Spaces:
Paused
Paused
| import logging | |
| import os | |
| from typing import Optional, Union | |
| import requests | |
| import hashlib | |
| from concurrent.futures import ThreadPoolExecutor | |
| from huggingface_hub import snapshot_download | |
| from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever | |
| from langchain_community.retrievers import BM25Retriever | |
| from langchain_core.documents import Document | |
| from open_webui.config import VECTOR_DB | |
| from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT | |
| from open_webui.models.users import UserModel | |
| from open_webui.models.files import Files | |
| from open_webui.retrieval.vector.main import GetResult | |
| from open_webui.env import ( | |
| SRC_LOG_LEVELS, | |
| OFFLINE_MODE, | |
| ENABLE_FORWARD_USER_INFO_HEADERS, | |
| ) | |
| from open_webui.config import ( | |
| RAG_EMBEDDING_QUERY_PREFIX, | |
| RAG_EMBEDDING_CONTENT_PREFIX, | |
| RAG_EMBEDDING_PREFIX_FIELD_NAME, | |
| ) | |
| log = logging.getLogger(__name__) | |
| log.setLevel(SRC_LOG_LEVELS["RAG"]) | |
| from typing import Any | |
| from langchain_core.callbacks import CallbackManagerForRetrieverRun | |
| from langchain_core.retrievers import BaseRetriever | |
| class VectorSearchRetriever(BaseRetriever): | |
| collection_name: Any | |
| embedding_function: Any | |
| top_k: int | |
| def _get_relevant_documents( | |
| self, | |
| query: str, | |
| *, | |
| run_manager: CallbackManagerForRetrieverRun, | |
| ) -> list[Document]: | |
| result = VECTOR_DB_CLIENT.search( | |
| collection_name=self.collection_name, | |
| vectors=[self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX)], | |
| limit=self.top_k, | |
| ) | |
| ids = result.ids[0] | |
| metadatas = result.metadatas[0] | |
| documents = result.documents[0] | |
| results = [] | |
| for idx in range(len(ids)): | |
| results.append( | |
| Document( | |
| metadata=metadatas[idx], | |
| page_content=documents[idx], | |
| ) | |
| ) | |
| return results | |
| def query_doc( | |
| collection_name: str, query_embedding: list[float], k: int, user: UserModel = None | |
| ): | |
| try: | |
| log.debug(f"query_doc:doc {collection_name}") | |
| result = VECTOR_DB_CLIENT.search( | |
| collection_name=collection_name, | |
| vectors=[query_embedding], | |
| limit=k, | |
| ) | |
| if result: | |
| log.info(f"query_doc:result {result.ids} {result.metadatas}") | |
| return result | |
| except Exception as e: | |
| log.exception(f"Error querying doc {collection_name} with limit {k}: {e}") | |
| raise e | |
| def get_doc(collection_name: str, user: UserModel = None): | |
| try: | |
| log.debug(f"get_doc:doc {collection_name}") | |
| result = VECTOR_DB_CLIENT.get(collection_name=collection_name) | |
| if result: | |
| log.info(f"query_doc:result {result.ids} {result.metadatas}") | |
| return result | |
| except Exception as e: | |
| log.exception(f"Error getting doc {collection_name}: {e}") | |
| raise e | |
| def query_doc_with_hybrid_search( | |
| collection_name: str, | |
| collection_result: GetResult, | |
| query: str, | |
| embedding_function, | |
| k: int, | |
| reranking_function, | |
| k_reranker: int, | |
| r: float, | |
| ) -> dict: | |
| try: | |
| log.debug(f"query_doc_with_hybrid_search:doc {collection_name}") | |
| bm25_retriever = BM25Retriever.from_texts( | |
| texts=collection_result.documents[0], | |
| metadatas=collection_result.metadatas[0], | |
| ) | |
| bm25_retriever.k = k | |
| vector_search_retriever = VectorSearchRetriever( | |
| collection_name=collection_name, | |
| embedding_function=embedding_function, | |
| top_k=k, | |
| ) | |
| ensemble_retriever = EnsembleRetriever( | |
| retrievers=[bm25_retriever, vector_search_retriever], weights=[0.5, 0.5] | |
| ) | |
| compressor = RerankCompressor( | |
| embedding_function=embedding_function, | |
| top_n=k_reranker, | |
| reranking_function=reranking_function, | |
| r_score=r, | |
| ) | |
| compression_retriever = ContextualCompressionRetriever( | |
