Spaces:
Runtime error
Runtime error
| # ------------------------------------------------------------------------ | |
| # Deformable DETR | |
| # Copyright (c) 2020 SenseTime. All Rights Reserved. | |
| # Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
| # ------------------------------------------------------------------------ | |
| # Modified from DETR (https://github.com/facebookresearch/detr) | |
| # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
| # ------------------------------------------------------------------------ | |
| """ | |
| Misc functions, including distributed helpers. | |
| Mostly copy-paste from torchvision references. | |
| """ | |
| import os | |
| import subprocess | |
| import time | |
| from collections import defaultdict, deque | |
| import datetime | |
| import pickle | |
| from typing import Optional, List | |
| import torch | |
| import torch.nn as nn | |
| import torch.distributed as dist | |
| from torch import Tensor | |
| # needed due to empty tensor bug in pytorch and torchvision 0.5 | |
| import torchvision | |
| if float(torchvision.__version__[:3]) < 0.5: | |
| import math | |
| # from torchvision.ops.misc import _NewEmptyTensorOp | |
| def _check_size_scale_factor(dim, size, scale_factor): | |
| # type: (int, Optional[List[int]], Optional[float]) -> None | |
| if size is None and scale_factor is None: | |
| raise ValueError("either size or scale_factor should be defined") | |
| if size is not None and scale_factor is not None: | |
| raise ValueError("only one of size or scale_factor should be defined") | |
| if not (scale_factor is not None and len(scale_factor) != dim): | |
| raise ValueError( | |
| "scale_factor shape must match input shape. " | |
| "Input is {}D, scale_factor size is {}".format(dim, len(scale_factor)) | |
| ) | |
| def _output_size(dim, input, size, scale_factor): | |
| # type: (int, Tensor, Optional[List[int]], Optional[float]) -> List[int] | |
| assert dim == 2 | |
| _check_size_scale_factor(dim, size, scale_factor) | |
| if size is not None: | |
| return size | |
| # if dim is not 2 or scale_factor is iterable use _ntuple instead of concat | |
| assert scale_factor is not None and isinstance(scale_factor, (int, float)) | |
| scale_factors = [scale_factor, scale_factor] | |
| # math.floor might return float in py2.7 | |
| return [ | |
| int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim) | |
| ] | |
| elif float(torchvision.__version__[:3]) < 0.7: | |
| from torchvision.ops import _new_empty_tensor | |
| from torchvision.ops.misc import _output_size | |
| class SmoothedValue(object): | |
| """Track a series of values and provide access to smoothed values over a | |
| window or the global series average. | |
| """ | |
| def __init__(self, window_size=20, fmt=None): | |
| if fmt is None: | |
| fmt = "{median:.4f} ({global_avg:.4f})" | |
| self.deque = deque(maxlen=window_size) | |
| self.total = 0.0 | |
| self.count = 0 | |
| self.fmt = fmt | |
| def update(self, value, n=1): | |
| self.deque.append(value) | |
| self.count += n | |
| self.total += value * n | |
| def synchronize_between_processes(self): | |
| """ | |
| Warning: does not synchronize the deque! | |
| """ | |
| if not is_dist_avail_and_initialized(): | |
| return | |
| t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') | |
| dist.barrier() | |
| dist.all_reduce(t) | |
| t = t.tolist() | |
| self.count = int(t[0]) | |
| self.total = t[1] | |
| def median(self): | |
| d = torch.tensor(list(self.deque)) | |
| return d.median().item() | |
| def avg(self): | |
| d = torch.tensor(list(self.deque), dtype=torch.float32) | |
| return d.mean().item() | |
| def global_avg(self): | |
| return self.total / self.count | |
| def max(self): | |
| return max(self.deque) | |
| def value(self): | |
| return self.deque[-1] | |
| def __str__(self): | |
| return self.fmt.format( | |
| median=self.median, | |
| avg=self.avg, | |
| global_avg=self.global_avg, | |
| max=self.max, | |
| value=self.value) | |
| def all_gather(data): | |
| """ | |
| Run all_gather on arbitrary picklable data (not necessarily tensors) | |
