Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	
		Penghao Wu
		
	commited on
		
		
					Commit 
							
							·
						
						b11ae09
	
1
								Parent(s):
							
							3672502
								
init
Browse files- visual_search.py +567 -0
- vstar_bench_eval.py +294 -0
    	
        visual_search.py
    ADDED
    
    | @@ -0,0 +1,567 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import argparse
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
            import sys
         | 
| 4 | 
            +
            import json
         | 
| 5 | 
            +
            import tqdm
         | 
| 6 | 
            +
            import copy
         | 
| 7 | 
            +
            from queue import PriorityQueue
         | 
| 8 | 
            +
            import functools
         | 
| 9 | 
            +
            import spacy
         | 
| 10 | 
            +
            nlp = spacy.load("en_core_web_sm")
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            import cv2
         | 
| 13 | 
            +
            from PIL import Image
         | 
| 14 | 
            +
            import numpy as np
         | 
| 15 | 
            +
            import torch
         | 
| 16 | 
            +
            import torch.nn.functional as F
         | 
| 17 | 
            +
            from transformers import AutoTokenizer, CLIPImageProcessor
         | 
| 18 | 
            +
            from transformers import OwlViTProcessor
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from VisualSearch.model.VSM import VSMForCausalLM
         | 
| 21 | 
            +
            from VisualSearch.model.llava import conversation as conversation_lib
         | 
| 22 | 
            +
            from VisualSearch.model.llava.mm_utils import tokenizer_image_token
         | 
| 23 | 
            +
            from VisualSearch.utils.utils import expand2square
         | 
| 24 | 
            +
            from VisualSearch.utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
         | 
| 25 | 
            +
            						 DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            def parse_args(args):
         | 
| 29 | 
            +
            	parser = argparse.ArgumentParser(description="Visual Search Evaluation")
         | 
| 30 | 
            +
            	parser.add_argument("--version", default="craigwu/seal_vsm_7b")
         | 
| 31 | 
            +
            	parser.add_argument("--benchmark-folder", default="vstar_bench", type=str)
         | 
| 32 | 
            +
            	parser.add_argument("--visualization", action="store_true", default=False)
         | 
| 33 | 
            +
            	parser.add_argument("--output_path", default="", type=str)
         | 
| 34 | 
            +
            	parser.add_argument("--confidence_low", default=0.3, type=float)
         | 
| 35 | 
            +
            	parser.add_argument("--confidence_high", default=0.5, type=float)
         | 
| 36 | 
            +
            	parser.add_argument("--target_cue_threshold", default=6.0, type=float)
         | 
| 37 | 
            +
            	parser.add_argument("--target_cue_threshold_decay", default=0.7, type=float)
         | 
| 38 | 
            +
            	parser.add_argument("--target_cue_threshold_minimum", default=3.0, type=float)
         | 
| 39 | 
            +
            	parser.add_argument("--minimum_size_scale", default=4.0, type=float)
         | 
| 40 | 
            +
            	parser.add_argument("--minimum_size", default=224, type=int)
         | 
| 41 | 
            +
            	parser.add_argument("--model_max_length", default=512, type=int)
         | 
| 42 | 
            +
            	parser.add_argument(
         | 
| 43 | 
            +
            		"--vision-tower", default="openai/clip-vit-large-patch14", type=str
         | 
| 44 | 
            +
            	)
         | 
| 45 | 
            +
            	parser.add_argument("--use_mm_start_end", action="store_true", default=True)
         | 
| 46 | 
            +
            	parser.add_argument(
         | 
| 47 | 
            +
            		"--conv_type",
         | 
| 48 | 
            +
            		default="llava_v1",
         | 
| 49 | 
            +
            		type=str,
         | 
| 50 | 
            +
            		choices=["llava_v1", "llava_llama_2"],
         | 
| 51 | 
            +
            	)
         | 
| 52 | 
            +
            	return parser.parse_args(args)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            def tranverse(token):
         | 
| 55 | 
            +
            	children = [_ for _ in token.children]
         | 
| 56 | 
            +
            	if len(children) == 0:
         | 
| 57 | 
            +
            		return token.i, token.i
         | 
| 58 | 
            +
            	left_i = token.i
         | 
| 59 | 
            +
            	right_i = token.i
         | 
| 60 | 
            +
            	for child in children:
         | 
| 61 | 
            +
            		child_left_i, child_right_i = tranverse(child)
         | 
| 62 | 
            +
            		left_i = min(left_i, child_left_i)
         | 
| 63 | 
            +
            		right_i = max(right_i, child_right_i)
         | 
| 64 | 
            +
            	return left_i, right_i
         | 
| 65 | 
            +
            def get_noun_chunks(token):
         | 
| 66 | 
            +
            	left_children = []
         | 
| 67 | 
            +
            	right_children = []
         | 
| 68 | 
            +
            	for child in token.children:
         | 
| 69 | 
            +
            		if child.i < token.i:
         | 
| 70 | 
            +
            			left_children.append(child)
         | 
| 71 | 
            +
            		else:
         | 
| 72 | 
            +
            			right_children.append(child)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            	start_token_i = token.i
         | 
| 75 | 
            +
            	for left_child in left_children[::-1]:
         | 
| 76 | 
            +
            		if left_child.dep_ in ['amod', 'compound', 'poss']:
         | 
| 77 | 
            +
            			start_token_i, _ = tranverse(left_child)
         | 
| 78 | 
            +
            		else:
         | 
| 79 | 
            +
            			break
         | 
| 80 | 
            +
            	end_token_i = token.i
         | 
| 81 | 
            +
            	for right_child in right_children:
         | 
| 82 | 
            +
            		if right_child.dep_ in ['relcl', 'prep']:
         | 
| 83 | 
            +
            			_, end_token_i = tranverse(right_child)
         | 
| 84 | 
            +
            		else:
         | 
| 85 | 
            +
            			break
         | 
| 86 | 
            +
