Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,337 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
"""
|
| 46 |
-
chatbot = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
type="messages",
|
| 49 |
-
additional_inputs=[
|
| 50 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 51 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 52 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 53 |
-
gr.Slider(
|
| 54 |
-
minimum=0.1,
|
| 55 |
-
maximum=1.0,
|
| 56 |
-
value=0.95,
|
| 57 |
-
step=0.05,
|
| 58 |
-
label="Top-p (nucleus sampling)",
|
| 59 |
-
),
|
| 60 |
-
],
|
| 61 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
| 67 |
|
|
|
|
|
|
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
| 70 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModel, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
import spaces
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
import tempfile
|
| 8 |
+
import shutil
|
| 9 |
+
from PIL import Image, ImageDraw, ImageFont, ImageOps
|
| 10 |
+
import fitz
|
| 11 |
+
import re
|
| 12 |
+
import warnings
|
| 13 |
+
import numpy as np
|
| 14 |
+
import base64
|
| 15 |
+
from io import StringIO, BytesIO
|
| 16 |
+
|
| 17 |
+
# 模型路径配置
|
| 18 |
+
# 方式1: 使用在线模型(默认)
|
| 19 |
+
MODEL_PATH = 'deepseek-ai/DeepSeek-OCR'
|
| 20 |
+
|
| 21 |
+
# 方式2: 使用本地下载的模型(推荐)
|
| 22 |
+
# 将模型下载到本地后,修改为本地路径,例如:
|
| 23 |
+
# MODEL_PATH = './models/DeepSeek-OCR' # 本地模型路径
|
| 24 |
+
# MODEL_PATH = 'E:/hugging_face/models/DeepSeek-OCR' # 或使用绝对路径
|
| 25 |
+
|
| 26 |
+
# 如果本地路径不存在,则使用在线模型
|
| 27 |
+
if not os.path.exists(MODEL_PATH):
|
| 28 |
+
print(f"本地模型路径不存在: {MODEL_PATH}")
|
| 29 |
+
print("将使用在线模型: deepseek-ai/DeepSeek-OCR")
|
| 30 |
+
MODEL_PATH = 'deepseek-ai/DeepSeek-OCR'
|
| 31 |
+
else:
|
| 32 |
+
print(f"使用本地模型: {MODEL_PATH}")
|
| 33 |
+
|
| 34 |
+
# Auto-detect device (GPU if available, else CPU)
|
| 35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
+
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 37 |
+
print(f"使用设备: {device}, 数据类型: {torch_dtype}")
|
| 38 |
+
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
| 40 |
+
model = AutoModel.from_pretrained(
|
| 41 |
+
MODEL_PATH,
|
| 42 |
+
trust_remote_code=True,
|
| 43 |
+
use_safetensors=True,
|
| 44 |
+
torch_dtype=torch_dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
)
|
| 46 |
+
model = model.eval().to(device)
|
| 47 |
+
|
| 48 |
+
MODEL_CONFIGS = {
|
| 49 |
+
"⚡ Gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
|
| 50 |
+
"🚀 Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
| 51 |
+
"📄 Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 52 |
+
"📊 Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 53 |
+
"🎯 Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
TASK_PROMPTS = {
|
| 57 |
+
"📋 Markdown": {"prompt": "<image>\n<|grounding|>Convert the document to markdown.", "has_grounding": True},
|
| 58 |
+
"📝 Free OCR": {"prompt": "<image>\nFree OCR.", "has_grounding": False},
