Spaces:
Runtime error
Runtime error
| # | |
| # For licensing see accompanying LICENSE file. | |
| # Copyright (C) 2024 Apple Inc. All Rights Reserved. | |
| # | |
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import Tensor, nn | |
| from torch.nn import CrossEntropyLoss | |
| from torch.nn import functional as F | |
| from transformers import PreTrainedModel | |
| from transformers.activations import ACT2FN | |
| from transformers.cache_utils import Cache, DynamicCache, StaticCache | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutputWithPast, | |
| CausalLMOutputWithPast, | |
| ) | |
| from transformers.utils import logging | |
| logger = logging.get_logger(__name__) | |
| # this import has to be relative, otherwise, when setting trust_remote_code=True | |
| # huggingface transformers won't be able to load the module correctly | |
| from numbers import Number | |
| from typing import List, Optional, Union | |
| import numpy as np | |
| from transformers import PretrainedConfig, AutoTokenizer | |
| from . import register_llm | |
| def return_openelmclass(): | |
| def tokenizer_and_post_load(tokenizer): | |
| tokenizer.pad_token = tokenizer.unk_token | |
| return tokenizer | |
| return OpenELMForCausalLM, (AutoTokenizer, tokenizer_and_post_load) | |
| def make_divisible( | |
| v: Union[float, int], | |
| divisor: Optional[int] = 8, | |
| min_value: Optional[Union[float, int]] = None, | |
| ) -> Union[float, int]: | |
| """ | |
| This function is taken from the original tf repo. | |
| It ensures that all layers have a channel number that is divisible by the divisor | |
| It can be seen at: | |
| https://github.com/tensorflow/models/blob/2cfc99eff5e5eb729c6793d2f3d03aa1c9be2b15/research/slim/nets/mobilenet/mobilenet.py#L62 | |
| Args: | |
| v: input value | |
| divisor: default to 8 | |
| min_value: minimum divisor value | |
| Returns: | |
| new_v: new divisible value | |
| """ | |
| if min_value is None: | |
| min_value = divisor | |
| new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |
| # Make sure that round down does not go down by more than 10%. | |
| if new_v < 0.9 * v: | |
| new_v += divisor | |
| return new_v | |
| def compute_heads(model_dim: int, head_dim: int) -> int: | |
| """Compute the number of heads. | |
| Args: | |
| model_dim: Model dimension. | |
| head_dim: Head dimension. | |
| Returns: | |
| An integer denoting number of heads in multi-head attention is returned. | |
| Raises: | |
| ValueError: if model dimension is not divisible by head dimension. | |
| """ | |
| if model_dim % head_dim == 0: | |
| return model_dim // head_dim | |
| else: | |
| raise ValueError( | |
| f"Model dimension should be divisible by head dimension. Got: {model_dim} and {head_dim}." | |
| ) | |
| OpenELM_CONFIGS = { | |
| "OpenELM-270M": dict( | |
| num_transformer_layers=16, | |
| model_dim=1280, | |
| head_dim=64, | |
| num_gqa_groups=4, | |
| normalize_qk_projections=True, | |
| share_input_output_layers=True, | |
| # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively. | |
| ffn_multipliers=(0.5, 4.0), | |
| qkv_multipliers=(0.5, 1.0), | |
| ), | |
| "OpenELM-450M": dict( | |
| num_transformer_layers=20, | |
| model_dim=1536, | |
| head_dim=64, | |
| num_gqa_groups=4, | |
| normalize_qk_projections=True, | |
| share_input_output_layers=True, | |
| # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively. | |
| ffn_multipliers=(0.5, 4.0), | |
| qkv_multipliers=(0.5, 1.0), | |
| ), | |
| "OpenELM-1_1B": dict( | |
| num_transformer_layers=28, | |
| model_dim=2048, | |
| head_dim=64, | |
| num_gqa_groups=4, | |
| normalize_qk_projections=True, | |
| share_input_output_layers=True, | |
| # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively. | |
| ffn_multipliers=(0.5, 4.0), | |
| qkv_multipliers=(0.5, 1.0), | |
| ), | |
| "OpenELM-3B": dict( | |
| num_transformer_layers=36, | |
| model_dim=3072, | |
| head_dim=128, | |
| num_gqa_groups=4, | |
| normalize_qk_projections=True, | |
| share_input_output_layers=True, | |
| # Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively. | |
| ffn_multipliers=(0.5, 4.0), | |
| qkv_multipliers=(0.5, 1.0), | |
| ), | |
| } | |
| class OpenELMConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`OpenELMModel`]. It is used to instantiate an OpenELM model according to the specified arguments, defining the model architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 32000): | |
| Vocabulary size of the OpenELM model. | |
| max_context_length (`int`, *optional*, defaults to 2048): | |
| Maximum number of input tokens. | |
| num_transformer_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer decoder. | |
| model_dim (`int`, *optional*, defaults to 2048): | |
| Dimension of the hidden representations. | |
| head_dim (`int`, *optional*, defaults to 128): | |
| The attention head dimension. | |
| qkv_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 1.0): | |
| If the qkv_multipliers is a Number, then all attention layers have the same latent dimensions, | |
| resulting in uniform allocation of parameters. | |
| If the qkv_multipliers is a List of Number, then each attention layer have different latent dimensions | |
| assuming qkv_multipliers[0] != qkv_multipliers[1]. This results in variable allocation of parameters in attention layer. | |
| This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623 | |