            	return start_token_i, end_token_i
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            def filter_chunk_list(chunks):
         | 
| 89 | 
            +
            	def overlap(min1, max1, min2, max2):
         | 
| 90 | 
            +
            		return min(max1, max2) - max(min1, min2)
         | 
| 91 | 
            +
            	chunks = sorted(chunks, key=lambda chunk: chunk[1]-chunk[0], reverse=True)
         | 
| 92 | 
            +
            	filtered_chunks = []
         | 
| 93 | 
            +
            	for chunk in chunks:
         | 
| 94 | 
            +
            		flag=True
         | 
| 95 | 
            +
            		for exist_chunk in filtered_chunks:
         | 
| 96 | 
            +
            			if overlap(exist_chunk[0], exist_chunk[1], chunk[0], chunk[1]) >= 0:
         | 
| 97 | 
            +
            				flag = False
         | 
| 98 | 
            +
            				break
         | 
| 99 | 
            +
            		if flag:
         | 
| 100 | 
            +
            			filtered_chunks.append(chunk)
         | 
| 101 | 
            +
            	return sorted(filtered_chunks, key=lambda chunk: chunk[0])
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            def extract_noun_chunks(expression):
         | 
| 104 | 
            +
            	doc = nlp(expression)
         | 
| 105 | 
            +
            	cur_chunks = []
         | 
| 106 | 
            +
            	for token in doc:
         | 
| 107 | 
            +
            		if token.pos_ not in ["NOUN", "PRON"]:
         | 
| 108 | 
            +
            			continue
         | 
| 109 | 
            +
            		cur_chunks.append(get_noun_chunks(token))
         | 
| 110 | 
            +
            	cur_chunks = filter_chunk_list(cur_chunks)
         | 
| 111 | 
            +
            	cur_chunks = [doc[chunk[0]:chunk[1]+1].text for chunk in cur_chunks]
         | 
| 112 | 
            +
            	return cur_chunks
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            def preprocess(
         | 
| 115 | 
            +
            	x,
         | 
| 116 | 
            +
            	pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
         | 
| 117 | 
            +
            	pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
         | 
| 118 | 
            +
            	img_size=1024,
         | 
| 119 | 
            +
            ) -> torch.Tensor:
         | 
| 120 | 
            +
            	"""Normalize pixel values and pad to a square input."""
         | 
| 121 | 
            +
            	# Normalize colors
         | 
| 122 | 
            +
            	x = (x - pixel_mean) / pixel_std
         | 
| 123 | 
            +
            	# Pad
         | 
| 124 | 
            +
            	h, w = x.shape[-2:]
         | 
| 125 | 
            +
            	padh = img_size - h
         | 
| 126 | 
            +
            	padw = img_size - w
         | 
| 127 | 
            +
            	x = F.pad(x, (0, padw, 0, padh))
         | 
| 128 | 
            +
            	return x
         | 
| 129 | 
            +
             | 
| 130 | 
            +
            def box_cxcywh_to_xyxy(x):
         | 
| 131 | 
            +
            	x_c, y_c, w, h = x.unbind(1)
         | 
| 132 | 
            +
            	b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
         | 
| 133 | 
            +
            		 (x_c + 0.5 * w), (y_c + 0.5 * h)]
         | 
| 134 | 
            +
            	return torch.stack(b, dim=1)
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            def rescale_bboxes(out_bbox, size):
         | 
| 137 | 
            +
            	img_w, img_h = size
         | 
| 138 | 
            +
            	b = box_cxcywh_to_xyxy(out_bbox)
         | 
| 139 | 
            +
            	b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
         | 
| 140 | 
            +
            	return b
         | 
| 141 | 
            +
             | 
| 142 | 
            +
            class VSM:
         | 
| 143 | 
            +
            	def __init__(self, args):
         | 
| 144 | 
            +
            		kwargs = {}
         | 
| 145 | 
            +
            		kwargs['torch_dtype'] = torch.bfloat16
         | 
| 146 | 
            +
            		kwargs['device_map'] = 'cuda'
         | 
| 147 | 
            +
            		kwargs['is_eval'] = True
         | 
| 148 | 
            +
            		vsm_tokenizer = AutoTokenizer.from_pretrained(
         | 
| 149 | 
            +
            				args.version,
         | 
| 150 | 
            +
            				cache_dir=None,
         | 
| 151 | 
            +
            				model_max_length=args.model_max_length,
         | 
| 152 | 
            +
            				padding_side="right",
         | 
| 153 | 
            +
            				use_fast=False,
         | 
| 154 | 
            +
            			)
         | 
| 155 | 
            +
            		vsm_tokenizer.pad_token = vsm_tokenizer.unk_token
         | 
| 156 | 
            +
            		loc_token_idx = vsm_tokenizer("[LOC]", add_special_tokens=False).input_ids[0]
         | 
| 157 | 
            +
            		vsm_model = VSMForCausalLM.from_pretrained(
         | 
| 158 | 
            +
            				args.version, low_cpu_mem_usage=True, vision_tower=args.vision_tower, loc_token_idx=loc_token_idx, **kwargs
         | 
| 159 | 
            +
            			)
         | 
| 160 | 
            +
            		vsm_model.get_model().initialize_vision_modules(vsm_model.get_model().config)
         | 
| 161 | 
            +
            		vision_tower = vsm_model.get_model().get_vision_tower().cuda().to(dtype=torch.bfloat16)
         | 
| 162 | 
            +
            		vsm_image_processor = vision_tower.image_processor
         | 
| 163 | 
            +
            		vsm_model.eval()
         | 
| 164 | 
            +
            		clip_image_processor = CLIPImageProcessor.from_pretrained(vsm_model.config.vision_tower)
         | 
| 165 | 
            +
            		transform = OwlViTProcessor.from_pretrained("google/owlvit-base-patch16")
         | 
| 166 | 
            +
            		self.model = vsm_model
         | 
| 167 | 
            +
            		self.vsm_tokenizer = vsm_tokenizer
         | 
| 168 | 
            +
            		self.vsm_image_processor = vsm_image_processor
         | 
| 169 | 
            +
            		self.clip_image_processor = clip_image_processor
         | 
| 170 | 
            +
            		self.transform = transform
         | 
| 171 | 
            +
            		self.conv_type = args.conv_type
         | 
| 172 | 
            +
            		self.use_mm_start_end = args.use_mm_start_end
         | 
| 173 | 
            +
            	