| base_compressor=compressor, base_retriever=ensemble_retriever | |
| ) | |
| result = compression_retriever.invoke(query) | |
| distances = [d.metadata.get("score") for d in result] | |
| documents = [d.page_content for d in result] | |
| metadatas = [d.metadata for d in result] | |
| # retrieve only min(k, k_reranker) items, sort and cut by distance if k < k_reranker | |
| if k < k_reranker: | |
| sorted_items = sorted( | |
| zip(distances, metadatas, documents), key=lambda x: x[0], reverse=True | |
| ) | |
| sorted_items = sorted_items[:k] | |
| distances, documents, metadatas = map(list, zip(*sorted_items)) | |
| result = { | |
| "distances": [distances], | |
| "documents": [documents], | |
| "metadatas": [metadatas], | |
| } | |
| log.info( | |
| "query_doc_with_hybrid_search:result " | |
| + f'{result["metadatas"]} {result["distances"]}' | |
| ) | |
| return result | |
| except Exception as e: | |
| log.exception(f"Error querying doc {collection_name} with hybrid search: {e}") | |
| raise e | |
| def merge_get_results(get_results: list[dict]) -> dict: | |
| # Initialize lists to store combined data | |
| combined_documents = [] | |
| combined_metadatas = [] | |
| combined_ids = [] | |
| for data in get_results: | |
| combined_documents.extend(data["documents"][0]) | |
| combined_metadatas.extend(data["metadatas"][0]) | |
| combined_ids.extend(data["ids"][0]) | |
| # Create the output dictionary | |
| result = { | |
| "documents": [combined_documents], | |
| "metadatas": [combined_metadatas], | |
| "ids": [combined_ids], | |
| } | |
| return result | |
| def merge_and_sort_query_results(query_results: list[dict], k: int) -> dict: | |
| # Initialize lists to store combined data | |
| combined = dict() # To store documents with unique document hashes | |
| for data in query_results: | |
| distances = data["distances"][0] | |
| documents = data["documents"][0] | |
| metadatas = data["metadatas"][0] | |
| for distance, document, metadata in zip(distances, documents, metadatas): | |
| if isinstance(document, str): | |
| doc_hash = hashlib.md5( | |
| document.encode() | |
| ).hexdigest() # Compute a hash for uniqueness | |
| if doc_hash not in combined.keys(): | |
| combined[doc_hash] = (distance, document, metadata) | |
| continue # if doc is new, no further comparison is needed | |
| # if doc is alredy in, but new distance is better, update | |
| if distance > combined[doc_hash][0]: | |
| combined[doc_hash] = (distance, document, metadata) | |
| combined = list(combined.values()) | |
| # Sort the list based on distances | |
| combined.sort(key=lambda x: x[0], reverse=True) | |
| # Slice to keep only the top k elements | |
| sorted_distances, sorted_documents, sorted_metadatas = ( | |
| zip(*combined[:k]) if combined else ([], [], []) | |
| ) | |
| # Create and return the output dictionary | |
| return { | |
| "distances": [list(sorted_distances)], | |
| "documents": [list(sorted_documents)], | |
| "metadatas": [list(sorted_metadatas)], | |
| } | |
| def get_all_items_from_collections(collection_names: list[str]) -> dict: | |
| results = [] | |
| for collection_name in collection_names: | |
| if collection_name: | |
| try: | |
| result = get_doc(collection_name=collection_name) | |
| if result is not None: | |
| results.append(result.model_dump()) | |
| except Exception as e: | |
| log.exception(f"Error when querying the collection: {e}") | |
| else: | |
| pass | |
| return merge_get_results(results) | |
| def query_collection( | |
| collection_names: list[str], | |
| queries: list[str], | |
| embedding_function, | |
| k: int, | |
| ) -> dict: | |
| results = [] | |
| error = False | |
| def process_query_collection(collection_name, query_embedding): | |
| try: | |
| if collection_name: | |
| result = query_doc( | |
| collection_name=collection_name, | |
| k=k, | |
| query_embedding=query_embedding, | |
| ) | |
| if result is not None: | |
| return result.model_dump(), None | |
| return None, None | |
| except Exception as e: | |
| log.exception(f"Error when querying the collection: {e}") | |