| num_query_heads (`Union[int, None]`, *optional*, defaults to None): | |
| The number of query heads, computed from `compute_heads(model_dim=model_dim, head_dim=head_dim)`. | |
| num_gqa_groups (`int`, *optional*, defaults to 1): | |
| This variable allows to switch between multi-head attention, group query attention, and multi-query attention. | |
| When num_gqa_groups == 1, then it is multi-head attention. | |
| When 1 < num_gqa_groups < num_heads and num_heads is divisible by num_gqa_groups, then it is group query attention | |
| When num_gqa_groups == num_heads, then it is multi-query attention | |
| ffn_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 4.0): | |
| Feed-forward network (FFN) multipliers. | |
| If the ffn_multipliers is a Number, then all FFN layers have the same latent dimensions, | |
| resulting in uniform allocation of parameters. | |
| If the ffn_multipliers is a List of Number, then each FFN layer have different latent dimensions | |
| assuming ffn_multipliers[0] != ffn_multipliers[1]. This results in variable allocation of parameters in FFN layer. | |
| This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623 | |
| ffn_with_glu (`bool`, *optional*, defaults to True): | |
| Whether to use FFN with Gated Linear Unit (GLU) | |
| ffn_dim_divisor (`int`, *optional*, defaults to 256): | |
| The ffn layer dimension divisor. | |
| activation_fn_name (`str` or `function`, *optional*, defaults to `"swish"`): | |
| The non-linear activation function (function or string) in the decoder. | |
| normalization_layer_name (`str` or `function`, *optional*, defaults to `"rms_norm"`): | |
| Type of normalization layer. | |
| normalize_qk_projections (`bool`, *optional*, defaults to False): | |
| Whether to normalize queries and keys after projections | |
| share_input_output_layers (`bool`, *optional*, defaults to False): | |
| Whether to share the embedding between input and output linear layer | |
| rope_freq_constant (`int`, *optional*, defaults to 10000): | |
| The base period of the RoPE embeddings. | |
| rope_max_length (`int`, *optional*, defaults to 4096): | |
| That rope_max_length is set to twice of max_context_length. | |
| This allows flexibility in token lengths during training or fine-tuning. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should return the last key/values attentions (not used by all models). Only | |
| relevant if `config.is_decoder=True`. | |
| bos_token_id (`int`, *optional*, defaults to 2): | |
| Beginning of stream token id. | |
| eos_token_id (`int`, *optional*, defaults to 1): | |
| End of stream token id. | |
| """ | |
| model_type = "openelm" | |
| def __init__( | |
| self, | |
| vocab_size: int = 32000, | |
| max_context_length: int = 2048, | |
| num_transformer_layers: int = 12, | |
| model_dim: int = 2048, | |
| head_dim: int = 128, | |
| qkv_multipliers: Union[Number, List[Number]] = 1.0, | |
| num_query_heads: Union[int, None] = None, | |
| num_gqa_groups: int = 1, | |
| ffn_multipliers: Union[Number, List[Number]] = 4.0, | |
| ffn_with_glu: bool = True, | |
| ffn_dim_divisor: int = 256, | |
| activation_fn_name: str = "swish", | |
| normalization_layer_name: str = "rms_norm", | |
| normalize_qk_projections: bool = False, | |
| share_input_output_layers: bool = False, | |
| rope_freq_constant: int = 10000, | |
| rope_max_length: int = 4096, | |
| initializer_range: float = 0.02, | |
| use_cache: bool = True, | |
| bos_token_id: int = 1, | |
| eos_token_id: int = 2, | |
| **kwargs, | |
| ) -> None: | |
| self.vocab_size = vocab_size | |
| self.max_context_length = max_context_length | |
| self.num_transformer_layers = num_transformer_layers | |
| self.model_dim = model_dim | |
| self.head_dim = head_dim | |
| self.qkv_multipliers = qkv_multipliers | |
| self.num_query_heads = num_query_heads | |
| self.num_gqa_groups = num_gqa_groups | |
| self.ffn_multipliers = ffn_multipliers | |
| self.ffn_with_glu = ffn_with_glu | |
| self.ffn_dim_divisor = ffn_dim_divisor | |
| self.activation_fn_name = activation_fn_name | |
| self.normalization_layer_name = normalization_layer_name | |
| self.normalize_qk_projections = normalize_qk_projections | |
| self.share_input_output_layers = share_input_output_layers | |
| self.rope_freq_constant = rope_freq_constant | |
| self.rope_max_length = rope_max_length | |
| self.num_query_heads = ( | |
| compute_heads(model_dim=model_dim, head_dim=head_dim) | |
| if num_query_heads is None | |
| else num_query_heads | |
| ) | |
| self.initializer_range = initializer_range | |
| self.__post_init__() | |
| super().__init__( | |
| use_cache=use_cache, | |
| bos_token_id=bos_token_id, | |
| eos_token_id=eos_token_id, | |
| **kwargs, | |
| ) | |
| def __post_init__(self) -> None: | |
| if self.num_gqa_groups is not None: | |
| head_multiple_of = self.num_gqa_groups | |
| else: | |
| head_multiple_of = 2 | |
| if isinstance(self.qkv_multipliers, Number): | |
| # All attention layers have the same latent dimensions, resulting in uniform allocation of parameters. | |
| qkv_dim = make_divisible( | |
| self.model_dim * self.qkv_multipliers, | |
| divisor=self.head_dim * head_multiple_of, | |
| ) | |
| query_dims = [int(qkv_dim)] * self.num_transformer_layers | |
| elif ( | |
| isinstance(self.qkv_multipliers, (tuple, list)) | |
| and len(self.qkv_multipliers) == 2 | |
| ): | |