|
| 59 |
+
"📍 Locate": {"prompt": "<image>\nLocate <|ref|>text<|/ref|> in the image.", "has_grounding": True},
|
| 60 |
+
"🔍 Describe": {"prompt": "<image>\nDescribe this image in detail.", "has_grounding": False},
|
| 61 |
+
"✏️ Custom": {"prompt": "", "has_grounding": False}
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def extract_grounding_references(text):
|
| 66 |
+
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
|
| 67 |
+
return re.findall(pattern, text, re.DOTALL)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def draw_bounding_boxes(image, refs, extract_images=False):
|
| 71 |
+
img_w, img_h = image.size
|
| 72 |
+
img_draw = image.copy()
|
| 73 |
+
draw = ImageDraw.Draw(img_draw)
|
| 74 |
+
overlay = Image.new('RGBA', img_draw.size, (0, 0, 0, 0))
|
| 75 |
+
draw2 = ImageDraw.Draw(overlay)
|
| 76 |
+
font = ImageFont.load_default()
|
| 77 |
+
crops = []
|
| 78 |
+
|
| 79 |
+
for ref in refs:
|
| 80 |
+
label = ref[1]
|
| 81 |
+
coords = eval(ref[2])
|
| 82 |
+
color = (np.random.randint(50, 255), np.random.randint(
|
| 83 |
+
50, 255), np.random.randint(50, 255))
|
| 84 |
+
color_a = color + (60,)
|
| 85 |
+
|
| 86 |
+
for box in coords:
|
| 87 |
+
x1, y1, x2, y2 = int(
|
| 88 |
+
box[0]/999*img_w), int(box[1]/999*img_h), int(box[2]/999*img_w), int(box[3]/999*img_h)
|
| 89 |
+
|
| 90 |
+
if extract_images and label == 'image':
|
| 91 |
+
crops.append(image.crop((x1, y1, x2, y2)))
|
| 92 |
+
|
| 93 |
+
width = 5 if label == 'title' else 3
|
| 94 |
+
draw.rectangle([x1, y1, x2, y2], outline=color, width=width)
|
| 95 |
+
draw2.rectangle([x1, y1, x2, y2], fill=color_a)
|
| 96 |
+
|
| 97 |
+
text_bbox = draw.textbbox((0, 0), label, font=font)
|
| 98 |
+
tw, th = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
|
| 99 |
+
ty = max(0, y1 - 20)
|
| 100 |
+
draw.rectangle([x1, ty, x1 + tw + 4, ty + th + 4], fill=color)
|
| 101 |
+
draw.text((x1 + 2, ty + 2), label, font=font, fill=(255, 255, 255))
|
| 102 |
+
|
| 103 |
+
img_draw.paste(overlay, (0, 0), overlay)
|
| 104 |
+
return img_draw, crops
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def clean_output(text, include_images=False, remove_labels=False):
|
| 108 |
+
if not text:
|
| 109 |
+
return ""
|
| 110 |
+
pattern = r'(<\|ref\|>(.*?)<\|/ref\|><\|det\|>(.*?)<\|/det\|>)'
|
| 111 |
+
matches = re.findall(pattern, text, re.DOTALL)
|
| 112 |
+
img_num = 0
|
| 113 |
+
|
| 114 |
+
for match in matches:
|
| 115 |
+
if '<|ref|>image<|/ref|>' in match[0]:
|
| 116 |
+
if include_images:
|
| 117 |
+
text = text.replace(
|
| 118 |
+
match[0], f'\n\n**[Figure {img_num + 1}]**\n\n', 1)
|
| 119 |
+
img_num += 1
|
| 120 |
+
else:
|
| 121 |
+
text = text.replace(match[0], '', 1)
|
| 122 |
+
else:
|
| 123 |
+
if remove_labels:
|
| 124 |
+
text = text.replace(match[0], '', 1)
|
| 125 |
+
else:
|
| 126 |
+
text = text.replace(match[0], match[1], 1)
|
| 127 |
+
|
| 128 |
+
return text.strip()
