Add simple progress reporting.
Browse files
app.py
CHANGED
|
@@ -89,9 +89,14 @@ def on_model_change(model):
|
|
| 89 |
model_type = None
|
| 90 |
|
| 91 |
|
| 92 |
-
def convert_model(preprocessor, model, model_coreml_config,
|
|
|
|
|
|
|
|
|
|
| 93 |
coreml_config = model_coreml_config(model.config, use_past=use_past, seq2seq=seq2seq)
|
| 94 |
|
|
|
|
|
|
|
| 95 |
mlmodel = export(
|
| 96 |
preprocessor,
|
| 97 |
model,
|
|
@@ -109,12 +114,14 @@ def convert_model(preprocessor, model, model_coreml_config, compute_units, preci
|
|
| 109 |
|
| 110 |
mlmodel.save(filename)
|
| 111 |
|
|
|
|
| 112 |
if tolerance is None:
|
| 113 |
tolerance = coreml_config.atol_for_validation
|
| 114 |
validate_model_outputs(coreml_config, preprocessor, model, mlmodel, tolerance)
|
|
|
|
| 115 |
|
| 116 |
|
| 117 |
-
def convert(model, task, compute_units, precision, tolerance, framework):
|
| 118 |
model = url_to_model_id(model)
|
| 119 |
compute_units = compute_units_mapping[compute_units]
|
| 120 |
precision = precision_mapping[precision]
|
|
@@ -127,12 +134,13 @@ def convert(model, task, compute_units, precision, tolerance, framework):
|
|
| 127 |
output = output/f"{precision}_model.mlpackage"
|
| 128 |
|
| 129 |
try:
|
|
|
|
|
|
|
| 130 |
preprocessor = get_preprocessor(model)
|
| 131 |
model = FeaturesManager.get_model_from_feature(task, model, framework=framework)
|
| 132 |
_, model_coreml_config = FeaturesManager.check_supported_model_or_raise(model, feature=task)
|
| 133 |
|
| 134 |
if task in ["seq2seq-lm", "speech-seq2seq"]:
|
| 135 |
-
# Convert encoder / decoder
|
| 136 |
convert_model(
|
| 137 |
preprocessor,
|
| 138 |
model,
|
|
@@ -141,8 +149,12 @@ def convert(model, task, compute_units, precision, tolerance, framework):
|
|
| 141 |
precision,
|
| 142 |
tolerance,
|
| 143 |
output,
|
| 144 |
-
seq2seq="encoder"
|
|
|
|
|
|
|
|
|
|
| 145 |
)
|
|
|
|
| 146 |
convert_model(
|
| 147 |
preprocessor,
|
| 148 |
model,
|
|
@@ -151,7 +163,10 @@ def convert(model, task, compute_units, precision, tolerance, framework):
|
|
| 151 |
precision,
|
| 152 |
tolerance,
|
| 153 |
output,
|
| 154 |
-
seq2seq="decoder"
|
|
|
|
|
|
|
|
|
|
| 155 |
)
|
| 156 |
else:
|
| 157 |
convert_model(
|
|
@@ -162,9 +177,12 @@ def convert(model, task, compute_units, precision, tolerance, framework):
|
|
| 162 |
precision,
|
| 163 |
tolerance,
|
| 164 |
output,
|
|
|
|
|
|
|
| 165 |
)
|
| 166 |
|
| 167 |
# TODO: push to hub, whatever
|
|
|
|
| 168 |
return "Done"
|
| 169 |
except Exception as e:
|
| 170 |
return error_str(e)
|
|
|
|
| 89 |
model_type = None
|
| 90 |
|
| 91 |
|
| 92 |
+
def convert_model(preprocessor, model, model_coreml_config,
|
| 93 |
+
compute_units, precision, tolerance, output,
|
| 94 |
+
use_past=False, seq2seq=None,
|
| 95 |
+
progress=None, progress_start=0.1, progress_end=0.8):
|
| 96 |
coreml_config = model_coreml_config(model.config, use_past=use_past, seq2seq=seq2seq)
|
| 97 |
|
| 98 |
+
model_label = "model" if seq2seq is None else seq2seq
|
| 99 |
+
progress(progress_start, desc=f"Converting {model_label}")
|
| 100 |
mlmodel = export(
|
| 101 |
preprocessor,
|
| 102 |
model,
|
|
|
|
| 114 |
|
| 115 |
mlmodel.save(filename)
|
| 116 |
|
| 117 |
+
progress(progress_end * 0.8, desc=f"Validating {model_label}")
|
| 118 |
if tolerance is None:
|
| 119 |
tolerance = coreml_config.atol_for_validation
|
| 120 |
validate_model_outputs(coreml_config, preprocessor, model, mlmodel, tolerance)
|
| 121 |
+
progress(progress_end, desc=f"Done converting {model_label}")
|
| 122 |
|
| 123 |
|
| 124 |
+
def convert(model, task, compute_units, precision, tolerance, framework, progress=gr.Progress()):
|
| 125 |
model = url_to_model_id(model)
|
| 126 |
compute_units = compute_units_mapping[compute_units]
|
| 127 |
precision = precision_mapping[precision]
|
|
|
|
| 134 |
output = output/f"{precision}_model.mlpackage"
|
| 135 |
|
| 136 |
try:
|
| 137 |
+
progress(0, desc="Downloading model")
|
| 138 |
+
|
| 139 |
preprocessor = get_preprocessor(model)
|
| 140 |
model = FeaturesManager.get_model_from_feature(task, model, framework=framework)
|
| 141 |
_, model_coreml_config = FeaturesManager.check_supported_model_or_raise(model, feature=task)
|
| 142 |
|
| 143 |
if task in ["seq2seq-lm", "speech-seq2seq"]:
|
|
|
|
| 144 |
convert_model(
|
| 145 |
preprocessor,
|
| 146 |
model,
|
|
|
|
| 149 |
precision,
|
| 150 |
tolerance,
|
| 151 |
output,
|
| 152 |
+
seq2seq="encoder",
|
| 153 |
+
progress=progress,
|
| 154 |
+
progress_start=0.1,
|
| 155 |
+
progress_end=0.45,
|
| 156 |
)
|
| 157 |
+
progress(0.6, desc="Converting decoder")
|
| 158 |
convert_model(
|
| 159 |
preprocessor,
|
| 160 |
model,
|
|
|
|
| 163 |
precision,
|
| 164 |
tolerance,
|
| 165 |
output,
|
| 166 |
+
seq2seq="decoder",
|
| 167 |
+
progress=progress,
|
| 168 |
+
progress_start=0.45,
|
| 169 |
+
progress_end=0.8,
|
| 170 |
)
|
| 171 |
else:
|
| 172 |
convert_model(
|
|
|
|
| 177 |
precision,
|
| 178 |
tolerance,
|
| 179 |
output,
|
| 180 |
+
progress=progress,
|
| 181 |
+
progress_end=0.8,
|
| 182 |
)
|
| 183 |
|
| 184 |
# TODO: push to hub, whatever
|
| 185 |
+
progress(1, "Done")
|
| 186 |
return "Done"
|
| 187 |
except Exception as e:
|
| 188 |
return error_str(e)
|