| # Each attention layer have different latent dimensions assuming qkv_multipliers[0] != qkv_multipliers[1]. | |
| # This results in variable allocation of parameters in attention layer. | |
| # This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623 | |
| qkv_multipliers = [ | |
| round(v, 2) | |
| for v in np.linspace( | |
| self.qkv_multipliers[0], | |
| self.qkv_multipliers[1], | |
| num=self.num_transformer_layers, | |
| dtype=float, | |
| ) | |
| ] | |
| # Make sure that scaled model dimension is divisible by scaled head dimension. | |
| query_dims = [ | |
| int( | |
| make_divisible( | |
| self.model_dim * m, divisor=self.head_dim * head_multiple_of | |
| ) | |
| ) | |
| for m in qkv_multipliers | |
| ] | |
| else: | |
| raise NotImplementedError( | |
| f"QKV multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}." | |
| ) | |
| # compute the number of query, key, and value heads | |
| # For multi-head and multi-query attention, the number of heads for query, key, and value are the same. | |
| # For group query attention, the number of key and value heads are the same. | |
| self.num_query_heads = [ | |
| int(compute_heads(q_dim, self.head_dim)) for q_dim in query_dims | |
| ] | |
| self.num_kv_heads = [ | |
| q_heads // self.num_gqa_groups for q_heads in self.num_query_heads | |
| ] | |
| # Feed-forward network (FFN) multipliers | |
| if isinstance(self.ffn_multipliers, Number): | |
| # All FFN layers have the same latent dimensions, resulting in uniform allocation of parameters. | |
| self.ffn_multipliers = [self.ffn_multipliers] * self.num_transformer_layers | |
| elif isinstance(self.ffn_multipliers, (tuple, list)): | |
| # Each FFN layer have different latent dimensions assuming ffn_multipliers[0] != ffn_multipliers[1]. | |
| # This results in variable allocation of parameters in FFN layer. | |
| # This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623 | |
| if len(self.ffn_multipliers) == 2: | |
| self.ffn_multipliers = [ | |
| round(v, 2) | |
| for v in np.linspace( | |
| self.ffn_multipliers[0], | |
| self.ffn_multipliers[1], | |
| num=self.num_transformer_layers, | |
| dtype=float, | |
| ) | |
| ] | |
| else: | |
| assert ( | |
| len(self.ffn_multipliers) == self.num_transformer_layers | |
| ), f"{len(self.ffn_multipliers)=}!={self.num_transformer_layers=}" | |
| else: | |
| raise NotImplementedError( | |
| f"FFN multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}." | |
| ) | |
| # check num_query_heads divisible by num_kv_heads for every layer | |
| for layer_idx in range(len(query_dims)): | |
| assert self.num_query_heads[layer_idx] % self.num_kv_heads[layer_idx] == 0 | |
| class OpenELMRMSNorm(nn.Module): | |
| def __init__(self, num_features: int, eps: float = 1e-6): | |
| """ | |
| Initialize the OpenELMRMSNorm normalization layer. | |
| Args: | |
| dim (int): The dimension of the input tensor. | |
| eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. | |
| Attributes: | |
| eps (float): A small value added to the denominator for numerical stability. | |
| weight (nn.Parameter): Learnable scaling parameter. | |
| """ | |
| super().__init__() | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(num_features)) | |
| self.num_features = num_features | |
| def _norm(self, x: Tensor) -> Tensor: | |
| """ | |
| Apply the OpenELMRMSNorm normalization to the input tensor. | |
| Args: | |
| x (torch.Tensor): The input tensor. | |
| Returns: | |
| torch.Tensor: The normalized tensor. | |
| """ | |
| return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
| def forward(self, x: Tensor) -> Tensor: | |
| """ | |
| Forward pass through the OpenELMRMSNorm layer. | |
| Args: | |
| x (torch.Tensor): The input tensor. | |
| Returns: | |
| torch.Tensor: The output tensor after applying OpenELMRMSNorm. | |
| """ | |
| output = self._norm(x.float()).type_as(x) | |
| return output * self.weight | |
| def extra_repr(self) -> str: | |
| return ( | |
| super().extra_repr() + f"num_features={self.num_features}, eps={self.eps}" | |
| ) | |
| class OpenELMPreTrainedModel(PreTrainedModel): | |
| config_class = OpenELMConfig | |
| base_model_prefix = "transformer" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["OpenELMDecoderLayer"] | |
| _skip_keys_device_placement = "past_key_values" | |
| def __init__(self, *inputs, **kwargs) -> None: | |
| super().__init__(*inputs, **kwargs) | |
| def _init_weights(self, module: nn.Module) -> None: | |
| """Initialize the weights.""" | |
| if isinstance(module, nn.Linear): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| elif isinstance(module, OpenELMRMSNorm): | |
| module.weight.data.fill_(1.0) | |
| def _rotate_half(x: Tensor) -> Tensor: | |
| x1, x2 = x.chunk(2, dim=-1) | |
| return torch.cat((-x2, x1), dim=-1) | |
| def _apply_rotary_pos_emb(x: Tensor, pos_sin: Tensor, pos_cos: Tensor) -> Tensor: | |
| return (x * pos_cos) + (_rotate_half(x) * pos_sin) | |
| class OpenELMRotaryEmbedding(torch.nn.Module): | |
| """ | |
| The rotary position embeddings (aka RoPE) from `RoFormer <https://arxiv.org/abs/2104.09864>`_. | |
| RoPE encodes the position information of tokens using a rotation matrix, and is able to capture | |
| explicit relative positional dependencies. | |
| Args: | |
| model_dim: The dimensionality of the model's hidden state. | |
| max_seq_length: Maximum sequence length. | |
| freq_constant: A constant used for computing frequencies. | |