| return None, e | |
| # Generate all query embeddings (in one call) | |
| query_embeddings = embedding_function(queries, prefix=RAG_EMBEDDING_QUERY_PREFIX) | |
| log.debug( | |
| f"query_collection: processing {len(queries)} queries across {len(collection_names)} collections" | |
| ) | |
| with ThreadPoolExecutor() as executor: | |
| future_results = [] | |
| for query_embedding in query_embeddings: | |
| for collection_name in collection_names: | |
| result = executor.submit( | |
| process_query_collection, collection_name, query_embedding | |
| ) | |
| future_results.append(result) | |
| task_results = [future.result() for future in future_results] | |
| for result, err in task_results: | |
| if err is not None: | |
| error = True | |
| elif result is not None: | |
| results.append(result) | |
| if error and not results: | |
| log.warning("All collection queries failed. No results returned.") | |
| return merge_and_sort_query_results(results, k=k) | |
| def query_collection_with_hybrid_search( | |
| collection_names: list[str], | |
| queries: list[str], | |
| embedding_function, | |
| k: int, | |
| reranking_function, | |
| k_reranker: int, | |
| r: float, | |
| ) -> dict: | |
| results = [] | |
| error = False | |
| # Fetch collection data once per collection sequentially | |
| # Avoid fetching the same data multiple times later | |
| collection_results = {} | |
| for collection_name in collection_names: | |
| try: | |
| log.debug( | |
| f"query_collection_with_hybrid_search:VECTOR_DB_CLIENT.get:collection {collection_name}" | |
| ) | |
| collection_results[collection_name] = VECTOR_DB_CLIENT.get( | |
| collection_name=collection_name | |
| ) | |
| except Exception as e: | |
| log.exception(f"Failed to fetch collection {collection_name}: {e}") | |
| collection_results[collection_name] = None | |
| log.info( | |
| f"Starting hybrid search for {len(queries)} queries in {len(collection_names)} collections..." | |
| ) | |
| def process_query(collection_name, query): | |
| try: | |
| result = query_doc_with_hybrid_search( | |
| collection_name=collection_name, | |
| collection_result=collection_results[collection_name], | |
| query=query, | |
| embedding_function=embedding_function, | |
| k=k, | |
| reranking_function=reranking_function, | |
| k_reranker=k_reranker, | |
| r=r, | |
| ) | |
| return result, None | |
| except Exception as e: | |
| log.exception(f"Error when querying the collection with hybrid_search: {e}") | |
| return None, e | |
| # Prepare tasks for all collections and queries | |
| # Avoid running any tasks for collections that failed to fetch data (have assigned None) | |
| tasks = [ | |
| (cn, q) | |
| for cn in collection_names | |
| if collection_results[cn] is not None | |
| for q in queries | |
| ] | |
| with ThreadPoolExecutor() as executor: | |
| future_results = [executor.submit(process_query, cn, q) for cn, q in tasks] | |
| task_results = [future.result() for future in future_results] | |
| for result, err in task_results: | |
| if err is not None: | |
| error = True | |
| elif result is not None: | |
| results.append(result) | |
| if error and not results: | |
| raise Exception( | |
| "Hybrid search failed for all collections. Using Non-hybrid search as fallback." | |
| ) | |
| return merge_and_sort_query_results(results, k=k) | |
| def get_embedding_function( | |
| embedding_engine, | |
| embedding_model, | |
| embedding_function, | |
| url, | |
| key, | |
| embedding_batch_size, | |
| ): | |
| if embedding_engine == "": | |
| return lambda query, prefix=None, user=None: embedding_function.encode( | |
| query, **({"prompt": prefix} if prefix else {}) | |
| ).tolist() | |
| elif embedding_engine in ["ollama", "openai"]: | |
| func = lambda query, prefix=None, user=None: generate_embeddings( | |
| engine=embedding_engine, | |
| model=embedding_model, | |
| text=query, | |
| prefix=prefix, | |
| url=url, | |
| key=key, | |
| user=user, | |
| ) | |
| def generate_multiple(query, prefix, user, func): | |