         | 
| 174 | 
            +
            	@torch.inference_mode()
         | 
| 175 | 
            +
            	def inference(self, image, question, mode='segmentation'):
         | 
| 176 | 
            +
            		conv = conversation_lib.conv_templates[self.conv_type].copy()
         | 
| 177 | 
            +
            		conv.messages = []
         | 
| 178 | 
            +
            		prompt = DEFAULT_IMAGE_TOKEN + "\n" + question
         | 
| 179 | 
            +
            		if self.use_mm_start_end:
         | 
| 180 | 
            +
            			replace_token = ( DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN)
         | 
| 181 | 
            +
            			prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
         | 
| 182 | 
            +
            		conv.append_message(conv.roles[0], prompt)
         | 
| 183 | 
            +
            		conv.append_message(conv.roles[1], "")
         | 
| 184 | 
            +
            		prompt = conv.get_prompt()
         | 
| 185 | 
            +
             | 
| 186 | 
            +
            		background_color = tuple(int(x*255) for x in self.clip_image_processor.image_mean)
         | 
| 187 | 
            +
            		image_clip = self.clip_image_processor.preprocess(expand2square(image, background_color), return_tensors="pt")["pixel_values"][0].unsqueeze(0).cuda()
         | 
| 188 | 
            +
             | 
| 189 | 
            +
            		image_clip = image_clip.bfloat16()
         | 
| 190 | 
            +
            		image = np.array(image)
         | 
| 191 | 
            +
            		original_size_list = [image.shape[:2]]
         | 
| 192 | 
            +
            		image = self.transform(images=image, return_tensors="pt")['pixel_values'].cuda()
         | 
| 193 | 
            +
            		resize_list = [image.shape[:2]]
         | 
| 194 | 
            +
            		image = image.bfloat16()
         | 
| 195 | 
            +
            		input_ids = tokenizer_image_token(prompt, self.vsm_tokenizer, return_tensors="pt")
         | 
| 196 | 
            +
            		input_ids = input_ids.unsqueeze(0).cuda()
         | 
| 197 | 
            +
             | 
| 198 | 
            +
            		output_ids, pred_masks, det_result = self.model.inference(
         | 
| 199 | 
            +
            			image_clip,
         | 
| 200 | 
            +
            			image,
         | 
| 201 | 
            +
            			input_ids,
         | 
| 202 | 
            +
            			resize_list,
         | 
| 203 | 
            +
            			original_size_list,
         | 
| 204 | 
            +
            			max_new_tokens=100,
         | 
| 205 | 
            +
            			tokenizer=self.vsm_tokenizer,
         | 
| 206 | 
            +
            			mode = mode
         | 
| 207 | 
            +
            		)
         | 
| 208 | 
            +
            		if mode == 'segmentation':
         | 
| 209 | 
            +
            			pred_mask = pred_masks[0]
         | 
| 210 | 
            +
            			pred_mask = torch.clamp(pred_mask, min=0)
         | 
| 211 | 
            +
            			return pred_mask[-1]
         | 
| 212 | 
            +
             | 
| 213 | 
            +
            		elif mode == 'vqa':
         | 
| 214 | 
            +
            			input_token_len = input_ids.shape[1]
         | 
| 215 | 
            +
            			n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
         | 
| 216 | 
            +
            			if n_diff_input_output > 0:
         | 
| 217 | 
            +
            				print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
         | 
| 218 | 
            +
            			text_output = self.vsm_tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
         | 
| 219 | 
            +
            			text_output = text_output.replace("\n", "").replace("  ", " ").strip()
         | 
| 220 | 
            +
            			return text_output
         | 
| 221 | 
            +
            		