| """ | |
| def __init__( | |
| self, model_dim: int, max_seq_length: int, freq_constant: int = 10000 | |
| ) -> None: | |
| inv_freq = 1.0 / ( | |
| freq_constant | |
| ** (torch.arange(0, model_dim, 2, dtype=torch.float32) / model_dim) | |
| ) | |
| super().__init__() | |
| self.model_dim = model_dim | |
| self.freq_constant = freq_constant | |
| self.max_seq_length = max_seq_length | |
| self.register_buffer("inv_freq", inv_freq, persistent=False) | |
| self._cached_cos = None | |
| self._cached_sin = None | |
| self._cached_seq_length = max_seq_length | |
| self._compute_sin_cos_embeddings(max_seq_length) | |
| def extra_repr(self) -> str: | |
| return f"\tmodel_dim={self.model_dim}, max_seq_length={self.max_seq_length}, freq_constant={self.freq_constant}" | |
| def _compute_sin_cos_embeddings( | |
| self, | |
| key_len: int, | |
| key_device: torch.device = torch.device("cpu"), | |
| key_dtype: torch.dtype = torch.float32, | |
| ) -> None: | |
| """ | |
| Compute sine and cos embeddings. | |
| Args: | |
| key_len: Number of tokens in the key embeddings in the transformer model. | |
| device: Device where the key embeddings are stored. | |
| key_dtype: Data type of the key embeddings. | |
| Returns: | |
| None | |
| ...note: | |
| We recalculate the sine and cosine embeddings if any of the following conditions are met: | |
| 1. The number of tokens in key embeddings are greater than the cached sequence length. | |
| 2. Sine and cosine caches are empty. | |
| 3. The device and data type of sine and cosine embeddings does not match with the key embeddings. | |
| """ | |
| if ( | |
| key_len > self._cached_seq_length | |
| or self._cached_cos is None | |
| or (self._cached_cos is not None and self._cached_cos.device != key_device) | |
| or (self._cached_cos is not None and self._cached_cos.dtype != key_dtype) | |
| or self._cached_sin is None | |
| or (self._cached_sin is not None and self._cached_sin.device != key_device) | |
| or (self._cached_sin is not None and self._cached_sin.dtype != key_dtype) | |
| ): | |
| self._cached_seq_length = max(key_len, self._cached_seq_length) | |
| # The shape of 'pos_index' is [number of key tokens] | |
| pos_index = torch.arange( | |
| self._cached_seq_length, | |
| dtype=torch.float32, | |
| device=self.inv_freq.device, | |
| ) | |
| # The shape of 'pos_index_theta' is [number of key tokens, model dimension] | |
| pos_index_theta = torch.einsum("i,j->ij", pos_index, self.inv_freq) | |
| # The shape of 'emb' is [number of key tokens, model dimension] | |
| emb = torch.cat((pos_index_theta, pos_index_theta), dim=-1) | |
| # the shape of cos and sin embeddings is [number of key tokens, model_dim] | |
| cos_emb = emb.cos().to(dtype=key_dtype, device=key_device) | |
| sin_emb = emb.sin().to(dtype=key_dtype, device=key_device) | |
| # the shape of cached cos and sin embeddings is [1, 1, number of key tokens, model_dim] | |
| self._cached_cos = cos_emb[None, None, :, :] | |
| self._cached_sin = sin_emb[None, None, :, :] | |
| def forward( | |
| self, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ | |
| The forward function of RoPE embeddings. | |
| Args: | |
| query: Query embeddings in the transformer model. The shape of query embeddings is | |
| [Batch, number of query heads, number of query tokens, model dimension]. | |
| key: Key embeddings in the transformer model. The shape of key embeddings is | |
| [Batch, number of key heads, number of key tokens, model dimension]. | |
| Returns: | |
| A tuple containing the query and key embeddings with positional information. The shape of the returned query | |
| and key embeddings is the same as the input query and key embeddings respectively. | |
| ...note: | |
| The RoPE embedding computation is done in full-precision. After the computation, input query and key tensors | |
| are casted to original input datatype. | |
| """ | |
| dim = key.shape[-1] | |
| key_len = key.shape[2] | |
| query_len = query.shape[2] | |
| assert dim == self.model_dim | |
| assert key.device == query.device | |
| assert key.dtype == query.dtype | |
| # In the context of self-attention, the lengths of keys and queries are equal. | |
| # However, in generation tasks, such as predicting the next token in a sequence, the lengths of keys and queries | |
| # can differ. For instance, when employing key-value (KV) caching for sequence prediction, the keys | |
| # represent embeddings of previous tokens and the current token, while the query corresponds | |
| # to the embedding of the current token only. | |
| assert ( | |
| key_len >= query_len | |
| ), "Number of keys has to be greater than or equal to number of queries." | |
| query_float = query.float() | |
| key_float = key.float() | |
| self._compute_sin_cos_embeddings( | |
| key_len, key_device=key_float.device, key_dtype=key_float.dtype | |
| ) | |
| query_float = _apply_rotary_pos_emb( | |
| x=query_float, | |
| pos_sin=self._cached_sin[..., key_len - query_len : key_len, :], | |
| pos_cos=self._cached_cos[..., key_len - query_len : key_len, :], | |
| ) | |
| key_float = _apply_rotary_pos_emb( | |
| x=key_float, | |
| pos_sin=self._cached_sin[..., :key_len, :], | |
| pos_cos=self._cached_cos[..., :key_len, :], | |
| ) | |
| return query_float.type_as(query), key_float.type_as(key) | |
| class OpenELMMultiHeadCausalAttention(nn.Module): | |