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def embed_images(markdown, crops):
|
| 132 |
+
if not crops:
|
| 133 |
+
return markdown
|
| 134 |
+
for i, img in enumerate(crops):
|
| 135 |
+
buf = BytesIO()
|
| 136 |
+
img.save(buf, format="PNG")
|
| 137 |
+
b64 = base64.b64encode(buf.getvalue()).decode()
|
| 138 |
+
markdown = markdown.replace(
|
| 139 |
+
f'**[Figure {i + 1}]**', f'\n\n\n\n', 1)
|
| 140 |
+
return markdown
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
@spaces.GPU(duration=60)
|
| 144 |
+
def process_image(image, mode, task, custom_prompt):
|
| 145 |
+
if image is None:
|
| 146 |
+
return " Error Upload image", "", "", None, []
|
| 147 |
+
if task in ["✏️ Custom", "📍 Locate"] and not custom_prompt.strip():
|
| 148 |
+
return "Enter prompt", "", "", None, []
|
| 149 |
+
|
| 150 |
+
if image.mode in ('RGBA', 'LA', 'P'):
|
| 151 |
+
image = image.convert('RGB')
|
| 152 |
+
image = ImageOps.exif_transpose(image)
|
| 153 |
+
|
| 154 |
+
config = MODEL_CONFIGS[mode]
|
| 155 |
+
|
| 156 |
+
if task == "✏️ Custom":
|
| 157 |
+
prompt = f"<image>\n{custom_prompt.strip()}"
|
| 158 |
+
has_grounding = '<|grounding|>' in custom_prompt
|
| 159 |
+
elif task == "📍 Locate":
|
| 160 |
+
prompt = f"<image>\nLocate <|ref|>{custom_prompt.strip()}<|/ref|> in the image."
|
| 161 |
+
has_grounding = True
|
| 162 |
+
else:
|
| 163 |
+
prompt = TASK_PROMPTS[task]["prompt"]
|
| 164 |
+
has_grounding = TASK_PROMPTS[task]["has_grounding"]
|
| 165 |
+
|
| 166 |
+
tmp = tempfile.NamedTemporaryFile(delete=False, suffix='.jpg')
|
| 167 |
+
image.save(tmp.name, 'JPEG', quality=95)
|
| 168 |
+
tmp.close()
|
| 169 |
+
out_dir = tempfile.mkdtemp()
|
| 170 |
+
|
| 171 |
+
stdout = sys.stdout
|
| 172 |
+
sys.stdout = StringIO()
|
| 173 |
+
|
| 174 |
+
model.infer(tokenizer=tokenizer, prompt=prompt, image_file=tmp.name, output_path=out_dir,
|
| 175 |
+
base_size=config["base_size"], image_size=config["image_size"], crop_mode=config["crop_mode"])
|
| 176 |
+
|
| 177 |
+
result = '\n'.join([l for l in sys.stdout.getvalue().split('\n')
|
| 178 |
+
if not any(s in l for s in ['image:', 'other:', 'PATCHES', '====', 'BASE:', '%|', 'torch.Size'])]).strip()
|
| 179 |
+
sys.stdout = stdout
|
| 180 |
+
|
| 181 |
+
os.unlink(tmp.name)
|
| 182 |
+
shutil.rmtree(out_dir, ignore_errors=True)
|
| 183 |
+
|
| 184 |
+
if not result:
|
| 185 |
+
return "No text", "", "", None, []
|
| 186 |
+
|
| 187 |
+
cleaned = clean_output(result, False, False)
|
| 188 |
+
markdown = clean_output(result, True, True)
|
| 189 |
+
|
| 190 |
+
img_out = None
|
| 191 |
+
crops = []
|
| 192 |
+
|
| 193 |
+
if has_grounding and '<|ref|>' in result:
|
| 194 |
+
refs = extract_grounding_references(result)
|
| 195 |
+
if refs:
|
| 196 |
+
img_out, crops = draw_bounding_boxes(image, refs, True)
|
| 197 |
+
|
| 198 |
+
markdown = embed_images(markdown, crops)
|
| 199 |
+
|
| 200 |
+
return cleaned, markdown, result, img_out, crops
