -> float:
|
|
| 46 |
else:
|
| 47 |
return parts[0]
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
def get_key_frames(video_url: str, analysis: str, user_query: str) -> list:
|
| 50 |
"""
|
| 51 |
Prompt Gemini to return key frame timestamps (in HH:MM:SS) with descriptions,
|
| 52 |
-
then extract those frames from the video using OpenCV.
|
| 53 |
|
| 54 |
Returns a list of tuples: (image_array, caption)
|
| 55 |
"""
|
|
@@ -73,27 +106,33 @@ def get_key_frames(video_url: str, analysis: str, user_query: str) -> list:
|
|
| 73 |
key_frames = []
|
| 74 |
|
| 75 |
extracted_frames = []
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
return extracted_frames
|
| 98 |
|
| 99 |
def analyze_video(video_url: str, user_query: str) -> (str, list):
|
|
@@ -157,11 +196,10 @@ def gradio_interface(video_url: str, user_query: str) -> (str, list):
|
|
| 157 |
return "Please provide a valid video URL.", []
|
| 158 |
return analyze_video(video_url, user_query)
|
| 159 |
|
| 160 |
-
# Define the Gradio interface with two inputs and two outputs.
|
| 161 |
iface = gr.Interface(
|
| 162 |
fn=gradio_interface,
|
| 163 |
inputs=[
|
| 164 |
-
gr.Textbox(label="Video URL (publicly accessible, e.g., YouTube
|
| 165 |
gr.Textbox(label="Analysis Query (optional): guide the focus of the analysis", placeholder="e.g., focus on unusual movements near the entrance")
|
| 166 |
],
|
| 167 |
outputs=[
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
+
import tempfile
|
| 4 |
+
import requests
|
| 5 |
import gradio as gr
|
| 6 |
import cv2
|
| 7 |
+
from pytube import YouTube
|
| 8 |
from google import genai
|
| 9 |
from google.genai import types
|
| 10 |
from google.genai.types import Part
|
|
|
|
| 19 |
client = genai.Client(api_key=GOOGLE_API_KEY)
|
| 20 |
|
| 21 |
# Use the Gemini 2.0 Flash model.
|
| 22 |
+
MODEL_NAME = "gemini-2.0-flash-001"
|
| 23 |
|
| 24 |
@retry(wait=wait_random_exponential(multiplier=1, max=60), stop=stop_after_attempt(3))
|
| 25 |
def call_gemini(video_url: str, prompt: str) -> str:
|
|
|
|
| 49 |
else:
|
| 50 |
return parts[0]
|
| 51 |
|
| 52 |
+
def download_video(video_url: str) -> str:
|
| 53 |
+
"""
|
| 54 |
+
Download the video from a URL (either YouTube or direct link) and return the local file path.
|
| 55 |
+
"""
|
| 56 |
+
local_file = None
|
| 57 |
+
if "youtube.com" in video_url or "youtu.be" in video_url:
|
| 58 |
+
yt = YouTube(video_url)
|
| 59 |
+
stream = yt.streams.filter(file_extension="mp4", progressive=True).first()
|
| 60 |
+
if stream is None:
|
| 61 |
+
raise ValueError("No suitable mp4 stream found on YouTube.")
|
| 62 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
| 63 |
+
stream.stream_to_buffer(temp_file)
|
| 64 |
+
temp_file.flush()
|
| 65 |
+
local_file = temp_file.name
|
| 66 |
+
temp_file.close()
|
| 67 |
+
else:
|
| 68 |
+
# Assume it's a direct link to a video file, download using requests.
|
| 69 |
+
response = requests.get(video_url, stream=True)
|
| 70 |
+
if response.status_code == 200:
|
| 71 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
| 72 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 73 |
+
if chunk:
|
| 74 |
+
temp_file.write(chunk)
|
| 75 |
+
temp_file.flush()
|
| 76 |
+
local_file = temp_file.name
|
| 77 |
+
temp_file.close()
|
| 78 |
+
else:
|
| 79 |
+
raise ValueError("Failed to download video, status code: " + str(response.status_code))
|
| 80 |
+
return local_file
|
| 81 |
+
|
| 82 |
def get_key_frames(video_url: str, analysis: str, user_query: str) -> list:
|
| 83 |
"""
|
| 84 |
Prompt Gemini to return key frame timestamps (in HH:MM:SS) with descriptions,
|
| 85 |
+
then extract those frames from the downloaded video file using OpenCV.
|
| 86 |
|
| 87 |
Returns a list of tuples: (image_array, caption)
|
| 88 |
"""
|
|
|
|
| 106 |
key_frames = []
|
| 107 |
|
| 108 |
extracted_frames = []
|
| 109 |
+
local_path = None
|
| 110 |
+
try:
|
| 111 |
+
local_path = download_video(video_url)
|
| 112 |
+
cap = cv2.VideoCapture(local_path)
|
| 113 |
+
if not cap.isOpened():
|
| 114 |
+
print("Error: Could not open video from local file.")
|
| 115 |
+
return extracted_frames
|
| 116 |
+
|
| 117 |
+
for frame_obj in key_frames:
|
| 118 |
+
ts = frame_obj.get("timestamp")
|
| 119 |
+
description = frame_obj.get("description", "")
|
| 120 |
+
try:
|
| 121 |
+
seconds = hhmmss_to_seconds(ts)
|
| 122 |
+
except Exception:
|
| 123 |
+
continue
|
| 124 |
+
# Set video position (in milliseconds)
|
| 125 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, seconds * 1000)
|
| 126 |
+
ret, frame = cap.read()
|
| 127 |
+
if ret:
|
| 128 |
+
# Convert BGR to RGB
|
| 129 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 130 |
+
caption = f"{ts}: {description}"
|
| 131 |
+
extracted_frames.append((frame_rgb, caption))
|
| 132 |
+
cap.release()
|
| 133 |
+
finally:
|
| 134 |
+
if local_path and os.path.exists(local_path):
|
| 135 |
+
os.remove(local_path)
|
| 136 |
return extracted_frames
|
| 137 |
|
| 138 |
def analyze_video(video_url: str, user_query: str) -> (str, list):
|
|
|
|
| 196 |
return "Please provide a valid video URL.", []
|
| 197 |
return analyze_video(video_url, user_query)
|
| 198 |
|
|
|
|
| 199 |
iface = gr.Interface(
|
| 200 |
fn=gradio_interface,
|
| 201 |
inputs=[
|
| 202 |
+
gr.Textbox(label="Video URL (publicly accessible, e.g., YouTube link or direct video file URL)"),
|
| 203 |
gr.Textbox(label="Analysis Query (optional): guide the focus of the analysis", placeholder="e.g., focus on unusual movements near the entrance")
|
| 204 |
],
|
| 205 |
outputs=[
|