deepseek-ocr / app.py
codemo's picture
Update app.py
18c93c9 verified
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
import spaces
import os
import sys
import tempfile
import shutil
from PIL import Image, ImageDraw, ImageFont, ImageOps
import fitz
import re
import warnings
import numpy as np
import base64
from io import StringIO, BytesIO
# 模型路径配置
# 方式1: 使用在线模型(默认)
MODEL_PATH = 'deepseek-ai/DeepSeek-OCR'
# 方式2: 使用本地下载的模型(推荐)
# 将模型下载到本地后,修改为本地路径,例如:
# MODEL_PATH = './models/DeepSeek-OCR' # 本地模型路径
# MODEL_PATH = 'E:/hugging_face/models/DeepSeek-OCR' # 或使用绝对路径
# 如果本地路径不存在,则使用在线模型
if not os.path.exists(MODEL_PATH):
print(f"本地模型路径不存在: {MODEL_PATH}")
print("将使用在线模型: deepseek-ai/DeepSeek-OCR")
MODEL_PATH = 'deepseek-ai/DeepSeek-OCR'
else:
print(f"使用本地模型: {MODEL_PATH}")
# Auto-detect device (GPU if available, else CPU)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
print(f"使用设备: {device}, 数据类型: {torch_dtype}")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
# 加载模型
if device == "cpu":
# CPU 模式:使用 float32 避免类型不匹配
print("⚠️ CPU 模式:强制使用 float32(bfloat16 在 CPU 上不完全支持)")
model = AutoModel.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
use_safetensors=True,
torch_dtype=torch.float32, # CPU 必须使用 float32
low_cpu_mem_usage=True
)
model = model.eval().float() # 确保所有参数都是 float32
else:
# GPU 模式:可以使用 bfloat16
model = AutoModel.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
use_safetensors=True,
torch_dtype=torch.bfloat16
)
model = model.eval().to(device)
# 创建设备兼容的推理包装器
original_infer = model.infer
def device_compatible_infer(*args, **kwargs):
"""设备兼容的推理包装器,支持 CPU/GPU 自动切换"""
import torch
# 临时修补 torch.cuda.is_available 和相关方法
old_is_available = torch.cuda.is_available
old_cuda_method = None
old_float_tensor = None
try:
# 如果是 CPU 模式,劫持 CUDA 调用
if device == "cpu":
torch.cuda.is_available = lambda: False
# 修补 tensor.cuda() 方法
def cpu_wrapper(self, *args, **kwargs):
# 确保返回 float32 类型
result = self.cpu()
if result.dtype == torch.bfloat16:
result = result.float()
return result
# 保存原始方法
if hasattr(torch.Tensor, '_original_cuda'):
old_cuda_method = torch.Tensor._original_cuda
else:
old_cuda_method = torch.Tensor.cuda
torch.Tensor._original_cuda = old_cuda_method
torch.Tensor.cuda = cpu_wrapper
# 修补 torch.cuda.FloatTensor
old_float_tensor = torch.cuda.FloatTensor
torch.cuda.FloatTensor = torch.FloatTensor
# 调用原始 infer 方法
return original_infer(*args, **kwargs)
finally:
# 恢复原始方法
torch.cuda.is_available = old_is_available
if old_cuda_method is not None:
torch.Tensor.cuda = old_cuda_method
if old_float_tensor is not None:
torch.cuda.FloatTensor = old_float_tensor
# 替换模型的 infer 方法
model.infer = device_compatible_infer
MODEL_CONFIGS = {
"⚡ Gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
"🚀 Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
"📄 Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
"📊 Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
"🎯 Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}
}
TASK_PROMPTS = {
"📋 Markdown": {"prompt": "<image>\n<|grounding|>Convert the document to markdown.", "has_grounding": True},
"📝 Free OCR": {"prompt": "<image>\nFree OCR.", "has_grounding": False},
"📍 Locate": {"prompt": "<image>\nLocate <|ref|>text<|/ref|> in the image.", "has_grounding": True},
"🔍 Describe": {"prompt": "<image>\nDescribe this image in detail.", "has_grounding": False},
"✏️ Custom": {"prompt": "", "has_grounding": False}
}
def extract_grounding_references(text):
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
return re.findall(pattern, text, re.DOTALL)
def draw_bounding_boxes(image, refs, extract_images=False):
img_w, img_h = image.size
img_draw = image.copy()
draw = ImageDraw.Draw(img_draw)
overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
draw2 = ImageDraw.Draw(overlay)
font = ImageFont.load_default()
crops = []
for ref in refs:
