Spaces:
Runtime error
Runtime error
| import argparse | |
| import torch | |
| import os | |
| import json | |
| import random | |
| import numpy as np | |
| from tqdm import tqdm | |
| import shortuuid | |
| from tinyllava.utils import * | |
| from tinyllava.data import * | |
| from tinyllava.model import * | |
| from PIL import Image | |
| import math | |
| def split_list(lst, n): | |
| """Split a list into n (roughly) equal-sized chunks""" | |
| chunk_size = math.ceil(len(lst) / n) # integer division | |
| return [lst[i : i + chunk_size] for i in range(0, len(lst), chunk_size)] | |
| def get_chunk(lst, n, k): | |
| chunks = split_list(lst, n) | |
| return chunks[k] | |
| def parse_multi_choice_response(response, all_choices, index2ans): | |
| """ | |
| Parse the prediction from the generated response. | |
| Return the predicted index e.g., A, B, C, D. | |
| """ | |
| for char in [",", ".", "!", "?", ";", ":", "'"]: | |
| response = response.strip(char) | |
| response = " " + response + " " # add space to avoid partial match | |
| index_ans = True | |
| ans_with_brack = False | |
| candidates = [] | |
| for choice in all_choices: # e.g., (A) (B) (C) (D) | |
| if f"({choice})" in response: | |
| candidates.append(choice) | |
| ans_with_brack = True | |
| if len(candidates) == 0: | |
| for choice in all_choices: # e.g., A B C D | |
| if f" {choice} " in response: | |
| candidates.append(choice) | |
| # if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example | |
| if len(candidates) == 0 and len(response.split()) > 5: | |
| for index, ans in index2ans.items(): | |
| if ans.lower() in response.lower(): | |
| candidates.append(index) | |
| index_ans = False # it's content ans. | |
| if len(candidates) == 0: # still not get answer, randomly choose one. | |
| pred_index = random.choice(all_choices) | |
| elif len(candidates) > 1: | |
| start_indexes = [] | |
| if index_ans: | |
| if ans_with_brack: | |
| for can in candidates: | |
| index = response.rfind(f"({can})") | |
| start_indexes.append(index) # -1 will be ignored anyway | |
| # start_indexes = [generated_response.index(f'({can})') for can in candidates] | |
| else: | |
| for can in candidates: | |
| index = response.rfind(f" {can} ") | |
| start_indexes.append(index) | |
| else: | |
| for can in candidates: | |
| index = response.lower().rfind(index2ans[can].lower()) | |
| start_indexes.append(index) | |
| # get the last one | |
| pred_index = candidates[np.argmax(start_indexes)] | |
| else: # if only one candidate, use it. | |
| pred_index = candidates[0] | |
| return pred_index | |
| def eval_model(args): | |
| # Model | |
| disable_torch_init() | |
| model_path = os.path.expanduser(args.model_path) | |
| model, tokenizer, image_processor, context_len = load_pretrained_model(model_path) | |
| text_processor = TextPreprocess(tokenizer, args.conv_mode) | |
| data_args = model.config | |
| image_processor = ImagePreprocess(image_processor, data_args) | |
| questions = json.load(open(os.path.expanduser(args.question_file), "r")) | |
| questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
| answers_file = os.path.expanduser(args.answers_file) | |
| os.makedirs(os.path.dirname(answers_file), exist_ok=True) | |
| ans_file = open(answers_file, "w") | |
| model.to(device="cuda") | |
| for i, line in enumerate(tqdm(questions)): | |
| idx = line["id"] | |
| question = line["prompt"] | |
| if "image" in line: | |
| image_file = line["image"] | |
| # image = Image.open(image_file).convert("RGB") | |
| image = Image.open(os.path.join(args.image_folder, image_file)).convert("RGB") | |
| image_sizes = [image.size] | |
| image = image_processor(image) | |
| images = image.unsqueeze(0).half().cuda() | |
| question = "<image>" + "\n" + question | |
| else: | |
| images = None | |
| image_sizes = None | |
| msg = Message() | |
| msg.add_message(question) | |
| # print(msg.messages) | |
| result = text_processor(msg.messages, mode='eval') | |
| # print(result["prompt"]) | |
| input_ids = result['input_ids'] | |
| input_ids = input_ids.unsqueeze(0).cuda() | |
| with torch.inference_mode(): | |
| if images is not None: | |
| output_ids = model.generate( | |
| input_ids, | |
| images=images, | |
| image_sizes=image_sizes, | |
| do_sample=True if args.temperature > 0 else False, | |
| temperature=args.temperature, | |
| max_new_tokens=1024, | |
| use_cache=True, | |
| pad_token_id=tokenizer.pad_token_id, | |
| ) | |
| outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] | |
| else: | |
| if line["question_type"] == "multiple-choice": | |
| all_choices = line["all_choices"] | |
| outputs = random.choice(all_choices) | |
| else: | |
| outputs = "INVALID GENERATION FOR MULTIPLE IMAGE INPUTS" | |
| if line["question_type"] == "multiple-choice": | |
| pred_ans = parse_multi_choice_response( | |
| outputs, line["all_choices"], line["index2ans"] | |
| ) | |
| else: # open question | |
| pred_ans = outputs | |
| # print(outputs, pred_ans) | |
| ans_id = shortuuid.uuid() | |
| ans_file.write(json.dumps({"question_id": idx, | |
| "prompt": questions, | |
| "text": pred_ans, | |
| "answer_id": ans_id, | |
| "model_id": args.model_path.split("/")[-1], | |
| "metadata": {}}) + "\n") | |
| ans_file.flush() | |
| ans_file.close() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
| parser.add_argument("--model-base", type=str, default=None) | |
| parser.add_argument("--image-folder", type=str, default="") | |
| parser.add_argument("--question-file", type=str, default="tables/question.json") | |
| parser.add_argument("--answers-file", type=str, default="answer.jsonl") | |
| parser.add_argument("--conv-mode", type=str, default="llama") | |
| parser.add_argument("--num-chunks", type=int, default=1) | |
| parser.add_argument("--chunk-idx", type=int, default=0) | |
| parser.add_argument("--temperature", type=float, default=0.2) | |
| parser.add_argument("--answer-prompter", action="store_true") | |
| parser.add_argument("--image_aspect_ratio", type=str, default="pad") | |
| args = parser.parse_args() | |
| eval_model(args) | |