Spaces:
Running
Running
update import
Browse files
utils.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import itertools
|
| 2 |
+
import numpy as np
|
| 3 |
+
from typing import Dict
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
import testing_util as test_util
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
DATASET = "codeparrot/apps"
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def evaluate_generations(generations: list, level: str = "all", debug: bool = False):
|
| 12 |
+
"""We take the list of code generations and try to compile them
|
| 13 |
+
and the run their corresponding unit tests which are retrieved from the APPS dataset.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
generations: list of code generations (same order as samples in APPS dataset)
|
| 17 |
+
level: difficulty level used in the generation, can be "all", "introductory", "interview" or "competition"
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
results: dictionary of results, key is the problem index, value is a list of results for each generation
|
| 21 |
+
[-2] = compile error, [-1] = runtime error [False] = failed test case [True] = passed test case
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
# generations are code generations in the same order of the dataset
|
| 25 |
+
apps_eval = load_dataset(DATASET, split="test", difficulties=[level])
|
| 26 |
+
results = {}
|
| 27 |
+
for index in range(len(generations)):
|
| 28 |
+
# code generations for problem (index)
|
| 29 |
+
problem_generations = generations[index]
|
| 30 |
+
# get corresponding samples from APPS dataset
|
| 31 |
+
sample = apps_eval[index]
|
| 32 |
+
res = []
|
| 33 |
+
# loop over the generations
|
| 34 |
+
for o_idx, o in enumerate(problem_generations):
|
| 35 |
+
curr_res = [-2]
|
| 36 |
+
try:
|
| 37 |
+
curr_res = test_util.run_test(sample, test=o, debug=debug)
|
| 38 |
+
#if debug:
|
| 39 |
+
print(f"\nSuccessful compilation of task {index}!")
|
| 40 |
+
fixed = []
|
| 41 |
+
for e in curr_res:
|
| 42 |
+
if isinstance(e, np.ndarray):
|
| 43 |
+
e = e.item(0)
|
| 44 |
+
if isinstance(e, np.bool_):
|
| 45 |
+
e = bool(e)
|
| 46 |
+
fixed.append(e)
|
| 47 |
+
curr_res = fixed
|
| 48 |
+
if not np.all(curr_res):
|
| 49 |
+
#if debug:
|
| 50 |
+
print(f"Results were not True for all test cases")
|
| 51 |
+
except Exception as e:
|
| 52 |
+
if debug:
|
| 53 |
+
print(f"Compilation failed, test framework exception = {repr(e)}{e}\n")
|
| 54 |
+
break
|
| 55 |
+
finally:
|
| 56 |
+
assert isinstance(curr_res, list)
|
| 57 |
+
res.append(curr_res)
|
| 58 |
+
results[index] = res
|
| 59 |
+
return results
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def estimate_pass_at_k(num_samples, num_correct, k):
|
| 63 |
+
"""Estimates pass@k of each problem and returns them in an array."""
|
| 64 |
+
|
| 65 |
+
def estimator(n: int, c: int, k: int) -> float:
|
| 66 |
+
"""Calculates 1 - comb(n - c, k) / comb(n, k)."""
|
| 67 |
+
if n - c < k:
|
| 68 |
+
return 1.0
|
| 69 |
+
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
|
| 70 |
+
|
| 71 |
+
if isinstance(num_samples, int):
|
| 72 |
+
num_samples_it = itertools.repeat(num_samples, len(num_correct))
|
| 73 |
+
else:
|
| 74 |
+
assert len(num_samples) == len(num_correct)
|
| 75 |
+
num_samples_it = iter(num_samples)
|
| 76 |
+
|
| 77 |
+
return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def get_results(results: Dict[int, list], count_errors: bool = False, k_list: list = [1, 10, 100]):
|
| 81 |
+
"""
|
| 82 |
+
Given the results evaluated against the testcases we output some statistics.
|
| 83 |
+
For single generations:
|
| 84 |
+
>>> example_results = {0: [[-2]], 1: [[False,False]], 2: [[True,True]], 3: [[False,True,False,True]], 4: [[-1,-1]]}
|
| 85 |
+
>>> get_results(example_results, count_errors=True)
|
| 86 |
+
Computing accuracy metrics...
|
| 87 |
+
number of compile errors = 1 avg = 0.2
|
| 88 |
+
number of runtime errors = 1 avg = 0.2
|
| 89 |
+
number of problems evaluated = 5
|
| 90 |
+
Average Accuracy : 0.3
|
| 91 |
+
Strict Accuracy : 0.2
|
| 92 |
+
{'avg_accuracy': 0.3, 'strict_accuracy': 0.2, 'pass_at_k': None}
|
| 93 |
+
|
| 94 |
+
For multiple generations:
|
| 95 |
+
>>> example_results = {0: [[-2], [True, True, True]], 1: [[-1,-1, -1], [True, False, True]]}
|
| 96 |
+
>>> get_results(example_results, k_list=[1, 2])
|
| 97 |
+
Computing pass@k metric for multiple generations...
|
| 98 |
+
{'pass@1': 0.25, 'pass@2': 0.5}
|
| 99 |
+
{'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 0.25, 'pass@2': 0.5}}
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
+
metrics = {"avg_accuracy": None, "strict_accuracy": None, "pass_at_k": None}
|
| 103 |
+
|
| 104 |
+
if len(results[0]) == 1:
|
| 105 |
+
# for single generations we compute average accuracy and stric accuracy: original APPS metrics
|
| 106 |
+
print("Computing accuracy metrics...")