| Args: | |
| data: any picklable object | |
| Returns: | |
| list[data]: list of data gathered from each rank | |
| """ | |
| world_size = get_world_size() | |
| if world_size == 1: | |
| return [data] | |
| # serialized to a Tensor | |
| buffer = pickle.dumps(data) | |
| storage = torch.ByteStorage.from_buffer(buffer) | |
| tensor = torch.ByteTensor(storage).to("cuda") | |
| # obtain Tensor size of each rank | |
| local_size = torch.tensor([tensor.numel()], device="cuda") | |
| size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] | |
| dist.all_gather(size_list, local_size) | |
| size_list = [int(size.item()) for size in size_list] | |
| max_size = max(size_list) | |
| # receiving Tensor from all ranks | |
| # we pad the tensor because torch all_gather does not support | |
| # gathering tensors of different shapes | |
| tensor_list = [] | |
| for _ in size_list: | |
| tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) | |
| if local_size != max_size: | |
| padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") | |
| tensor = torch.cat((tensor, padding), dim=0) | |
| dist.all_gather(tensor_list, tensor) | |
| data_list = [] | |
| for size, tensor in zip(size_list, tensor_list): | |
| buffer = tensor.cpu().numpy().tobytes()[:size] | |
| data_list.append(pickle.loads(buffer)) | |
| return data_list | |
| def reduce_dict(input_dict, average=True): | |
| """ | |
| Args: | |
| input_dict (dict): all the values will be reduced | |
| average (bool): whether to do average or sum | |
| Reduce the values in the dictionary from all processes so that all processes | |
| have the averaged results. Returns a dict with the same fields as | |
| input_dict, after reduction. | |
| """ | |
| world_size = get_world_size() | |
| if world_size < 2: | |
| return input_dict | |
| with torch.no_grad(): | |
| names = [] | |
| values = [] | |
| # sort the keys so that they are consistent across processes | |
| for k in sorted(input_dict.keys()): | |
| names.append(k) | |
| values.append(input_dict[k]) | |
| values = torch.stack(values, dim=0) | |
| dist.all_reduce(values) | |
| if average: | |
| values /= world_size | |
| reduced_dict = {k: v for k, v in zip(names, values)} | |
| return reduced_dict | |
| class MetricLogger(object): | |
| def __init__(self, delimiter="\t"): | |
| self.meters = defaultdict(SmoothedValue) | |
| self.delimiter = delimiter | |
| def update(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if isinstance(v, torch.Tensor): | |
| v = v.item() | |
| assert isinstance(v, (float, int)) | |
| self.meters[k].update(v) | |
| def __getattr__(self, attr): | |
| if attr in self.meters: | |
| return self.meters[attr] | |
| if attr in self.__dict__: | |
| return self.__dict__[attr] | |
| raise AttributeError("'{}' object has no attribute '{}'".format( | |
| type(self).__name__, attr)) | |
| def __str__(self): | |
| loss_str = [] | |
| for name, meter in self.meters.items(): | |
| loss_str.append( | |
| "{}: {}".format(name, str(meter)) | |
| ) | |
| return self.delimiter.join(loss_str) | |
| def synchronize_between_processes(self): | |
| for meter in self.meters.values(): | |
| meter.synchronize_between_processes() | |
| def add_meter(self, name, meter): | |
| self.meters[name] = meter | |
| def log_every(self, iterable, print_freq, header=None): | |
| i = 0 | |
| if not header: | |
| header = '' | |
| start_time = time.time() | |
| end = time.time() | |
| iter_time = SmoothedValue(fmt='{avg:.4f}') | |
| data_time = SmoothedValue(fmt='{avg:.4f}') | |
| space_fmt = ':' + str(len(str(len(iterable)))) + 'd' | |
| if torch.cuda.is_available(): | |
| log_msg = self.delimiter.join([ | |
| header, | |
| '[{0' + space_fmt + '}/{1}]', | |
| 'eta: {eta}', | |
| '{meters}', | |
| 'time: {time}', | |
| 'data: {data}', | |
| 'max mem: {memory:.0f}' | |
| ]) | |
| else: | |
| log_msg = self.delimiter.join([ | |
| header, | |
| '[{0' + space_fmt + '}/{1}]', | |
| 'eta: {eta}', | |
| '{meters}', | |
| 'time: {time}', | |
| 'data: {data}' | |
| ]) | |
| MB = 1024.0 * 1024.0 | |
| for obj in iterable: | |
| data_time.update(time.time() - end) | |