         | 
| 222 | 
            +
            		elif mode == 'detection':
         | 
| 223 | 
            +
            			pred_mask = pred_masks[0]
         | 
| 224 | 
            +
            			pred_mask = torch.clamp(pred_mask, min=0)
         | 
| 225 | 
            +
            			return det_result['pred_boxes'][0].cpu(), det_result['pred_logits'][0].sigmoid().cpu(), pred_mask[-1]
         | 
| 226 | 
            +
             | 
| 227 | 
            +
            def refine_bbox(bbox, image_width, image_height):
         | 
| 228 | 
            +
            	bbox[0] = max(0, bbox[0])
         | 
| 229 | 
            +
            	bbox[1] = max(0, bbox[1])
         | 
| 230 | 
            +
            	bbox[2] = min(bbox[2], image_width-bbox[0])
         | 
| 231 | 
            +
            	bbox[3] = min(bbox[3], image_height-bbox[1])
         | 
| 232 | 
            +
            	return bbox
         | 
| 233 | 
            +
             | 
| 234 | 
            +
            def split_4subpatches(current_patch_bbox):
         | 
| 235 | 
            +
            	hw_ratio = current_patch_bbox[3] / current_patch_bbox[2]
         | 
| 236 | 
            +
            	if hw_ratio >= 2:
         | 
| 237 | 
            +
            		return 1, 4
         | 
| 238 | 
            +
            	elif hw_ratio <= 0.5:
         | 
| 239 | 
            +
            		return 4, 1
         | 
| 240 | 
            +
            	else:
         | 
| 241 | 
            +
            		return 2, 2
         | 
| 242 | 
            +
             | 
| 243 | 
            +
            def get_sub_patches(current_patch_bbox, num_of_width_patches, num_of_height_patches):
         | 
| 244 | 
            +
            	width_stride = int(current_patch_bbox[2]//num_of_width_patches)
         | 
| 245 | 
            +
            	height_stride = int(current_patch_bbox[3]/num_of_height_patches)
         | 
| 246 | 
            +
            	sub_patches = []
         | 
| 247 | 
            +
            	for j in range(num_of_height_patches):
         | 
| 248 | 
            +
            		for i in range(num_of_width_patches):
         | 
| 249 | 
            +
            			sub_patch_width = current_patch_bbox[2] - i*width_stride if i == num_of_width_patches-1 else width_stride
         | 
| 250 | 
            +
            			sub_patch_height = current_patch_bbox[3] - j*height_stride if j == num_of_height_patches-1 else height_stride
         | 
| 251 | 
            +
            			sub_patch = [current_patch_bbox[0]+i*width_stride, current_patch_bbox[1]+j*height_stride, sub_patch_width, sub_patch_height]
         | 
| 252 | 
            +
            			sub_patches.append(sub_patch)
         | 
| 253 | 
            +
            	return sub_patches, width_stride, height_stride
         | 
| 254 | 
            +
             | 
| 255 | 
            +
            def get_subpatch_scores(score_heatmap, current_patch_bbox, sub_patches):
         | 
| 256 | 
            +
            	total_sum = (score_heatmap/(current_patch_bbox[2]*current_patch_bbox[3])).sum()
         | 
| 257 | 
            +
            	sub_scores = []
         | 
| 258 | 
            +
            	for sub_patch in sub_patches:
         | 
| 259 | 
            +
            		bbox = [(sub_patch[0]-current_patch_bbox[0]), sub_patch[1]-current_patch_bbox[1], sub_patch[2], sub_patch[3]]
         | 
| 260 | 
            +
            		score = (score_heatmap[bbox[1]:bbox[1]+bbox[3], bbox[0]:bbox[0]+bbox[2]]/(current_patch_bbox[2]*current_patch_bbox[3])).sum()
         | 
| 261 | 
            +
            		if total_sum > 0:
         | 
| 262 | 
            +
            			score /= total_sum
         | 
| 263 | 
            +
            		else:
         | 
| 264 | 
            +
            			score *= 0
         | 
| 265 | 
            +
            		sub_scores.append(score)
         | 
| 266 | 
            +
            	return sub_scores
         | 
| 267 | 
            +
             | 
| 268 | 
            +
            def normalize_score(score_heatmap):
         | 
| 269 | 
            +
            	max_score = score_heatmap.max()
         | 
| 270 | 
            +
            	min_score = score_heatmap.min()
         | 
| 271 | 
            +
            	if max_score != min_score:
         | 
| 272 | 
            +
            		score_heatmap = (score_heatmap - min_score) / (max_score - min_score)
         | 
| 273 | 
            +
            	else:
         | 
| 274 | 
            +
            		score_heatmap = score_heatmap * 0
         | 
| 275 | 
            +
            	return score_heatmap
         | 
| 276 | 
            +
             | 
| 277 | 
            +
            def iou(bbox1, bbox2):
         | 
| 278 | 
            +
            	x1 = max(bbox1[0], bbox2[0])
         | 
| 279 | 
            +
            	y1 = max(bbox1[1], bbox2[1])
         | 
| 280 | 
            +
            	x2 = min(bbox1[0]+bbox1[2], bbox2[0]+bbox2[2])
         | 
| 281 | 
            +
            	y2 = min(bbox1[1]+bbox1[3],bbox2[1]+bbox2[3])
         | 
| 282 | 
            +
            	inter_area = max(0, x2 - x1) * max(0, y2 - y1)
         | 
| 283 | 
            +
            	return inter_area/(bbox1[2]*bbox1[3]+bbox2[2]*bbox2[3]-inter_area)
         | 
| 284 | 
            +
             | 
| 285 | 
            +
            BOX_COLOR = (255, 0, 0) # Red
         | 
| 286 | 
            +
            TEXT_COLOR = (255, 255, 255) # White
         | 
| 287 | 
            +
            import cv2
         | 
| 288 | 
            +
            from matplotlib import pyplot as plt
         | 
| 289 | 
            +
            def visualize_bbox(img, bbox, class_name, color=BOX_COLOR, thickness=2):
         | 
| 290 | 
            +
            	"""Visualizes a single bounding box on the image"""
         | 
| 291 | 
            +
            	x_min, y_min, w, h = bbox
         | 
| 292 | 
            +
            	x_min, x_max, y_min, y_max = int(x_min), int(x_min + w), int(y_min), int(y_min + h)
         | 
| 293 | 
            +
               