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
@spaces.GPU(duration=300)
|
| 204 |
+
def process_pdf(path, mode, task, custom_prompt):
|
| 205 |
+
doc = fitz.open(path)
|
| 206 |
+
texts, markdowns, raws, all_crops = [], [], [], []
|
| 207 |
+
|
| 208 |
+
for i in range(len(doc)):
|
| 209 |
+
page = doc.load_page(i)
|
| 210 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
|
| 211 |
+
img = Image.open(BytesIO(pix.tobytes("png")))
|
| 212 |
+
|
| 213 |
+
text, md, raw, _, crops = process_image(img, mode, task, custom_prompt)
|
| 214 |
+
|
| 215 |
+
if text and text != "No text":
|
| 216 |
+
texts.append(f"### Page {i + 1}\n\n{text}")
|
| 217 |
+
markdowns.append(f"### Page {i + 1}\n\n{md}")
|
| 218 |
+
raws.append(f"=== Page {i + 1} ===\n{raw}")
|
| 219 |
+
all_crops.extend(crops)
|
| 220 |
+
|
| 221 |
+
doc.close()
|
| 222 |
+
|
| 223 |
+
return ("\n\n---\n\n".join(texts) if texts else "No text in PDF",
|
| 224 |
+
"\n\n---\n\n".join(markdowns) if markdowns else "No text in PDF",
|
| 225 |
+
"\n\n".join(raws), None, all_crops)
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def process_file(path, mode, task, custom_prompt):
|
| 229 |
+
if not path:
|
| 230 |
+
return "Error Upload file", "", "", None, []
|
| 231 |
+
|
| 232 |
+
if path.lower().endswith('.pdf'):
|
| 233 |
+
return process_pdf(path, mode, task, custom_prompt)
|
| 234 |
+
else:
|
| 235 |
+
return process_image(Image.open(path), mode, task, custom_prompt)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def toggle_prompt(task):
|
| 239 |
+
if task == "✏️ Custom":
|
| 240 |
+
return gr.update(visible=True, label="Custom Prompt", placeholder="Add <|grounding|> for boxes")
|
| 241 |
+
elif task == "📍 Locate":
|
| 242 |
+
return gr.update(visible=True, label="Text to Locate", placeholder="Enter text")
|
| 243 |
+
return gr.update(visible=False)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def load_image(file_path):
|
| 247 |
+
if not file_path:
|
| 248 |
+
return None
|
| 249 |
+
if file_path.lower().endswith('.pdf'):
|
| 250 |
+
doc = fitz.open(file_path)
|
| 251 |
+
page = doc.load_page(0)
|
| 252 |
+
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72), alpha=False)
|
| 253 |
+
img = Image.open(BytesIO(pix.tobytes("png")))
|
| 254 |
+
doc.close()
|
| 255 |
+
return img
|
| 256 |
+
else:
|
| 257 |
+
return Image.open(file_path)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek-OCR") as demo:
|
| 261 |
+
gr.Markdown("""
|
| 262 |
+
# 🚀 DeepSeek-OCR Demo
|
| 263 |
+
**Convert documents to markdown, extract raw text, and locate specific content with bounding boxes. Check the info at the bottom of the page for more information.**
|
| 264 |
+
|
| 265 |
+
**Hope this tool was helpful! If so, a quick like ❤️ would mean a lot :)**
|
| 266 |
+
""")
|
| 267 |
+
|
| 268 |
+
with gr.Row():
|
| 269 |
+
with gr.Column(scale=1):
|
| 270 |
+
file_in = gr.File(label="Upload Image or PDF", file_types=[
|
| 271 |
+