| yield obj | |
| iter_time.update(time.time() - end) | |
| if i % print_freq == 0 or i == len(iterable) - 1: | |
| eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
| eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
| if torch.cuda.is_available(): | |
| print(log_msg.format( | |
| i, len(iterable), eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time), | |
| memory=torch.cuda.max_memory_allocated() / MB)) | |
| else: | |
| print(log_msg.format( | |
| i, len(iterable), eta=eta_string, | |
| meters=str(self), | |
| time=str(iter_time), data=str(data_time))) | |
| i += 1 | |
| end = time.time() | |
| total_time = time.time() - start_time | |
| total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
| print('{} Total time: {} ({:.4f} s / it)'.format( | |
| header, total_time_str, total_time / len(iterable))) | |
| def get_sha(): | |
| cwd = os.path.dirname(os.path.abspath(__file__)) | |
| def _run(command): | |
| return subprocess.check_output(command, cwd=cwd).decode('ascii').strip() | |
| sha = 'N/A' | |
| diff = "clean" | |
| branch = 'N/A' | |
| try: | |
| sha = _run(['git', 'rev-parse', 'HEAD']) | |
| subprocess.check_output(['git', 'diff'], cwd=cwd) | |
| diff = _run(['git', 'diff-index', 'HEAD']) | |
| diff = "has uncommited changes" if diff else "clean" | |
| branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) | |
| except Exception: | |
| pass | |
| message = f"sha: {sha}, status: {diff}, branch: {branch}" | |
| return message | |
| def collate_fn(batch): | |
| batch = list(zip(*batch)) | |
| batch[0] = nested_tensor_from_tensor_list(batch[0]) | |
| return tuple(batch) | |
| def _max_by_axis(the_list): | |
| # type: (List[List[int]]) -> List[int] | |
| maxes = the_list[0] | |
| for sublist in the_list[1:]: | |
| for index, item in enumerate(sublist): | |
| maxes[index] = max(maxes[index], item) | |
| return maxes | |
| def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): | |
| # TODO make this more general | |
| if tensor_list[0].ndim == 3: | |
| # TODO make it support different-sized images | |
| max_size = _max_by_axis([list(img.shape) for img in tensor_list]) | |
| # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) | |
| batch_shape = [len(tensor_list)] + max_size | |
| b, c, h, w = batch_shape | |
| dtype = tensor_list[0].dtype | |
| device = tensor_list[0].device | |
| tensor = torch.zeros(batch_shape, dtype=dtype, device=device) | |
| mask = torch.ones((b, h, w), dtype=torch.bool, device=device) | |
| for img, pad_img, m in zip(tensor_list, tensor, mask): | |
| pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) | |
| m[: img.shape[1], :img.shape[2]] = False | |
| else: | |
| raise ValueError('not supported') | |
| return NestedTensor(tensor, mask) | |
| class NestedTensor(object): | |
| def __init__(self, tensors, mask: Optional[Tensor]): | |
| self.tensors = tensors | |
| self.mask = mask | |
| def to(self, device, non_blocking=False): | |
| # type: (Device) -> NestedTensor # noqa | |
| cast_tensor = self.tensors.to(device, non_blocking=non_blocking) | |
| mask = self.mask | |
| if mask is not None: | |
| assert mask is not None | |
| cast_mask = mask.to(device, non_blocking=non_blocking) | |
| else: | |
| cast_mask = None | |
| return NestedTensor(cast_tensor, cast_mask) | |
| def record_stream(self, *args, **kwargs): | |
| self.tensors.record_stream(*args, **kwargs) | |
| if self.mask is not None: | |
| self.mask.record_stream(*args, **kwargs) | |
| def decompose(self): | |
| return self.tensors, self.mask | |
| def __repr__(self): | |
| return str(self.tensors) | |
| def setup_for_distributed(is_master): | |
| """ | |
| This function disables printing when not in master process | |
| """ | |
| import builtins as __builtin__ | |
| builtin_print = __builtin__.print | |
| def print(*args, **kwargs): | |
| force = kwargs.pop('force', False) | |
| if is_master or force: | |
| builtin_print(*args, **kwargs) | |
| __builtin__.print = print | |
| def is_dist_avail_and_initialized(): | |
| if not dist.is_available(): | |
| return False | |
| if not dist.is_initialized(): | |