| if isinstance(query, list): | |
| embeddings = [] | |
| for i in range(0, len(query), embedding_batch_size): | |
| embeddings.extend( | |
| func( | |
| query[i : i + embedding_batch_size], | |
| prefix=prefix, | |
| user=user, | |
| ) | |
| ) | |
| return embeddings | |
| else: | |
| return func(query, prefix, user) | |
| return lambda query, prefix=None, user=None: generate_multiple( | |
| query, prefix, user, func | |
| ) | |
| else: | |
| raise ValueError(f"Unknown embedding engine: {embedding_engine}") | |
| def get_sources_from_files( | |
| request, | |
| files, | |
| queries, | |
| embedding_function, | |
| k, | |
| reranking_function, | |
| k_reranker, | |
| r, | |
| hybrid_search, | |
| full_context=False, | |
| ): | |
| log.debug( | |
| f"files: {files} {queries} {embedding_function} {reranking_function} {full_context}" | |
| ) | |
| extracted_collections = [] | |
| relevant_contexts = [] | |
| for file in files: | |
| context = None | |
| if file.get("docs"): | |
| # BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL | |
| context = { | |
| "documents": [[doc.get("content") for doc in file.get("docs")]], | |
| "metadatas": [[doc.get("metadata") for doc in file.get("docs")]], | |
| } | |
| elif file.get("context") == "full": | |
| # Manual Full Mode Toggle | |
| context = { | |
| "documents": [[file.get("file").get("data", {}).get("content")]], | |
| "metadatas": [[{"file_id": file.get("id"), "name": file.get("name")}]], | |
| } | |
| elif ( | |
| file.get("type") != "web_search" | |
| and request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL | |
| ): | |
| # BYPASS_EMBEDDING_AND_RETRIEVAL | |
| if file.get("type") == "collection": | |
| file_ids = file.get("data", {}).get("file_ids", []) | |
| documents = [] | |
| metadatas = [] | |
| for file_id in file_ids: | |
| file_object = Files.get_file_by_id(file_id) | |
| if file_object: | |
| documents.append(file_object.data.get("content", "")) | |
| metadatas.append( | |
| { | |
| "file_id": file_id, | |
| "name": file_object.filename, | |
| "source": file_object.filename, | |
| } | |
| ) | |
| context = { | |
| "documents": [documents], | |
| "metadatas": [metadatas], | |
| } | |
| elif file.get("id"): | |
| file_object = Files.get_file_by_id(file.get("id")) | |
| if file_object: | |
| context = { | |
| "documents": [[file_object.data.get("content", "")]], | |
| "metadatas": [ | |
| [ | |
| { | |
| "file_id": file.get("id"), | |
| "name": file_object.filename, | |
| "source": file_object.filename, | |
| } | |
| ] | |
| ], | |
| } | |
| elif file.get("file").get("data"): | |
| context = { | |
| "documents": [[file.get("file").get("data", {}).get("content")]], | |
| "metadatas": [ | |
| [file.get("file").get("data", {}).get("metadata", {})] | |
| ], | |
| } | |
| else: | |
| collection_names = [] | |
| if file.get("type") == "collection": | |
| if file.get("legacy"): | |
| collection_names = file.get("collection_names", []) | |
| else: | |
| collection_names.append(file["id"]) | |
| elif file.get("collection_name"): | |
| collection_names.append(file["collection_name"]) | |
| elif file.get("id"): | |
| if file.get("legacy"): | |
| collection_names.append(f"{file['id']}") | |
| else: | |
| collection_names.append(f"file-{file['id']}") | |
| collection_names = set(collection_names).difference(extracted_collections) | |
| if not collection_names: | |
| log.debug(f"skipping {file} as it has already been extracted") | |
| continue | |
| if full_context: | |
| try: | |
| context = get_all_items_from_collections(collection_names) | |
| except Exception as e: | |
| log.exception(e) | |
| else: | |
| try: | |
| context = None | |
| if file.get("type") == "text": | |
| context = file["content"] | |
| else: | |
| if hybrid_search: | |
| try: | |
| context = query_collection_with_hybrid_search( | |
| collection_names=collection_names, | |
| queries=queries, | |
| embedding_function=embedding_function, | |
| k=k, | |
| reranking_function=reranking_function, | |