         | 
| 294 | 
            +
            	cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=color, thickness=thickness)
         | 
| 295 | 
            +
            	
         | 
| 296 | 
            +
            	((text_width, text_height), _) = cv2.getTextSize(class_name, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)    
         | 
| 297 | 
            +
            	cv2.rectangle(img, (x_min, y_min - int(1.3 * text_height)), (x_min + text_width, y_min), BOX_COLOR, -1)
         | 
| 298 | 
            +
            	cv2.putText(
         | 
| 299 | 
            +
            		img,
         | 
| 300 | 
            +
            		text=class_name,
         | 
| 301 | 
            +
            		org=(x_min, y_min - int(0.3 * text_height)),
         | 
| 302 | 
            +
            		fontFace=cv2.FONT_HERSHEY_SIMPLEX,
         | 
| 303 | 
            +
            		fontScale=0.5, 
         | 
| 304 | 
            +
            		color=TEXT_COLOR, 
         | 
| 305 | 
            +
            		lineType=cv2.LINE_AA,
         | 
| 306 | 
            +
            	)
         | 
| 307 | 
            +
            	return img
         | 
| 308 | 
            +
            def show_heatmap_on_image(img: np.ndarray,
         | 
| 309 | 
            +
            					  mask: np.ndarray,
         | 
| 310 | 
            +
            					  use_rgb: bool = False,
         | 
| 311 | 
            +
            					  colormap: int = cv2.COLORMAP_JET,
         | 
| 312 | 
            +
            					  image_weight: float = 0.5) -> np.ndarray:
         | 
| 313 | 
            +
            	mask = np.clip(mask, 0, 1)
         | 
| 314 | 
            +
            	heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
         | 
| 315 | 
            +
            	if use_rgb:
         | 
| 316 | 
            +
            		heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
         | 
| 317 | 
            +
            	heatmap = np.float32(heatmap) / 255
         | 
| 318 | 
            +
             | 
| 319 | 
            +
            	if np.max(img) > 1:
         | 
| 320 | 
            +
            		raise Exception(
         | 
| 321 | 
            +
            			"The input image should np.float32 in the range [0, 1]")
         | 
| 322 | 
            +
             | 
| 323 | 
            +
            	if image_weight < 0 or image_weight > 1:
         | 
| 324 | 
            +
            		raise Exception(
         | 
| 325 | 
            +
            			f"image_weight should be in the range [0, 1].\
         | 
| 326 | 
            +
            				Got: {image_weight}")
         | 
| 327 | 
            +
             | 
| 328 | 
            +
            	cam = (1 - image_weight) * heatmap + image_weight * img
         | 
| 329 | 
            +
            	cam = cam / np.max(cam)
         | 
| 330 | 
            +
            	return np.uint8(255 * cam)
         | 
| 331 | 
            +
            def vis_heatmap(image, heatmap, use_rgb=False):
         | 
| 332 | 
            +
            	max_v =  np.max(heatmap)
         | 
| 333 | 
            +
            	min_v =  np.min(heatmap)
         | 
| 334 | 
            +
            	if max_v != min_v:
         | 
| 335 | 
            +
            		heatmap = (heatmap - min_v) / (max_v - min_v)
         | 
| 336 | 
            +
            	heatmap_image = show_heatmap_on_image(image.astype(float)/255., heatmap, use_rgb=use_rgb)
         | 
| 337 | 
            +
            	return heatmap_image
         | 
| 338 | 
            +
             | 
| 339 | 
            +
            def visualize_search_path(image, search_path, search_length, target_bbox, label, save_path):
         | 
| 340 | 
            +
            	context_cue_list = []
         | 
| 341 | 
            +
            	whole_image = image	
         | 
| 342 | 
            +
            	os.makedirs(save_path, exist_ok=True)
         | 
| 343 | 
            +
            	whole_image.save(os.path.join(save_path, 'whole_image.jpg'))
         | 
| 344 | 
            +
             | 
| 345 | 
            +
            	whole_image = np.array(whole_image)
         | 
| 346 | 
            +
            	if target_bbox is not None:
         | 
| 347 | 
            +
            		whole_image = visualize_bbox(whole_image.copy(), target_bbox, class_name="gt: "+label, color=(255,0,0))
         | 
| 348 | 
            +
            	for step_i, node in enumerate(search_path):
         | 
| 349 | 
            +
            		if step_i + 1 > search_length:
         | 
| 350 | 
            +
            			break
         | 
| 351 | 
            +
            		current_patch_box = node['bbox']
         | 
| 352 | 
            +
            		if 'detection_result' in node:
         | 
| 353 | 
            +
            			final_patch_image = image.crop((current_patch_box[0],current_patch_box[1],current_patch_box[0]+current_patch_box[2], current_patch_box[1]+current_patch_box[3]))
         | 
| 354 | 
            +
            			final_patch_image.save(os.path.join(save_path, 'final_patch_image.jpg'))
         | 
| 355 | 
            +
            			final_search_result = visualize_bbox(np.array(final_patch_image), node['detection_result'], class_name='search result', color=(255,0,0))
         | 
| 356 | 
            +
            			final_search_result = cv2.cvtColor(final_search_result, cv2.COLOR_RGB2BGR)
         | 
| 357 | 
            +
            			cv2.imwrite(os.path.join(save_path, 'search_result.jpg'), final_search_result)
         | 
| 358 | 
            +
            		cur_whole_image = visualize_bbox(whole_image.copy(), current_patch_box, class_name="step-{}".format(step_i+1), color=(0,0,255))
         | 
| 359 | 
            +
            		# if step_i != len(search_path)-1:
         | 
| 360 | 
            +
            		# 	next_patch_box = search_path[step_i+1]['bbox']
         | 
| 361 | 
            +
            		# 	cur_whole_image = visualize_bbox(cur_whole_image, next_patch_box, class_name="next-step", color=(0,255,0))
         | 
| 362 | 
            +
            		cur_whole_image = cv2.cvtColor(cur_whole_image, cv2.COLOR_RGB2BGR)
         | 
| 363 | 
            +
            		cv2.imwrite(os.path.join(save_path, 'step_{}.jpg'.format(step_i+1)), cur_whole_image)
         | 
| 364 | 
            +
            		