| return False | |
| return True | |
| def get_world_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def get_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return dist.get_rank() | |
| def get_local_size(): | |
| if not is_dist_avail_and_initialized(): | |
| return 1 | |
| return int(os.environ['LOCAL_SIZE']) | |
| def get_local_rank(): | |
| if not is_dist_avail_and_initialized(): | |
| return 0 | |
| return int(os.environ['LOCAL_RANK']) | |
| def is_main_process(): | |
| return get_rank() == 0 | |
| def save_on_master(*args, **kwargs): | |
| if is_main_process(): | |
| torch.save(*args, **kwargs) | |
| def init_distributed_mode(args): | |
| if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
| args.rank = int(os.environ["RANK"]) | |
| args.world_size = int(os.environ['WORLD_SIZE']) | |
| args.gpu = int(os.environ['LOCAL_RANK']) | |
| args.dist_url = 'env://' | |
| os.environ['LOCAL_SIZE'] = str(torch.cuda.device_count()) | |
| elif 'SLURM_PROCID' in os.environ: | |
| proc_id = int(os.environ['SLURM_PROCID']) | |
| ntasks = int(os.environ['SLURM_NTASKS']) | |
| node_list = os.environ['SLURM_NODELIST'] | |
| num_gpus = torch.cuda.device_count() | |
| addr = subprocess.getoutput( | |
| 'scontrol show hostname {} | head -n1'.format(node_list)) | |
| os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', '29500') | |
| os.environ['MASTER_ADDR'] = addr | |
| os.environ['WORLD_SIZE'] = str(ntasks) | |
| os.environ['RANK'] = str(proc_id) | |
| os.environ['LOCAL_RANK'] = str(proc_id % num_gpus) | |
| os.environ['LOCAL_SIZE'] = str(num_gpus) | |
| args.dist_url = 'env://' | |
| args.world_size = ntasks | |
| args.rank = proc_id | |
| args.gpu = proc_id % num_gpus | |
| else: | |
| print('Not using distributed mode') | |
| args.distributed = False | |
| return | |
| args.distributed = True | |
| torch.cuda.set_device(args.gpu) | |
| args.dist_backend = 'nccl' | |
| print('| distributed init (rank {}): {}'.format( | |
| args.rank, args.dist_url), flush=True) | |
| torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, | |
| world_size=args.world_size, rank=args.rank) | |
| torch.distributed.barrier() | |
| setup_for_distributed(args.rank == 0) | |
| def accuracy(output, target, topk=(1,)): | |
| """Computes the precision@k for the specified values of k""" | |
| if target.numel() == 0: | |
| return [torch.zeros([], device=output.device)] | |
| maxk = max(topk) | |
| batch_size = target.size(0) | |
| _, pred = output.topk(maxk, 1, True, True) | |
| pred = pred.t() | |
| correct = pred.eq(target.view(1, -1).expand_as(pred)) | |
| res = [] | |
| for k in topk: | |
| correct_k = correct[:k].view(-1).float().sum(0) | |
| res.append(correct_k.mul_(100.0 / batch_size)) | |
| return res | |
| def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): | |
| # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor | |
| """ | |
| Equivalent to nn.functional.interpolate, but with support for empty batch sizes. | |
| This will eventually be supported natively by PyTorch, and this | |
| class can go away. | |
| """ | |
| if float(torchvision.__version__[:3]) < 0.7: | |
| if input.numel() > 0: | |
| return torch.nn.functional.interpolate( | |
| input, size, scale_factor, mode, align_corners | |
| ) | |
| output_shape = _output_size(2, input, size, scale_factor) | |
| output_shape = list(input.shape[:-2]) + list(output_shape) | |
| if float(torchvision.__version__[:3]) < 0.5: | |
| return _NewEmptyTensorOp.apply(input, output_shape) | |
| return _new_empty_tensor(input, output_shape) | |
| else: | |
| return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) | |
| def get_total_grad_norm(parameters, norm_type=2): | |
| parameters = list(filter(lambda p: p.grad is not None, parameters)) | |
| norm_type = float(norm_type) | |
| device = parameters[0].grad.device | |
| total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), | |
| norm_type) | |
| return total_norm | |
| def inverse_sigmoid(x, eps=1e-5): | |
| x = x.clamp(min=0, max=1) | |
| x1 = x.clamp(min=eps) | |
| x2 = (1 - x).clamp(min=eps) | |
| return torch.log(x1/x2) | |