| k_reranker=k_reranker, | |
| r=r, | |
| ) | |
| except Exception as e: | |
| log.debug( | |
| "Error when using hybrid search, using" | |
| " non hybrid search as fallback." | |
| ) | |
| if (not hybrid_search) or (context is None): | |
| context = query_collection( | |
| collection_names=collection_names, | |
| queries=queries, | |
| embedding_function=embedding_function, | |
| k=k, | |
| ) | |
| except Exception as e: | |
| log.exception(e) | |
| extracted_collections.extend(collection_names) | |
| if context: | |
| if "data" in file: | |
| del file["data"] | |
| relevant_contexts.append({**context, "file": file}) | |
| sources = [] | |
| for context in relevant_contexts: | |
| try: | |
| if "documents" in context: | |
| if "metadatas" in context: | |
| source = { | |
| "source": context["file"], | |
| "document": context["documents"][0], | |
| "metadata": context["metadatas"][0], | |
| } | |
| if "distances" in context and context["distances"]: | |
| source["distances"] = context["distances"][0] | |
| sources.append(source) | |
| except Exception as e: | |
| log.exception(e) | |
| return sources | |
| def get_model_path(model: str, update_model: bool = False): | |
| # Construct huggingface_hub kwargs with local_files_only to return the snapshot path | |
| cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME") | |
| local_files_only = not update_model | |
| if OFFLINE_MODE: | |
| local_files_only = True | |
| snapshot_kwargs = { | |
| "cache_dir": cache_dir, | |
| "local_files_only": local_files_only, | |
| } | |
| log.debug(f"model: {model}") | |
| log.debug(f"snapshot_kwargs: {snapshot_kwargs}") | |
| # Inspiration from upstream sentence_transformers | |
| if ( | |
| os.path.exists(model) | |
| or ("\\" in model or model.count("/") > 1) | |
| and local_files_only | |
| ): | |
| # If fully qualified path exists, return input, else set repo_id | |
| return model | |
| elif "/" not in model: | |
| # Set valid repo_id for model short-name | |
| model = "sentence-transformers" + "/" + model | |
| snapshot_kwargs["repo_id"] = model | |
| # Attempt to query the huggingface_hub library to determine the local path and/or to update | |
| try: | |
| model_repo_path = snapshot_download(**snapshot_kwargs) | |
| log.debug(f"model_repo_path: {model_repo_path}") | |
| return model_repo_path | |
| except Exception as e: | |
| log.exception(f"Cannot determine model snapshot path: {e}") | |
| return model | |
| def generate_openai_batch_embeddings( | |
| model: str, | |
| texts: list[str], | |
| url: str = "https://api.openai.com/v1", | |
| key: str = "", | |
| prefix: str = None, | |
| user: UserModel = None, | |
| ) -> Optional[list[list[float]]]: | |
| try: | |
| log.debug( | |
| f"generate_openai_batch_embeddings:model {model} batch size: {len(texts)}" | |
| ) | |
| json_data = {"input": texts, "model": model} | |
| if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str): | |
| json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix | |
| r = requests.post( | |
| f"{url}/embeddings", | |
| headers={ | |
| "Content-Type": "application/json", | |
| "Authorization": f"Bearer {key}", | |
| **( | |
| { | |
| "X-OpenWebUI-User-Name": user.name, | |
| "X-OpenWebUI-User-Id": user.id, | |
| "X-OpenWebUI-User-Email": user.email, | |
| "X-OpenWebUI-User-Role": user.role, | |
| } | |
| if ENABLE_FORWARD_USER_INFO_HEADERS and user | |
| else {} | |
| ), | |
| }, | |
| json=json_data, | |
| ) | |
| r.raise_for_status() | |
| data = r.json() | |
| if "data" in data: | |
| return [elem["embedding"] for elem in data["data"]] | |
| else: | |
| raise "Something went wrong :/" | |
| except Exception as e: | |
| log.exception(f"Error generating openai batch embeddings: {e}") | |
| return None | |
| def generate_ollama_batch_embeddings( | |
| model: str, | |
| texts: list[str], | |
| url: str, | |
| key: str = "", | |
| prefix: str = None, | |
| user: UserModel = None, | |
| ) -> Optional[list[list[float]]]: | |
| try: | |
| log.debug( | |