| def __init__(self, config: OpenELMConfig, layer_idx: int) -> None: | |
| super().__init__() | |
| self.layer_idx = layer_idx | |
| head_dim = config.head_dim | |
| q_heads = config.num_query_heads[layer_idx] | |
| k_heads = config.num_kv_heads[layer_idx] | |
| v_heads = config.num_kv_heads[layer_idx] | |
| self.qkv_proj = nn.Linear( | |
| in_features=config.model_dim, | |
| out_features=(q_heads + k_heads + v_heads) * head_dim, | |
| bias=False, | |
| ) | |
| self.pos_embedding = OpenELMRotaryEmbedding( | |
| model_dim=config.head_dim, | |
| max_seq_length=config.rope_max_length, | |
| freq_constant=config.rope_freq_constant, | |
| ) | |
| if config.normalize_qk_projections: | |
| self.q_norm = OpenELMRMSNorm( | |
| num_features=config.head_dim, | |
| ) | |
| self.k_norm = OpenELMRMSNorm( | |
| num_features=config.head_dim, | |
| ) | |
| else: | |
| self.q_norm = None | |
| self.k_norm = None | |
| self.out_proj = nn.Linear( | |
| in_features=q_heads * head_dim, | |
| out_features=config.model_dim, | |
| bias=False, | |
| ) | |
| self.head_dim = config.head_dim | |
| self.num_q_heads = q_heads | |
| self.num_k_heads = k_heads | |
| self.num_v_heads = v_heads | |
| self.transformer_dim = config.model_dim | |
| self.num_groups = self.num_q_heads // self.num_k_heads | |
| def extra_repr(self) -> str: | |
| return ( | |
| super().extra_repr() | |
| + f"query_heads={self.num_q_heads}, key_heads={self.num_k_heads}, value_heads={self.num_v_heads}" | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Cache] = None, | |
| output_attentions: bool = False, | |
| use_cache: bool = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
| """ | |
| Forward pass of multi-head self-attention. | |
| Args: | |
| hidden_states: Input tensor of the shape [batch size, sequence length, model dimension]. | |
| past_key_value: Tensor storing the cached keys and values. | |
| output_attentions: output attention weights. | |
| use_cache: Specifies whether to use kv-cache for generation. | |
| cache_position: used for updating the kv-cache. | |
| Returns: | |
| The output of the same shape as the input, optionally with a tensor containing cached keys and values. | |
| """ | |
| # scaled_dot_product_attention does not return attention weights, set output_attentions to False | |
| output_attentions = False | |
| batch_size, seq_length, d_model = hidden_states.size() | |
| # [B, S, d] --> [B, S, (q_h + k_h + v_h) * h] | |
| qkv = self.qkv_proj(hidden_states) | |
| # [B, S, (q_h + k_h + v_h) * h] --> [B, S, (q_h + k_h + v_h), h] | |
| qkv = qkv.reshape( | |
| batch_size, | |
| seq_length, | |
| self.num_q_heads + self.num_k_heads + self.num_v_heads, | |
| self.head_dim, | |
| ) | |
| # [B, S, (q_h + k_h + v_h), h] --> [B, (q_h + k_h + v_h), S, h] | |
| qkv = qkv.transpose(1, 2) | |
| # [B, (q_h + k_h + v_h), S, h] --> [B, q_h, S h], [B, k_h, S, h], [B, v_h, S, h] | |
| queries, keys, values = qkv.split( | |
| [self.num_q_heads, self.num_k_heads, self.num_v_heads], dim=1 | |
| ) | |
| if self.q_norm is not None: | |
| queries = self.q_norm(queries) | |
| if self.k_norm is not None: | |
| keys = self.k_norm(keys) | |
| past_key_value = getattr(self, "past_key_value", past_key_value) | |
| if past_key_value is not None: | |
| # sin and cos are specific to RoPE models; position_ids needed for the static cache | |
| # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | |
| cache_kwargs = {"cache_position": cache_position} | |
| keys, values = past_key_value.update( | |
| keys, values, self.layer_idx, cache_kwargs | |
| ) | |
| # Add positional embedding | |
| queries, keys = self.pos_embedding(queries, keys) | |
| if self.num_groups != 1: | |
| # GQA | |
| # [B, k_h, S, h] --> [B, q_h, S, h] | |
| keys = keys.repeat_interleave(self.num_groups, dim=1) | |
| # [B, v_h, S, h] --> [B, q_h, S, h] | |
| values = values.repeat_interleave(self.num_groups, dim=1) | |
| causal_mask = attention_mask | |
| if attention_mask is not None and cache_position is not None: | |
| causal_mask = causal_mask[:, :, cache_position, : keys.shape[-2]] | |
| attn_output = F.scaled_dot_product_attention( | |
| queries, | |
| keys, | |
| values, | |
| attn_mask=causal_mask, | |
| dropout_p=0, | |
| ) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape( | |
| batch_size, seq_length, self.num_q_heads * self.head_dim | |
| ) | |
| attn_output = self.out_proj(attn_output) | |
| if not output_attentions: | |
| attn_weights = None | |
| return attn_output, attn_weights, past_key_value | |
| class OpenELMFeedForwardNetwork(nn.Module): | |
| def __init__(self, config: OpenELMConfig, layer_idx: int) -> None: | |
| super().__init__() | |
| ffn_multiplier = config.ffn_multipliers[layer_idx] | |
| intermediate_dim = int( | |
| make_divisible( | |
| ffn_multiplier * config.model_dim, | |
| divisor=config.ffn_dim_divisor, | |
| ) | |
| ) | |
| if config.ffn_with_glu: | |
| # FFN with Gated linear unit, as described in https://arxiv.org/abs/2002.05202v1. | |
| self.proj_1 = nn.Linear( | |
| in_features=config.model_dim, | |
| out_features=2 * intermediate_dim, | |
| bias=False, | |
| ) | |
| self.proj_2 = nn.Linear( | |
| in_features=intermediate_dim, | |
| out_features=config.model_dim, | |
| bias=False, | |
| ) | |
| self.ffn_with_glu = True | |
| else: | |
| # Standard FFN, as described in https://arxiv.org/abs/1706.03762 | |
| self.proj_1 = nn.Linear( | |