         | 
| 365 | 
            +
            		cur_patch_image = image.crop((current_patch_box[0],current_patch_box[1],current_patch_box[0]+current_patch_box[2], current_patch_box[1]+current_patch_box[3]))
         | 
| 366 | 
            +
            		if 'context_cue' in node:
         | 
| 367 | 
            +
            			context_cue = node['context_cue']
         | 
| 368 | 
            +
            			context_cue_list.append('step{}: {}'.format(step_i+1, context_cue)+'\n')
         | 
| 369 | 
            +
            		if 'final_heatmap' in node:
         | 
| 370 | 
            +
            			score_map = node['final_heatmap']
         | 
| 371 | 
            +
            			score_map = vis_heatmap(np.array(cur_patch_image), score_map, use_rgb=True)
         | 
| 372 | 
            +
            			score_map = cv2.cvtColor(score_map, cv2.COLOR_RGB2BGR)
         | 
| 373 | 
            +
            			cv2.imwrite(os.path.join(save_path, 'step_{}_heatmap.jpg'.format(step_i+1)), score_map)
         | 
| 374 | 
            +
             | 
| 375 | 
            +
            	with open(os.path.join(save_path, 'context_cue.txt'),"w") as f:
         | 
| 376 | 
            +
            		f.writelines(context_cue_list)
         | 
| 377 | 
            +
            		
         | 
| 378 | 
            +
            @functools.total_ordering
         | 
| 379 | 
            +
            class Prioritize:
         | 
| 380 | 
            +
             | 
| 381 | 
            +
            	def __init__(self, priority, item):
         | 
| 382 | 
            +
            		self.priority = priority
         | 
| 383 | 
            +
            		self.item = item
         | 
| 384 | 
            +
             | 
| 385 | 
            +
            	def __eq__(self, other):
         | 
| 386 | 
            +
            		return self.priority == other.priority
         | 
| 387 | 
            +
             | 
| 388 | 
            +
            	def __lt__(self, other):
         | 
| 389 | 
            +
            		return self.priority < other.priority
         | 
| 390 | 
            +
            def visual_search_queue(vsm, image, target_object_name, current_patch, search_path, queue,  smallest_size=224, confidence_high=0.5, target_cue_threshold=6.0, target_cue_threshold_decay=0.7, target_cue_threshold_minimum=3.0):
         | 
| 391 | 
            +
            	current_patch_bbox = current_patch['bbox']
         | 
| 392 | 
            +
            	current_patch_scale_level = current_patch['scale_level']
         | 
| 393 | 
            +
             | 
| 394 | 
            +
            	image_patch = image.crop((int(current_patch_bbox[0]), int(current_patch_bbox[1]), int(current_patch_bbox[0]+current_patch_bbox[2]), int(current_patch_bbox[1]+current_patch_bbox[3])))
         | 
| 395 | 
            +
            	# whehter we can detect the target object on the current image patch
         | 
| 396 | 
            +
            	question = "Please locate the {} in this image.".format(target_object_name)
         | 
| 397 | 
            +
            	pred_bboxes, pred_logits, target_cue_heatmap = vsm.inference(copy.deepcopy(image_patch), question, mode='detection')
         | 
| 398 | 
            +
            	if len(pred_logits) > 0:
         | 
| 399 | 
            +
            		top_index = pred_logits.view(-1).argmax()
         | 
| 400 | 
            +
            		top_logit = pred_logits.view(-1).max()
         | 
| 401 | 
            +
            		final_bbox = pred_bboxes[top_index].view(4)
         | 
| 402 | 
            +
            		final_bbox = final_bbox * torch.Tensor([image_patch.width, image_patch.height, image_patch.width, image_patch.height])
         | 
| 403 | 
            +
            		final_bbox[:2] -= final_bbox[2:] / 2
         | 
| 404 | 
            +
            		if top_logit > confidence_high:
         | 
| 405 | 
            +
            			search_path[-1]['detection_result'] = final_bbox
         | 
| 406 | 
            +
            			# only return multiple detected instances on the whole image
         | 
| 407 | 
            +
            			if len(search_path) == 1:
         | 
| 408 | 
            +
            				all_valid_boxes = pred_bboxes[pred_logits.view(-1)>0.5].view(-1, 4)
         | 
| 409 | 
            +
            				all_valid_boxes = all_valid_boxes * torch.Tensor([[image_patch.width, image_patch.height, image_patch.width, image_patch.height]])
         | 
| 410 | 
            +
            				all_valid_boxes[:, :2] -= all_valid_boxes[:, 2:] / 2
         | 
| 411 | 
            +
            				return True, search_path, all_valid_boxes
         | 
| 412 | 
            +
            			return True, search_path, None
         | 
| 413 | 
            +
            		else:
         | 
| 414 | 
            +
            			search_path[-1]['temp_detection_result'] = (top_logit, final_bbox)
         | 
| 415 | 
            +
             | 
| 416 | 
            +
            	### current patch is already the smallest unit
         | 
| 417 | 
            +
            	if min(current_patch_bbox[2], current_patch_bbox[3]) <= smallest_size:
         | 
| 418 | 
            +
            		return False, search_path, None
         | 
| 419 | 
            +
             | 
| 420 | 
            +
            	target_cue_heatmap = target_cue_heatmap.view(current_patch_bbox[3], current_patch_bbox[2], 1)
         | 
| 421 | 
            +
            	score_max = target_cue_heatmap.max().item()
         | 
| 422 | 
            +
            	# check whether the target cue is prominent
         | 
| 423 | 
            +
            	threshold = max(target_cue_threshold_minimum, target_cue_threshold*(target_cue_threshold_decay)**(current_patch_scale_level-1))
         | 
| 424 | 
            +
            	if score_max > threshold:
         | 
| 425 | 
            +
            		target_cue_heatmap = normalize_score(target_cue_heatmap)
         | 
| 426 | 
            +
            		final_heatmap = target_cue_heatmap
         | 
| 427 | 
            +
            	else:
         | 
| 428 | 
            +
            		question = "According to the common sense knowledge and possible visual cues, what is the most likely location of the {} in the image?".format(target_object_name)
         | 
| 429 | 
            +
            		vqa_results = vsm.inference(copy.deepcopy(image_patch), question, mode='vqa')
         | 
| 430 | 
            +
             | 
| 431 | 
            +
            		possible_location_phrase = vqa_results.split('most likely to appear')[-1].strip()
         | 
| 432 | 
            +
            		if possible_location_phrase.endswith('.'):
         | 
| 433 | 
            +
            			possible_location_phrase = possible_location_phrase[:-1]
         | 
| 434 | 
            +
            		possible_location_phrase = possible_location_phrase.split(target_object_name)[-1]
         | 
| 435 | 
            +
            		noun_chunks = extract_noun_chunks(possible_location_phrase)
         | 
| 436 | 
            +
            		if len(noun_chunks) == 1:
         | 
| 437 | 
            +
            			possible_location_phrase = noun_chunks[0]
         | 
| 438 | 
            +
            		else:
         | 
| 439 | 
            +
            			possible_location_phrase = "region {}".format(possible_location_phrase)
         | 
| 440 | 
            +
            		question = "Please locate the {} in this image.".format(possible_location_phrase)
         | 
| 441 | 
            +
            		context_cue_heatmap = vsm.inference(copy.deepcopy(image_patch), question, mode='segmentation').view(current_patch_bbox[3], current_patch_bbox[2], 1)
         | 
| 442 | 
            +
            		context_cue_heatmap = normalize_score(context_cue_heatmap)
         | 
| 443 | 
            +
            		final_heatmap = context_cue_heatmap
         | 
| 444 | 
            +
             | 
| 445 | 
            +
            	current_patch_index = len(search_path)-1
         | 
| 446 | 
            +
            	if score_max <= threshold:
         | 
| 447 | 
            +
            		search_path[current_patch_index]['context_cue'] = vqa_results + "#" + possible_location_phrase
         | 
| 448 | 
            +
            	search_path[current_patch_index]['final_heatmap'] = final_heatmap.cpu().numpy()
         | 
| 449 | 
            +
            	