"image", ".pdf"], type="filepath")
|
| 272 |
+
input_img = gr.Image(label="Input Image", type="pil", height=300)
|
| 273 |
+
mode = gr.Dropdown(list(MODEL_CONFIGS.keys()),
|
| 274 |
+
value="⚡ Gundam", label="Mode")
|
| 275 |
+
task = gr.Dropdown(list(TASK_PROMPTS.keys()),
|
| 276 |
+
value="📋 Markdown", label="Task")
|
| 277 |
+
prompt = gr.Textbox(label="Prompt", lines=2, visible=False)
|
| 278 |
+
btn = gr.Button("Extract", variant="primary", size="lg")
|
| 279 |
+
|
| 280 |
+
with gr.Column(scale=2):
|
| 281 |
+
with gr.Tabs():
|
| 282 |
+
with gr.Tab("📝 Text"):
|
| 283 |
+
text_out = gr.Textbox(
|
| 284 |
+
lines=20, show_copy_button=True, show_label=False)
|
| 285 |
+
with gr.Tab("🎨 Markdown"):
|
| 286 |
+
md_out = gr.Markdown("")
|
| 287 |
+
with gr.Tab("🖼️ Boxes"):
|
| 288 |
+
img_out = gr.Image(
|
| 289 |
+
type="pil", height=500, show_label=False)
|
| 290 |
+
with gr.Tab("🖼️ Cropped Images"):
|
| 291 |
+
gallery = gr.Gallery(
|
| 292 |
+
show_label=False, columns=3, height=400)
|
| 293 |
+
with gr.Tab("🔍 Raw"):
|
| 294 |
+
raw_out = gr.Textbox(
|
| 295 |
+
lines=20, show_copy_button=True, show_label=False)
|
| 296 |
+
|
| 297 |
+
gr.Examples(
|
| 298 |
+
examples=[
|
| 299 |
+
["examples/ocr.jpg", "⚡ Gundam", "📋 Markdown", ""],
|
| 300 |
+
["examples/reachy-mini.jpg", "⚡ Gundam", "📍 Locate", "Robot"]
|
| 301 |
+
],
|
| 302 |
+
inputs=[input_img, mode, task, prompt],
|
| 303 |
+
cache_examples=False
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
with gr.Accordion("ℹ️ Info", open=False):
|
| 307 |
+
gr.Markdown("""
|
| 308 |
+
### Modes
|
| 309 |
+
- **Gundam**: 1024 base + 640 tiles with cropping - Best balance
|
| 310 |
+
- **Tiny**: 512×512, no crop - Fastest
|
| 311 |
+
- **Small**: 640×640, no crop - Quick
|
| 312 |
+
- **Base**: 1024×1024, no crop - Standard
|
| 313 |
+
- **Large**: 1280×1280, no crop - Highest quality
|
| 314 |
+
|
| 315 |
+
### Tasks
|
| 316 |
+
- **Markdown**: Convert document to structured markdown (grounding ✅)
|
| 317 |
+
- **Free OCR**: Simple text extraction
|
| 318 |
+
- **Locate**: Find specific text in image (grounding ✅)
|
| 319 |
+
- **Describe**: General image description
|
| 320 |
+
- **Custom**: Your own prompt (add `<|grounding|>` for boxes)
|
| 321 |
+
""")
|
| 322 |
+
|
| 323 |
+
file_in.change(load_image, [file_in], [input_img])
|
| 324 |
+
task.change(toggle_prompt, [task], [prompt])
|
| 325 |
|
| 326 |
+
def run(image, file_path, mode, task, custom_prompt):
|
| 327 |
+
if image is not None:
|
| 328 |
+
return process_image(image, mode, task, custom_prompt)
|
| 329 |
+
if file_path:
|
| 330 |
+
return process_file(file_path, mode, task, custom_prompt)
|
| 331 |
+
return "Error uploading file or image", "", "", None, []
|
| 332 |
|
| 333 |
+
btn.click(run, [input_img, file_in, mode, task, prompt],
|
| 334 |
+
[text_out, md_out, raw_out, img_out, gallery])
|
| 335 |
|
| 336 |
if __name__ == "__main__":
|
| 337 |
+
demo.queue(max_size=20).launch()
|