| in_features=config.model_dim, | |
| out_features=intermediate_dim, | |
| bias=False, | |
| ) | |
| self.proj_2 = nn.Linear( | |
| in_features=intermediate_dim, | |
| out_features=config.model_dim, | |
| bias=False, | |
| ) | |
| self.ffn_with_glu = False | |
| self.act = ACT2FN[config.activation_fn_name] | |
| def extra_repr(self) -> str: | |
| return super().extra_repr() + f"(ffn_with_glu) : {self.ffn_with_glu}" | |
| def forward(self, x: Tensor) -> Tensor: | |
| """Forward function of FFN layer. | |
| Args: | |
| x: Input tensor of the shape [batch size, sequence length, model dimension]. | |
| Returns: | |
| A tensor of the same shape as the input. | |
| """ | |
| if self.ffn_with_glu: | |
| y_12 = self.proj_1(x) | |
| y_1, y_2 = y_12.chunk(2, dim=-1) | |
| y = self.act(y_1) * y_2 | |
| return self.proj_2(y) | |
| else: | |
| return self.proj_2(self.act(self.proj_1(x))) | |
| class OpenELMDecoderLayer(nn.Module): | |
| def __init__(self, config: OpenELMConfig, layer_idx: int) -> None: | |
| super().__init__() | |
| self.attn = OpenELMMultiHeadCausalAttention(config=config, layer_idx=layer_idx) | |
| self.ffn = OpenELMFeedForwardNetwork(config=config, layer_idx=layer_idx) | |
| self.ffn_norm = OpenELMRMSNorm( | |
| num_features=config.model_dim, | |
| ) | |
| self.attn_norm = OpenELMRMSNorm( | |
| num_features=config.model_dim, | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| output_attentions: Optional[bool] = False, | |
| use_cache: Optional[bool] = False, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| **kwargs, | |
| ) -> Tuple[ | |
| torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] | |
| ]: | |
| """ | |
| Args: | |
| hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
| attention_mask (`torch.FloatTensor`, *optional*): | |
| attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, | |
| query_sequence_length, key_sequence_length)` if default attention is used. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
| returned tensors for more detail. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
| (see `past_key_values`). | |
| past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
| """ | |
| residual = hidden_states | |
| hidden_states = self.attn_norm(hidden_states) | |
| # Self Attention | |
| hidden_states, self_attn_weights, present_key_value = self.attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| past_key_value=past_key_value, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| **kwargs, | |
| ) | |
| hidden_states = residual + hidden_states | |
| # Fully Connected | |
| residual = hidden_states | |
| hidden_states = self.ffn_norm(hidden_states) | |
| hidden_states = self.ffn(hidden_states) | |
| hidden_states = residual + hidden_states | |
| outputs = (hidden_states,) | |
| if output_attentions: | |
| outputs += (self_attn_weights,) | |
| if use_cache: | |
| outputs += (present_key_value,) | |
| return outputs | |
| class OpenELMModel(OpenELMPreTrainedModel): | |
| config_class = OpenELMConfig | |
| def __init__(self, config: OpenELMConfig): | |
| super().__init__(config) | |
| self.config = config | |
| self.token_embeddings = nn.Embedding( | |
| embedding_dim=config.model_dim, | |
| num_embeddings=config.vocab_size, | |
| ) | |
| self.layers = nn.ModuleList( | |
| OpenELMDecoderLayer(config=config, layer_idx=layer_idx) | |
| for layer_idx in range(config.num_transformer_layers) | |
| ) | |
| self.norm = OpenELMRMSNorm(num_features=config.model_dim) | |
| if config.share_input_output_layers: | |
| self.classifier = None | |
| else: | |
| self.classifier = nn.Linear( | |
| in_features=config.model_dim, | |
| out_features=config.vocab_size, | |
| bias=False, | |
| ) | |
| self.num_transformer_layers = config.num_transformer_layers | |
| self.gradient_checkpointing = False | |
| # Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class. | |
| # NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_context_length`. | |
| causal_mask = torch.full( | |
| (config.max_context_length, config.max_context_length), | |
| fill_value=True, | |
| dtype=torch.bool, | |
| ) | |
| self.register_buffer( | |
| "causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| self.reset_parameters(config=config) | |
| def get_input_embeddings(self): | |
| return self.token_embeddings | |
| def set_input_embeddings(self, new_embeddings: torch.Tensor): | |
| self.token_embeddings = new_embeddings | |
| def reset_parameters(self, config: OpenELMConfig) -> None: | |
| """Initialize the layers in Language Model | |
| The initialization scheme is followed, following `OPT <https://arxiv.org/pdf/2205.01068.pdf>`_. | |
| Args: | |
| use_megatron_std: Use standard deviation as described in Megatron-LM. | |
| Returns: | |
| None | |
| """ | |
| for module in self.modules(): | |
| if isinstance(module, nn.Linear): | |
| std = module.in_features**-0.5 | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=std) | |
| if module.bias is not None: | |
| torch.nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| std = module.embedding_dim**-0.5 | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=std) | |
| elif isinstance(module, OpenELMRMSNorm): | |
| if module.weight is not None: | |
| torch.nn.init.ones_(module.weight) | |
| if hasattr(module, "bias") and module.bias is not None: | |
| torch.nn.init.zeros_(module.bias) | |
| model_dim = config.model_dim | |