         | 
| 450 | 
            +
            	### split the current patch into 4 sub-patches
         | 
| 451 | 
            +
            	basic_sub_patches, sub_patch_width, sub_patch_height = get_sub_patches(current_patch_bbox, *split_4subpatches(current_patch_bbox))
         | 
| 452 | 
            +
             | 
| 453 | 
            +
            	tmp_patch = current_patch
         | 
| 454 | 
            +
            	basic_sub_scores = [0]*len(basic_sub_patches)
         | 
| 455 | 
            +
            	while True:
         | 
| 456 | 
            +
            		tmp_score_heatmap = tmp_patch['final_heatmap']
         | 
| 457 | 
            +
            		tmp_sub_scores = get_subpatch_scores(tmp_score_heatmap, tmp_patch['bbox'],  basic_sub_patches)
         | 
| 458 | 
            +
            		basic_sub_scores = [basic_sub_scores[patch_i]+tmp_sub_scores[patch_i]/(4**tmp_patch['scale_level']) for patch_i in range(len(basic_sub_scores))]
         | 
| 459 | 
            +
            		if  tmp_patch['parent_index'] == -1:
         | 
| 460 | 
            +
            			break
         | 
| 461 | 
            +
            		else:
         | 
| 462 | 
            +
            			tmp_patch = search_path[tmp_patch['parent_index']]
         | 
| 463 | 
            +
             | 
| 464 | 
            +
            	sub_patches = basic_sub_patches
         | 
| 465 | 
            +
            	sub_scores = basic_sub_scores
         | 
| 466 | 
            +
             | 
| 467 | 
            +
            	for sub_patch, sub_score in zip(sub_patches, sub_scores):
         | 
| 468 | 
            +
            		new_patch_info = dict()
         | 
| 469 | 
            +
            		new_patch_info['bbox'] = sub_patch
         | 
| 470 | 
            +
            		new_patch_info['scale_level'] = current_patch_scale_level + 1
         | 
| 471 | 
            +
            		new_patch_info['score'] = sub_score
         | 
| 472 | 
            +
            		new_patch_info['parent_index'] = current_patch_index
         | 
| 473 | 
            +
            		queue.put(Prioritize(-new_patch_info['score'], new_patch_info))
         | 
| 474 | 
            +
            	
