Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -253,14 +253,16 @@ def predict(
|
|
| 253 |
|
| 254 |
wav_chunks = []
|
| 255 |
## Direct mode
|
| 256 |
-
|
| 257 |
print("I: Generating new audio...")
|
| 258 |
t0 = time.time()
|
| 259 |
out = model.inference(
|
| 260 |
prompt,
|
| 261 |
language,
|
| 262 |
gpt_cond_latent,
|
| 263 |
-
speaker_embedding
|
|
|
|
|
|
|
| 264 |
)
|
| 265 |
inference_time = time.time() - t0
|
| 266 |
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
|
|
@@ -269,8 +271,9 @@ def predict(
|
|
| 269 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 270 |
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 271 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
| 272 |
-
"""
|
| 273 |
|
|
|
|
|
|
|
| 274 |
print("I: Generating new audio in streaming mode...")
|
| 275 |
t0 = time.time()
|
| 276 |
chunks = model.inference_stream(
|
|
@@ -305,6 +308,7 @@ def predict(
|
|
| 305 |
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 306 |
|
| 307 |
torchaudio.save("output.wav", wav.squeeze().unsqueeze(0).cpu(), 24000)
|
|
|
|
| 308 |
|
| 309 |
except RuntimeError as e:
|
| 310 |
if "device-side assert" in str(e):
|
|
|
|
| 253 |
|
| 254 |
wav_chunks = []
|
| 255 |
## Direct mode
|
| 256 |
+
|
| 257 |
print("I: Generating new audio...")
|
| 258 |
t0 = time.time()
|
| 259 |
out = model.inference(
|
| 260 |
prompt,
|
| 261 |
language,
|
| 262 |
gpt_cond_latent,
|
| 263 |
+
speaker_embedding,
|
| 264 |
+
repetition_penalty=5.0,
|
| 265 |
+
temperature=0.75,
|
| 266 |
)
|
| 267 |
inference_time = time.time() - t0
|
| 268 |
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
|
|
|
|
| 271 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 272 |
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 273 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
|
|
|
| 274 |
|
| 275 |
+
|
| 276 |
+
"""
|
| 277 |
print("I: Generating new audio in streaming mode...")
|
| 278 |
t0 = time.time()
|
| 279 |
chunks = model.inference_stream(
|
|
|
|
| 308 |
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 309 |
|
| 310 |
torchaudio.save("output.wav", wav.squeeze().unsqueeze(0).cpu(), 24000)
|
| 311 |
+
"""
|
| 312 |
|
| 313 |
except RuntimeError as e:
|
| 314 |
if "device-side assert" in str(e):
|