| n_layers = config.num_transformer_layers | |
| std = (model_dim**-0.5) * ((2 * n_layers) ** -0.5) | |
| for param_name, param in self.named_parameters(): | |
| if param_name.endswith("out_proj.weight") or param_name.endswith( | |
| "ffn.proj_2.weight" | |
| ): | |
| torch.nn.init.normal_(param, mean=0.0, std=std) | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPast]: | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| if (input_ids is None) ^ (inputs_embeds is not None): | |
| raise ValueError( | |
| "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | |
| ) | |
| if self.gradient_checkpointing and self.training and use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | |
| ) | |
| use_cache = False | |
| if inputs_embeds is None: | |
| inputs_embeds = self.token_embeddings(input_ids) | |
| past_seen_tokens = 0 | |
| if use_cache: # kept for BC (cache positions) | |
| if not isinstance(past_key_values, StaticCache): | |
| past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
| past_seen_tokens = past_key_values.get_seq_length() | |
| if cache_position is None: | |
| cache_position = torch.arange( | |
| past_seen_tokens, | |
| past_seen_tokens + inputs_embeds.shape[1], | |
| device=inputs_embeds.device, | |
| ) | |
| if position_ids is None: | |
| position_ids = cache_position.unsqueeze(0) | |
| causal_mask = self._update_causal_mask(attention_mask, inputs_embeds) | |
| # embed positions | |
| hidden_states = inputs_embeds | |
| # decoder layers | |
| all_hidden_states = () if output_hidden_states else None | |
| all_self_attns = () if output_attentions else None | |
| next_decoder_cache = None | |
| for decoder_layer in self.layers: | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| layer_outputs = self._gradient_checkpointing_func( | |
| decoder_layer.__call__, | |
| hidden_states, | |
| causal_mask, | |
| position_ids, | |
| past_key_values, | |
| output_attentions, | |
| use_cache, | |
| cache_position, | |
| ) | |
| else: | |
| layer_outputs = decoder_layer( | |
| hidden_states, | |
| attention_mask=causal_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_values, | |
| output_attentions=output_attentions, | |
| use_cache=use_cache, | |
| cache_position=cache_position, | |
| ) | |
| hidden_states = layer_outputs[0] | |
| if use_cache: | |
| next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
| if output_attentions: | |
| all_self_attns += (layer_outputs[1],) | |
| hidden_states = self.norm(hidden_states) | |
| # add hidden states from the last decoder layer | |
| if output_hidden_states: | |
| all_hidden_states += (hidden_states,) | |
| next_cache = None | |
| if use_cache: | |
| next_cache = ( | |
| next_decoder_cache.to_legacy_cache() | |
| if isinstance(next_decoder_cache, Cache) | |
| else next_decoder_cache | |
| ) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPast( | |
| last_hidden_state=hidden_states, | |
| past_key_values=next_cache, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attns, | |
| ) | |
| def _update_causal_mask(self, attention_mask, input_tensor): | |
| if self.config._attn_implementation == "flash_attention_2": | |
| if attention_mask is not None and 0.0 in attention_mask: | |
| return attention_mask | |
| return None | |
| batch_size, seq_length = input_tensor.shape[:2] | |
| dtype = input_tensor.dtype | |
| device = input_tensor.device | |
| # support going beyond cached `max_position_embedding` | |
| if seq_length > self.causal_mask.shape[-1]: | |
| causal_mask = torch.full( | |
| (2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]), | |
| fill_value=1, | |
| ) | |
| self.register_buffer( | |
| "causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False | |
| ) | |
| # We use the current dtype to avoid any overflows | |
| min_dtype = torch.finfo(dtype).min | |
| causal_mask = ( | |
| self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype) | |
| * min_dtype | |
| ) | |
| causal_mask = causal_mask.to(dtype=dtype, device=device) | |
| if attention_mask is not None and attention_mask.dim() == 2: | |
| mask_length = attention_mask.shape[-1] | |
| padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[ | |
| :, None, None, : | |
| ].eq(0.0) | |
| causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill( | |
| padding_mask, min_dtype | |
| ) | |
| if self.config._attn_implementation == "sdpa" and attention_mask is not None: | |
| # For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400). | |
| is_tracing = ( | |
| torch.jit.is_tracing() | |
| or isinstance(input_tensor, torch.fx.Proxy) | |
| or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) | |
| ) | |
| if not is_tracing and torch.any(attention_mask != 1): | |
| # Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when | |
| # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
| # Details: https://github.com/pytorch/pytorch/issues/110213 | |
| causal_mask = causal_mask.mul( | |
| ~torch.all(causal_mask == min_dtype, dim=-1, keepdim=True) | |
| ).to(dtype) | |
| return causal_mask | |
| class OpenELMForCausalLM(OpenELMPreTrainedModel): | |
| _tied_weights_keys = ["lm_head.weight"] | |
| def __init__(self, config: OpenELMConfig): | |
| super().__init__(config) | |
| self.transformer = OpenELMModel(config) | |
| self.vocab_size = config.vocab_size | |
| if config.share_input_output_layers: | |
| self.lm_head = None | |