label = ref[1]
coords = eval(ref[2])
color = (np.random.randint(50, 255), np.random.randint(
50, 255), np.random.randint(50, 255))
color_a = color + (60,)
for box in coords:
x1, y1, x2, y2 = int(
box[0]/999*img_w), int(box[1]/999*img_h), int(box[2]/999*img_w), int(box[3]/999*img_h)
if extract_images and label == 'image':
crops.append(image.crop((x1, y1, x2, y2)))
width = 5 if label == 'title' else 3
draw.rectangle([x1, y1, x2, y2], outline=color, width=width)
draw2.rectangle([x1, y1, x2, y2], fill=color_a)
text_bbox = draw.textbbox((0, 0), label, font=font)
tw, th = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
ty = max(0, y1 - 20)
draw.rectangle([x1, ty, x1 + tw + 4, ty + th + 4], fill=color)
draw.text((x1 + 2, ty + 2), label, font=font, fill=(255, 255, 255))
img_draw.paste(overlay, (0, 0), overlay)
return img_draw, crops
def clean_output(text, include_images=False, remove_labels=False):
if not text:
return ""
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
matches = re.findall(pattern, text, re.DOTALL)
img_num = 0
for match in matches:
if '<|ref|>image<|/ref|>' in match[0]:
if include_images:
text = text.replace(
match[0], f'\n\n**[Figure {img_num + 1}]**\n\n', 1)
img_num += 1
else:
text = text.replace(match[0], '', 1)
else:
if remove_labels:
text = text.replace(match[0], '', 1)
else:
text = text.replace(match[0], match[1], 1)
return text.strip()
def embed_images(markdown, crops):
if not crops:
return markdown
for i, img in enumerate(crops):
buf = BytesIO()
img.save(buf, format="PNG")
b64 = base64.b64encode(buf.getvalue()).decode()
markdown = markdown.replace(
f'**[Figure {i + 1}]**', f'\n\n![Figure {i + 1}](data:image/png;base64,{b64})\n\n', 1)
return markdown
@spaces.GPU(duration=60)
def process_image(image, mode, task, custom_prompt):
if image is None:
return " Error Upload image", "", "", None, []
if task in ["✏️ Custom", "📍 Locate"] and not custom_prompt.strip():
return "Enter prompt", "", "", None, []
if image.mode in ('RGBA', 'LA', 'P'):
image = image.convert('RGB')
image = ImageOps.exif_transpose(image)
config = MODEL_CONFIGS[mode]
if task == "✏️ Custom":
prompt = f"<image>\n{custom_prompt.strip()}"
has_grounding = '<|grounding|>' in custom_prompt
elif task == "📍 Locate":
prompt = f"<image>\nLocate <|ref|>{custom_prompt.strip()}<|/ref|> in the image."
has_grounding = True
else:
prompt = TASK_PROMPTS[task]["prompt"]
has_grounding = TASK_PROMPTS[task]["has_grounding"]
tmp = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
image.save(tmp.name, 'JPEG', quality=95)
tmp.close()
out_dir = tempfile.mkdtemp()
stdout = sys.stdout
sys.stdout = StringIO()
model.infer(tokenizer=tokenizer, prompt=prompt, image_file=tmp.name, output_path=out_dir,
base_size=config["base_size"], image_size=config["image_size"], crop_mode=config["crop_mode"])
result = '\n'.join([l for l in sys.stdout.getvalue().split('\n')
if not any(s in l for s in ['image:', 'other:', 'PATCHES', '====', 'BASE:', '%|', 'torch.Size'])]).strip()
sys.stdout = stdout
os.unlink(tmp.name)
shutil.rmtree(out_dir, ignore_errors=True)
if not result:
return "No text", "", "", None, []
cleaned = clean_output(result, False, False)
markdown = clean_output(result, True, True)
img_out = None
crops = []
if has_grounding and '<|ref|>' in result:
refs = extract_grounding_references(result)
if refs:
img_out, crops = draw_bounding_boxes(image, refs, True)
markdown = embed_images(markdown, crops)
return cleaned, markdown, result, img_out, crops
@spaces.GPU(duration=300)
def process_pdf(path, mode, task, custom_prompt):
doc = fitz.open(path)
texts, markdowns, raws, all_crops = [], [], [], []
for i in range(len(doc)):
page = doc.load_page(i)
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
img = Image.open(BytesIO(pix.tobytes("png")))
text, md, raw, _, crops = process_image(img, mode, task, custom_prompt)
