Spaces:
Runtime error
Runtime error
| import io | |
| from typing import Any, Dict, List, Optional, Union | |
| from .constants import INFERENCE_ENDPOINT | |
| from .hf_api import HfApi | |
| from .utils import build_hf_headers, get_session, is_pillow_available, logging, validate_hf_hub_args | |
| from .utils._deprecation import _deprecate_method | |
| logger = logging.get_logger(__name__) | |
| ALL_TASKS = [ | |
| # NLP | |
| "text-classification", | |
| "token-classification", | |
| "table-question-answering", | |
| "question-answering", | |
| "zero-shot-classification", | |
| "translation", | |
| "summarization", | |
| "conversational", | |
| "feature-extraction", | |
| "text-generation", | |
| "text2text-generation", | |
| "fill-mask", | |
| "sentence-similarity", | |
| # Audio | |
| "text-to-speech", | |
| "automatic-speech-recognition", | |
| "audio-to-audio", | |
| "audio-classification", | |
| "voice-activity-detection", | |
| # Computer vision | |
| "image-classification", | |
| "object-detection", | |
| "image-segmentation", | |
| "text-to-image", | |
| "image-to-image", | |
| # Others | |
| "tabular-classification", | |
| "tabular-regression", | |
| ] | |
| class InferenceApi: | |
| """Client to configure requests and make calls to the HuggingFace Inference API. | |
| Example: | |
| ```python | |
| >>> from huggingface_hub.inference_api import InferenceApi | |
| >>> # Mask-fill example | |
| >>> inference = InferenceApi("bert-base-uncased") | |
| >>> inference(inputs="The goal of life is [MASK].") | |
| [{'sequence': 'the goal of life is life.', 'score': 0.10933292657136917, 'token': 2166, 'token_str': 'life'}] | |
| >>> # Question Answering example | |
| >>> inference = InferenceApi("deepset/roberta-base-squad2") | |
| >>> inputs = { | |
| ... "question": "What's my name?", | |
| ... "context": "My name is Clara and I live in Berkeley.", | |
| ... } | |
| >>> inference(inputs) | |
| {'score': 0.9326569437980652, 'start': 11, 'end': 16, 'answer': 'Clara'} | |
| >>> # Zero-shot example | |
| >>> inference = InferenceApi("typeform/distilbert-base-uncased-mnli") | |
| >>> inputs = "Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!" | |
| >>> params = {"candidate_labels": ["refund", "legal", "faq"]} | |
| >>> inference(inputs, params) | |
| {'sequence': 'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!', 'labels': ['refund', 'faq', 'legal'], 'scores': [0.9378499388694763, 0.04914155602455139, 0.013008488342165947]} | |
| >>> # Overriding configured task | |
| >>> inference = InferenceApi("bert-base-uncased", task="feature-extraction") | |
| >>> # Text-to-image | |
| >>> inference = InferenceApi("stabilityai/stable-diffusion-2-1") | |
| >>> inference("cat") | |
| <PIL.PngImagePlugin.PngImageFile image (...)> | |
| >>> # Return as raw response to parse the output yourself | |
| >>> inference = InferenceApi("mio/amadeus") | |
| >>> response = inference("hello world", raw_response=True) | |
| >>> response.headers | |
| {"Content-Type": "audio/flac", ...} | |
| >>> response.content # raw bytes from server | |
| b'(...)' | |
| ``` | |
| """ | |
| def __init__( | |
| self, | |
| repo_id: str, | |
| task: Optional[str] = None, | |
| token: Optional[str] = None, | |
| gpu: bool = False, | |
| ): | |
| """Inits headers and API call information. | |
| Args: | |
| repo_id (``str``): | |
| Id of repository (e.g. `user/bert-base-uncased`). | |
| task (``str``, `optional`, defaults ``None``): | |
| Whether to force a task instead of using task specified in the | |
| repository. | |
| token (`str`, `optional`): | |
| The API token to use as HTTP bearer authorization. This is not | |
| the authentication token. You can find the token in | |
| https://huggingface.co/settings/token. Alternatively, you can | |
| find both your organizations and personal API tokens using | |
| `HfApi().whoami(token)`. | |
| gpu (`bool`, `optional`, defaults `False`): | |
| Whether to use GPU instead of CPU for inference(requires Startup | |
| plan at least). | |
| """ | |
| self.options = {"wait_for_model": True, "use_gpu": gpu} | |
| self.headers = build_hf_headers(token=token) | |
| # Configure task | |
| model_info = HfApi(token=token).model_info(repo_id=repo_id) | |
| if not model_info.pipeline_tag and not task: | |
| raise ValueError( | |
| "Task not specified in the repository. Please add it to the model card" | |
| " using pipeline_tag" | |
| " (https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined)" | |
| ) | |
| if task and task != model_info.pipeline_tag: | |
| if task not in ALL_TASKS: | |
| raise ValueError(f"Invalid task {task}. Make sure it's valid.") | |
| logger.warning( | |
| "You're using a different task than the one specified in the" | |
| " repository. Be sure to know what you're doing :)" | |
| ) | |
| self.task = task | |
| else: | |
| assert model_info.pipeline_tag is not None, "Pipeline tag cannot be None" | |
| self.task = model_info.pipeline_tag | |
| self.api_url = f"{INFERENCE_ENDPOINT}/pipeline/{self.task}/{repo_id}" | |
| def __repr__(self): | |
| # Do not add headers to repr to avoid leaking token. | |
| return f"InferenceAPI(api_url='{self.api_url}', task='{self.task}', options={self.options})" | |
| def __call__( | |
| self, | |
| inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None, | |
| params: Optional[Dict] = None, | |
| data: Optional[bytes] = None, | |
| raw_response: bool = False, | |
| ) -> Any: | |
| """Make a call to the Inference API. | |
| Args: | |
| inputs (`str` or `Dict` or `List[str]` or `List[List[str]]`, *optional*): | |
| Inputs for the prediction. | |
| params (`Dict`, *optional*): | |
| Additional parameters for the models. Will be sent as `parameters` in the | |
| payload. | |
| data (`bytes`, *optional*): | |
| Bytes content of the request. In this case, leave `inputs` and `params` empty. | |
| raw_response (`bool`, defaults to `False`): | |
| If `True`, the raw `Response` object is returned. You can parse its content | |
| as preferred. By default, the content is parsed into a more practical format | |
| (json dictionary or PIL Image for example). | |
| """ | |
| # Build payload | |
| payload: Dict[str, Any] = { | |
| "options": self.options, | |
| } | |
| if inputs: | |
| payload["inputs"] = inputs | |
| if params: | |
| payload["parameters"] = params | |
| # Make API call | |
| response = get_session().post(self.api_url, headers=self.headers, json=payload, data=data) | |
| # Let the user handle the response | |
| if raw_response: | |
| return response | |
| # By default, parse the response for the user. | |
| content_type = response.headers.get("Content-Type") or "" | |
| if content_type.startswith("image"): | |
| if not is_pillow_available(): | |
| raise ImportError( | |
| f"Task '{self.task}' returned as image but Pillow is not installed." | |
| " Please install it (`pip install Pillow`) or pass" | |
| " `raw_response=True` to get the raw `Response` object and parse" | |
| " the image by yourself." | |
| ) | |
| from PIL import Image | |
| return Image.open(io.BytesIO(response.content)) | |
| elif content_type == "application/json": | |
| return response.json() | |
| else: | |
| raise NotImplementedError( | |
| f"{content_type} output type is not implemented yet. You can pass" | |
| " `raw_response=True` to get the raw `Response` object and parse the" | |
| " output by yourself." | |
| ) | |