|
| 107 |
+
res = []
|
| 108 |
+
per_prob_res = []
|
| 109 |
+
all_correct = []
|
| 110 |
+
for index in results:
|
| 111 |
+
problem_results = np.asarray(results[index])
|
| 112 |
+
res.extend(problem_results)
|
| 113 |
+
per_prob_res.append(np.mean(problem_results > 0))
|
| 114 |
+
all_correct.append(np.all(problem_results > 0))
|
| 115 |
+
# we count campilation and runtime errors once per pronlem
|
| 116 |
+
compile_errors = len([e for e in res if -2 in e])
|
| 117 |
+
runtime_errors = len([e for e in res if -1 in e])
|
| 118 |
+
total_testcases = len(res)
|
| 119 |
+
if count_errors:
|
| 120 |
+
print(f"number of compile errors = {compile_errors} avg = {compile_errors / total_testcases}")
|
| 121 |
+
print(f"number of runtime errors = {runtime_errors} avg = {runtime_errors / total_testcases}")
|
| 122 |
+
print(f"number of problems evaluated = {total_testcases}")
|
| 123 |
+
|
| 124 |
+
print(f"Average Accuracy : {np.mean(per_prob_res)}")
|
| 125 |
+
print(f"Strict Accuracy : {np.mean(all_correct)}")
|
| 126 |
+
metrics["avg_accuracy"] = np.mean(per_prob_res)
|
| 127 |
+
metrics["strict_accuracy"] = np.mean(all_correct)
|
| 128 |
+
|
| 129 |
+
else:
|
| 130 |
+
# for multiple generations we use pass@k metric used in the HumanEval benchmark
|
| 131 |
+
# we use strict accuracy, a generation is valid if it has to pass all the tests
|
| 132 |
+
print("Computing pass@k metric for multiple generations...")
|
| 133 |
+
# total is list with nb generations per task (task=index)
|
| 134 |
+
# correct is number of generations that passed all tests per task
|
| 135 |
+
total = []
|
| 136 |
+
correct = []
|
| 137 |
+
for index in results:
|
| 138 |
+
all_correct = []
|
| 139 |
+
for generation in results[index]:
|
| 140 |
+
gen = np.array(generation)
|
| 141 |
+
all_correct.append(np.all(gen>0))
|
| 142 |
+
total.append(len(all_correct))
|
| 143 |
+
correct.append(sum(all_correct))
|
| 144 |
+
total = np.array(total)
|
| 145 |
+
correct = np.array(correct)
|
| 146 |
+
ks = k_list
|
| 147 |
+
pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()}
|
| 148 |
+
print(pass_at_k)
|
| 149 |
+
metrics["pass_at_k"] = pass_at_k
|
| 150 |
+
return metrics
|
| 151 |
+
|
| 152 |
+
def compute_metrics(generations, level="all", k_list=[1, 10, 100], count_errors=True, debug=False):
|
| 153 |
+
"""Return metrics for the given generations.
|
| 154 |
+
Args:
|
| 155 |
+
generations: list of code generations for each problem (each generation is a list of generations)
|
| 156 |
+
k_list: list of k values to compute pass@k when using multiple generations
|
| 157 |
+
count_errors: whether to count compilation and runtime errors when using single generations
|
| 158 |
+
level: difficulty level in APPS dataset that was used for the given generations (from: "all", "introductory", "interview", "competition")
|
| 159 |
+
Returns:
|
| 160 |
+
metrics: dict of metrics
|
| 161 |
+
|
| 162 |
+
Examples:
|
| 163 |
+
|
| 164 |
+
>>> import json
|
| 165 |
+
>>> # lists of solutions to the two first APPS problems (note not all solutions pass all tests)
|
| 166 |
+
>>> solution_sample1 = json.load(open("test_examples/solutions_problem_1.json", "r"))
|
| 167 |
+
>>> solution_sample2 = json.load(open("test_examples/solutions_problem_2.json", "r"))
|
| 168 |
+
>>> single_solutions = [solution_sample1[:1], solution_sample2[:1]]
|
| 169 |
+
>>> compute_metrics(single_solutions, level="all")
|
| 170 |
+
Computing accuracy metrics...
|
| 171 |
+
number of compile errors = 0 avg = 0.0
|
| 172 |
+
number of runtime errors = 0 avg = 0.0
|
| 173 |
+
number of problems evaluated = 2
|
| 174 |
+
Average Accuracy : 1.0
|
| 175 |
+
Strict Accuracy : 1.0
|
| 176 |
+
{'avg_accuracy': 1.0, 'strict_accuracy': 1.0, 'pass_at_k': None}
|
| 177 |
+
>>> multiple_solutions = [solution_sample1[:3], solution_sample2[:3]]
|
| 178 |
+
>>> compute_metrics(multiple_solutions, level="all", k_list=[1, 2, 3])
|
| 179 |
+
Computing pass@k metric for multiple generations...
|
| 180 |
+
{'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}
|
| 181 |
+
{'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}}
|
| 182 |
+
"""
|
| 183 |
+
results = evaluate_generations(generations, level=level, debug=debug)
|
| 184 |
+
metrics = get_results(results, count_errors=count_errors, k_list=k_list)
|
| 185 |
+
return metrics
|
| 186 |
+
|
| 187 |
+
#import doctest
|
| 188 |
+
#doctest.testmod()
|