if text and text != "No text":
texts.append(f"### Page {i + 1}\n\n{text}")
markdowns.append(f"### Page {i + 1}\n\n{md}")
raws.append(f"=== Page {i + 1} ===\n{raw}")
all_crops.extend(crops)
doc.close()
return ("\n\n---\n\n".join(texts) if texts else "No text in PDF",
"\n\n---\n\n".join(markdowns) if markdowns else "No text in PDF",
"\n\n".join(raws), None, all_crops)
def process_file(path, mode, task, custom_prompt):
if not path:
return "Error Upload file", "", "", None, []
if path.lower().endswith('.pdf'):
return process_pdf(path, mode, task, custom_prompt)
else:
return process_image(Image.open(path), mode, task, custom_prompt)
def toggle_prompt(task):
if task == "✏️ Custom":
return gr.update(visible=True, label="Custom Prompt", placeholder="Add <|grounding|> for boxes")
elif task == "📍 Locate":
return gr.update(visible=True, label="Text to Locate", placeholder="Enter text")
return gr.update(visible=False)
def load_image(file_path):
if not file_path:
return None
if file_path.lower().endswith('.pdf'):
doc = fitz.open(file_path)
page = doc.load_page(0)
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
img = Image.open(BytesIO(pix.tobytes("png")))
doc.close()
return img
else:
return Image.open(file_path)
with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek-OCR") as demo:
gr.Markdown("""
# 🚀 DeepSeek-OCR Demo
**Convert documents to markdown, extract raw text, and locate specific content with bounding boxes. Check the info at the bottom of the page for more information.**
**Hope this tool was helpful! If so, a quick like ❤️ would mean a lot :)**
""")
with gr.Row():
with gr.Column(scale=1):
file_in = gr.File(label="Upload Image or PDF", file_types=[
"image", ".pdf"], type="filepath")
input_img = gr.Image(label="Input Image", type="pil", height=300)
mode = gr.Dropdown(list(MODEL_CONFIGS.keys()),
value="⚡ Gundam", label="Mode")
task = gr.Dropdown(list(TASK_PROMPTS.keys()),
value="📋 Markdown", label="Task")
prompt = gr.Textbox(label="Prompt", lines=2, visible=False)
btn = gr.Button("Extract", variant="primary", size="lg")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("📝 Text"):
text_out = gr.Textbox(
lines=20, show_copy_button=True, show_label=False)
with gr.Tab("🎨 Markdown"):
md_out = gr.Markdown("")
with gr.Tab("🖼️ Boxes"):
img_out = gr.Image(
type="pil", height=500, show_label=False)
with gr.Tab("🖼️ Cropped Images"):
gallery = gr.Gallery(
show_label=False, columns=3, height=400)
with gr.Tab("🔍 Raw"):
raw_out = gr.Textbox(
lines=20, show_copy_button=True, show_label=False)
gr.Examples(
examples=[
["examples/ocr.jpg", "⚡ Gundam", "📋 Markdown", ""],
["examples/reachy-mini.jpg", "⚡ Gundam", "📍 Locate", "Robot"]
],
inputs=[input_img, mode, task, prompt],
cache_examples=False
)
with gr.Accordion("ℹ️ Info", open=False):
gr.Markdown("""
### Modes
- **Gundam**: 1024 base + 640 tiles with cropping - Best balance
- **Tiny**: 512×512, no crop - Fastest
- **Small**: 640×640, no crop - Quick
- **Base**: 1024×1024, no crop - Standard
- **Large**: 1280×1280, no crop - Highest quality
### Tasks
- **Markdown**: Convert document to structured markdown (grounding ✅)
- **Free OCR**: Simple text extraction
- **Locate**: Find specific text in image (grounding ✅)
- **Describe**: General image description
- **Custom**: Your own prompt (add `<|grounding|>` for boxes)
""")
file_in.change(load_image, [file_in], [input_img])
task.change(toggle_prompt, [task], [prompt])
def run(image, file_path, mode, task, custom_prompt):
if image is not None:
return process_image(image, mode, task, custom_prompt)
if file_path:
return process_file(file_path, mode, task, custom_prompt)
return "Error uploading file or image", "", "", None, []
btn.click(run, [input_img, file_in, mode, task, prompt],
[text_out, md_out, raw_out, img_out, gallery])
if __name__ == "__main__":
demo.queue(max_size=20).launch()