Spaces:
Runtime error
Runtime error
| import argparse | |
| import time | |
| import torch | |
| import os | |
| import json | |
| from tqdm import tqdm | |
| import shortuuid | |
| from tinyllava.utils import * | |
| from tinyllava.data import * | |
| from tinyllava.model import * | |
| from torch.utils.data import Dataset, DataLoader | |
| from PIL import Image | |
| import math | |
| def split_list(lst, n): | |
| """Split a list into n (roughly) equal-sized chunks""" | |
| chunk_size = math.ceil(len(lst) / n) # integer division | |
| return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
| def get_chunk(lst, n, k): | |
| chunks = split_list(lst, n) | |
| return chunks[k] | |
| # Custom dataset class | |
| class CustomDataset(Dataset): | |
| def __init__(self, questions, image_folder, text_processor, image_processor): | |
| self.questions = questions | |
| self.image_folder = image_folder | |
| self.text_processor = text_processor | |
| self.image_processor = image_processor | |
| def __getitem__(self, index): | |
| line = self.questions[index] | |
| image_file = line["image"] | |
| qs = line["text"] | |
| image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB') | |
| image_tensor = self.image_processor(image) | |
| qs = DEFAULT_IMAGE_TOKEN + '\n' + qs | |
| msg = Message() | |
| msg.add_message(qs) | |
| #print(prompt) | |
| result = self.text_processor(msg.messages, mode='eval') | |
| input_ids = result['input_ids'] | |
| return input_ids, image_tensor, image.size | |
| def __len__(self): | |
| return len(self.questions) | |
| def collate_fn(batch): | |
| input_ids, image_tensors, image_sizes = zip(*batch) | |
| input_ids = torch.stack(input_ids, dim=0) | |
| image_tensors = torch.stack(image_tensors, dim=0) | |
| return input_ids, image_tensors, image_sizes | |
| # DataLoader | |
| def create_data_loader(questions, image_folder, text_processor, image_processor, batch_size=1, num_workers=4): | |
| assert batch_size == 1, "batch_size must be 1" | |
| dataset = CustomDataset(questions, image_folder, text_processor, image_processor) | |
| data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn) | |
| return data_loader | |
| def eval_model(args): | |
| # Model | |
| disable_torch_init() | |
| model_path = os.path.expanduser(args.model_path) | |
| model, tokenizer, image_processor, context_len = load_pretrained_model(model_path) | |
| text_processor = TextPreprocess(tokenizer, args.conv_mode) | |
| data_args = model.config | |
| image_processor = ImagePreprocess(image_processor, data_args) | |
| questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] | |
| questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
| answers_file = os.path.expanduser(args.answers_file) | |
| os.makedirs(os.path.dirname(answers_file), exist_ok=True) | |
| ans_file = open(answers_file, "w") | |
| data_loader = create_data_loader(questions, args.image_folder, text_processor, image_processor) | |
| # print("Tokenizer's eos token: ", tokenizer.eos_token) | |
| model.to(device='cuda') | |
| for (input_ids, image_tensor, image_sizes), line in tqdm(zip(data_loader, questions), total=len(questions)): | |
| idx = line["question_id"] | |
| cur_prompt = line["text"] | |
| # keywords = [tokenizer.eos_token] | |
| # stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
| input_ids = input_ids.to(device='cuda', non_blocking=True) | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True), | |
| pad_token_id=tokenizer.pad_token_id, | |
| do_sample=True if args.temperature > 0 else False, | |
| temperature=args.temperature, | |
| top_p=args.top_p, | |
| num_beams=args.num_beams, | |
| max_new_tokens=args.max_new_tokens, | |
| # stopping_criteria=[stopping_criteria], | |
| image_sizes=image_sizes, | |
| use_cache=True) | |
| outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
| # print("Printing outputs") | |
| # print(outputs) | |
| # time.sleep(5) | |
| ans_id = shortuuid.uuid() | |
| ans_file.write(json.dumps({"question_id": idx, | |
| "prompt": cur_prompt, | |
| "text": outputs, | |
| "answer_id": ans_id, | |
| "model_id": args.model_base, | |
| "metadata": {}}) + "\n") | |
| # ans_file.flush() | |
| ans_file.close() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
| parser.add_argument("--model-base", type=str, default=None) | |
| parser.add_argument("--image-folder", type=str, default="") | |
| parser.add_argument("--question-file", type=str, default="tables/question.jsonl") | |
| parser.add_argument("--answers-file", type=str, default="answer.jsonl") | |
| parser.add_argument("--conv-mode", type=str, default="llama") | |
| parser.add_argument("--num-chunks", type=int, default=1) | |
| parser.add_argument("--chunk-idx", type=int, default=0) | |
| parser.add_argument("--temperature", type=float, default=0.2) | |
| parser.add_argument("--top_p", type=float, default=None) | |
| parser.add_argument("--num_beams", type=int, default=1) | |
| parser.add_argument("--max_new_tokens", type=int, default=128) | |
| parser.add_argument("--image_aspect_ratio", type=str, default="pad") | |
| args = parser.parse_args() | |
| eval_model(args) | |