| else: | |
| self.lm_head = nn.Linear(config.model_dim, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_input_embeddings(self): | |
| return self.transformer.token_embeddings | |
| def set_input_embeddings(self, value): | |
| self.transformer.token_embeddings = value | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def set_decoder(self, decoder): | |
| self.transformer = decoder | |
| def get_decoder(self): | |
| return self.transformer | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[List[torch.FloatTensor]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| cache_position: Optional[torch.LongTensor] = None, | |
| ) -> Union[Tuple, CausalLMOutputWithPast]: | |
| output_attentions = ( | |
| output_attentions | |
| if output_attentions is not None | |
| else self.config.output_attentions | |
| ) | |
| output_hidden_states = ( | |
| output_hidden_states | |
| if output_hidden_states is not None | |
| else self.config.output_hidden_states | |
| ) | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
| outputs = self.transformer( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_values=past_key_values, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| cache_position=cache_position, | |
| ) | |
| hidden_states = outputs[0] | |
| if self.lm_head is None: | |
| # shared | |
| logits = F.linear( | |
| hidden_states, weight=self.transformer.token_embeddings.weight | |
| ) | |
| else: | |
| logits = self.lm_head(hidden_states) | |
| logits = logits[:, : self.config.vocab_size] | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| shift_logits = logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
| shift_labels = shift_labels.view(-1) | |
| # Enable model parallelism | |
| shift_labels = shift_labels.to(shift_logits.device) | |
| loss = loss_fct(shift_logits, shift_labels) | |
| if not return_dict: | |
| output = (logits,) + outputs[1:] | |
| return (loss,) + output if loss is not None else output | |
| return CausalLMOutputWithPast( | |
| loss=loss, | |
| logits=logits, | |
| past_key_values=outputs.past_key_values, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids, | |
| past_key_values=None, | |
| attention_mask=None, | |
| inputs_embeds=None, | |
| **kwargs, | |
| ): | |
| past_length = 0 | |
| if past_key_values is not None: | |
| if isinstance(past_key_values, Cache): | |
| cache_length = past_key_values.get_seq_length() | |
| past_length = past_key_values.seen_tokens | |
| max_cache_length = past_key_values.get_max_length() | |
| else: | |
| cache_length = past_length = past_key_values[0][0].shape[2] | |
| max_cache_length = None | |
| # Keep only the unprocessed tokens: | |
| # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
| # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as | |
| # input) | |
| if ( | |
| attention_mask is not None | |
| and attention_mask.shape[1] > input_ids.shape[1] | |
| ): | |
| input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | |
| # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
| # input_ids based on the past_length. | |
| elif past_length < input_ids.shape[1]: | |
| input_ids = input_ids[:, past_length:] | |
| # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
| # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. | |
| if ( | |
| max_cache_length is not None | |
| and attention_mask is not None | |
| and cache_length + input_ids.shape[1] > max_cache_length | |
| ): | |
| attention_mask = attention_mask[:, -max_cache_length:] | |
| position_ids = kwargs.get("position_ids", None) | |
| if attention_mask is not None and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 1) | |
| if past_key_values: | |
| position_ids = position_ids[:, -input_ids.shape[1] :] | |
| if self.generation_config.cache_implementation == "static": | |
| # generation with static cache | |
| cache_position = kwargs.get("cache_position", None) | |
| if cache_position is None: | |
| past_length = 0 | |
| else: | |
| past_length = cache_position[-1] + 1 | |
| input_ids = input_ids[:, past_length:] | |
| position_ids = position_ids[:, past_length:] | |
| # we should only keep a `cache_position` in generate, and do +=1. | |
| # same goes for position ids. Could also help with continued generation. | |
| cache_position = torch.arange( | |
| past_length, | |
| past_length + position_ids.shape[-1], | |
| device=position_ids.device, | |
| ) | |
| # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
| if inputs_embeds is not None and past_key_values is None: | |
| model_inputs = {"inputs_embeds": inputs_embeds} | |
| else: | |
| # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise | |
| # recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 | |
| # We could use `next_tokens` directly instead. | |
| model_inputs = {"input_ids": input_ids.contiguous()} | |
| model_inputs.update( | |
| { | |
| "position_ids": position_ids.contiguous(), | |
| "cache_position": cache_position, | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| "attention_mask": attention_mask, | |
| } | |
| ) | |
| return model_inputs | |
| def _reorder_cache(past_key_values, beam_idx): | |
| reordered_past = () | |
| for layer_past in past_key_values: | |
| reordered_past += ( | |
| tuple( | |
| past_state.index_select(0, beam_idx.to(past_state.device)) | |
| for past_state in layer_past | |
| ), | |
| ) | |
| return reordered_past | |