| f"generate_ollama_batch_embeddings:model {model} batch size: {len(texts)}" | |
| ) | |
| json_data = {"input": texts, "model": model} | |
| if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str): | |
| json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix | |
| r = requests.post( | |
| f"{url}/api/embed", | |
| headers={ | |
| "Content-Type": "application/json", | |
| "Authorization": f"Bearer {key}", | |
| **( | |
| { | |
| "X-OpenWebUI-User-Name": user.name, | |
| "X-OpenWebUI-User-Id": user.id, | |
| "X-OpenWebUI-User-Email": user.email, | |
| "X-OpenWebUI-User-Role": user.role, | |
| } | |
| if ENABLE_FORWARD_USER_INFO_HEADERS | |
| else {} | |
| ), | |
| }, | |
| json=json_data, | |
| ) | |
| r.raise_for_status() | |
| data = r.json() | |
| if "embeddings" in data: | |
| return data["embeddings"] | |
| else: | |
| raise "Something went wrong :/" | |
| except Exception as e: | |
| log.exception(f"Error generating ollama batch embeddings: {e}") | |
| return None | |
| def generate_embeddings( | |
| engine: str, | |
| model: str, | |
| text: Union[str, list[str]], | |
| prefix: Union[str, None] = None, | |
| **kwargs, | |
| ): | |
| url = kwargs.get("url", "") | |
| key = kwargs.get("key", "") | |
| user = kwargs.get("user") | |
| if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None: | |
| if isinstance(text, list): | |
| text = [f"{prefix}{text_element}" for text_element in text] | |
| else: | |
| text = f"{prefix}{text}" | |
| if engine == "ollama": | |
| if isinstance(text, list): | |
| embeddings = generate_ollama_batch_embeddings( | |
| **{ | |
| "model": model, | |
| "texts": text, | |
| "url": url, | |
| "key": key, | |
| "prefix": prefix, | |
| "user": user, | |
| } | |
| ) | |
| else: | |
| embeddings = generate_ollama_batch_embeddings( | |
| **{ | |
| "model": model, | |
| "texts": [text], | |
| "url": url, | |
| "key": key, | |
| "prefix": prefix, | |
| "user": user, | |
| } | |
| ) | |
| return embeddings[0] if isinstance(text, str) else embeddings | |
| elif engine == "openai": | |
| if isinstance(text, list): | |
| embeddings = generate_openai_batch_embeddings( | |
| model, text, url, key, prefix, user | |
| ) | |
| else: | |
| embeddings = generate_openai_batch_embeddings( | |
| model, [text], url, key, prefix, user | |
| ) | |
| return embeddings[0] if isinstance(text, str) else embeddings | |
| import operator | |
| from typing import Optional, Sequence | |
| from langchain_core.callbacks import Callbacks | |
| from langchain_core.documents import BaseDocumentCompressor, Document | |
| class RerankCompressor(BaseDocumentCompressor): | |
| embedding_function: Any | |
| top_n: int | |
| reranking_function: Any | |
| r_score: float | |
| class Config: | |
| extra = "forbid" | |
| arbitrary_types_allowed = True | |
| def compress_documents( | |
| self, | |
| documents: Sequence[Document], | |
| query: str, | |
| callbacks: Optional[Callbacks] = None, | |
| ) -> Sequence[Document]: | |
| reranking = self.reranking_function is not None | |
| if reranking: | |
| scores = self.reranking_function.predict( | |
| [(query, doc.page_content) for doc in documents] | |
| ) | |
| else: | |
| from sentence_transformers import util | |
| query_embedding = self.embedding_function(query, RAG_EMBEDDING_QUERY_PREFIX) | |
| document_embedding = self.embedding_function( | |
| [doc.page_content for doc in documents], RAG_EMBEDDING_CONTENT_PREFIX | |
| ) | |
| scores = util.cos_sim(query_embedding, document_embedding)[0] | |
| docs_with_scores = list(zip(documents, scores.tolist())) | |
| if self.r_score: | |
| docs_with_scores = [ | |
| (d, s) for d, s in docs_with_scores if s >= self.r_score | |
| ] | |
| result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True) | |
| final_results = [] | |
| for doc, doc_score in result[: self.top_n]: | |
| metadata = doc.metadata | |
| metadata["score"] = doc_score | |
| doc = Document( | |
| page_content=doc.page_content, | |
| metadata=metadata, | |
| ) | |
| final_results.append(doc) | |
| return final_results | |