Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -45,6 +45,47 @@ model = AutoModel.from_pretrained(
|
|
| 45 |
)
|
| 46 |
model = model.eval().to(device)
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
MODEL_CONFIGS = {
|
| 49 |
"⚡ Gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
|
| 50 |
"🚀 Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
|
|
|
| 45 |
)
|
| 46 |
model = model.eval().to(device)
|
| 47 |
|
| 48 |
+
# 创建设备兼容的推理包装器
|
| 49 |
+
original_infer = model.infer
|
| 50 |
+
|
| 51 |
+
def device_compatible_infer(*args, **kwargs):
|
| 52 |
+
"""设备兼容的推理包装器,支持 CPU/GPU 自动切换"""
|
| 53 |
+
import torch
|
| 54 |
+
|
| 55 |
+
# 临时修补 torch.cuda.is_available 和相关方法
|
| 56 |
+
old_is_available = torch.cuda.is_available
|
| 57 |
+
old_cuda_method = None
|
| 58 |
+
|
| 59 |
+
try:
|
| 60 |
+
# 如果是 CPU 模式,劫持 CUDA 调用
|
| 61 |
+
if device == "cpu":
|
| 62 |
+
torch.cuda.is_available = lambda: False
|
| 63 |
+
|
| 64 |
+
# 修补 tensor.cuda() 方法
|
| 65 |
+
def cpu_wrapper(self, *args, **kwargs):
|
| 66 |
+
return self.cpu()
|
| 67 |
+
|
| 68 |
+
# 保存原始方法
|
| 69 |
+
if hasattr(torch.Tensor, '_original_cuda'):
|
| 70 |
+
old_cuda_method = torch.Tensor._original_cuda
|
| 71 |
+
else:
|
| 72 |
+
old_cuda_method = torch.Tensor.cuda
|
| 73 |
+
torch.Tensor._original_cuda = old_cuda_method
|
| 74 |
+
|
| 75 |
+
torch.Tensor.cuda = cpu_wrapper
|
| 76 |
+
|
| 77 |
+
# 调用原始 infer 方法
|
| 78 |
+
return original_infer(*args, **kwargs)
|
| 79 |
+
|
| 80 |
+
finally:
|
| 81 |
+
# 恢复原始方法
|
| 82 |
+
torch.cuda.is_available = old_is_available
|
| 83 |
+
if old_cuda_method is not None:
|
| 84 |
+
torch.Tensor.cuda = old_cuda_method
|
| 85 |
+
|
| 86 |
+
# 替换模型的 infer 方法
|
| 87 |
+
model.infer = device_compatible_infer
|
| 88 |
+
|
| 89 |
MODEL_CONFIGS = {
|
| 90 |
"⚡ Gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
|
| 91 |
"🚀 Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|