         | 
| 475 | 
            +
            	while(not queue.empty()):
         | 
| 476 | 
            +
            		patch_chosen = queue.get().item
         | 
| 477 | 
            +
            		search_path.append(patch_chosen)
         | 
| 478 | 
            +
            		success, search_path, all_valid_boxes = visual_search_queue(vsm, image, target_object_name, patch_chosen, search_path, queue, smallest_size=smallest_size, confidence_high=confidence_high, target_cue_threshold=target_cue_threshold, target_cue_threshold_decay=target_cue_threshold_decay, target_cue_threshold_minimum=target_cue_threshold_minimum)
         | 
| 479 | 
            +
            		if success:
         | 
| 480 | 
            +
            			return success, search_path, all_valid_boxes
         | 
| 481 | 
            +
            	return False, search_path, None
         | 
| 482 | 
            +
             | 
| 483 | 
            +
             | 
| 484 | 
            +
            def visual_search(vsm, image, target_object_name, target_bbox, smallest_size, confidence_high=0.5, confidence_low=0.3, target_cue_threshold=6.0, target_cue_threshold_decay=0.7, target_cue_threshold_minimum=3.0, visualize=False, save_path=None):
         | 
| 485 | 
            +
            	if visualize:
         | 
| 486 | 
            +
            		assert save_path is not None
         | 
| 487 | 
            +
            	init_patch = dict()
         | 
| 488 | 
            +
            	init_patch['bbox'] = [0,0,image.width,image.height]
         | 
| 489 | 
            +
            	init_patch['scale_level'] = 1
         | 
| 490 | 
            +
            	init_patch['score'] = None
         | 
| 491 | 
            +
            	init_patch['parent_index'] = -1
         | 
| 492 | 
            +
            	search_path = [init_patch]
         | 
| 493 | 
            +
             | 
| 494 | 
            +
            	queue = PriorityQueue()
         | 
| 495 | 
            +
            	search_successful, search_path, all_valid_boxes = visual_search_queue(vsm, image, target_object_name, init_patch, search_path, queue, smallest_size=smallest_size, confidence_high=confidence_high, target_cue_threshold=target_cue_threshold, target_cue_threshold_decay=target_cue_threshold_decay, target_cue_threshold_minimum=target_cue_threshold_minimum)
         | 
| 496 | 
            +
            	path_length = len(search_path)
         | 
| 497 | 
            +
            	final_step = search_path[-1]
         | 
| 498 | 
            +
            	if not search_successful:
         | 
| 499 | 
            +
            		# if no target is found with confidence passing confidence_high, select the target with the highest confidence during search and compare its confidence with confidence_low
         | 
| 500 | 
            +
            		max_logit = 0
         | 
| 501 | 
            +
            		final_step = None
         | 
| 502 | 
            +
            		path_length = 0
         | 
| 503 | 
            +
            		for i, search_step in enumerate(search_path):
         | 
| 504 | 
            +
            			if 'temp_detection_result' in search_step:
         | 
| 505 | 
            +
            				if search_step['temp_detection_result'][0] > max_logit:
         | 
| 506 | 
            +
            					max_logit = search_step['temp_detection_result'][0]
         | 
| 507 | 
            +
            					final_step = search_step
         | 
| 508 | 
            +
            					path_length = i+1
         | 
| 509 | 
            +
            		final_step['detection_result'] = final_step['temp_detection_result'][1]
         | 
| 510 | 
            +
            		if max_logit >= confidence_low:
         | 
| 511 | 
            +
            			search_successful = True
         | 
| 512 | 
            +
            	if visualize:
         | 
| 513 | 
            +
            		vis_path_length = path_length if search_successful else len(search_path)
         | 
| 514 | 
            +
            		visualize_search_path(image, search_path, vis_path_length, target_bbox, target_object_name, save_path)
         | 
| 515 | 
            +
            	del queue
         | 
| 516 | 
            +
            	return final_step, path_length, search_successful, all_valid_boxes
         | 
| 517 | 
            +
             | 
| 518 | 
            +
             | 
| 519 | 
            +
             | 
| 520 | 
            +
            def main(args):
         | 
| 521 | 
            +
            	args = parse_args(args)
         | 
| 522 | 
            +
            	vsm = VSM(args)
         | 
| 523 | 
            +
             | 
| 524 | 
            +
            	benchmark_folder = args.benchmark_folder
         | 
| 525 | 
            +
             | 
| 526 | 
            +
            	acc_list = []
         | 
| 527 | 
            +
            	search_path_length_list = []
         | 
| 528 | 
            +
             | 
| 529 | 
            +
            	for test_type in ['direct_attributes', 'relative_position']:
         | 
| 530 | 
            +
            		folder = os.path.join(benchmark_folder, test_type)
         | 
| 531 | 
            +
            		output_folder = None
         | 
| 532 | 
            +
            		if args.visualization:
         | 
| 533 | 
            +
            			output_folder =  os.path.join(args.output_path, test_type)
         | 
| 534 | 
            +
            			os.makedirs(output_folder, exist_ok=True)
         | 
| 535 | 
            +
            		image_files = filter(lambda file: '.json' not in file, os.listdir(folder))
         | 
| 536 | 
            +
            		for image_file in tqdm.tqdm(image_files):
         | 
| 537 | 
            +
            			image_path = os.path.join(folder, image_file)
         | 
| 538 | 
            +
            			annotation_path = image_path.split('.')[0] + '.json'
         | 
| 539 | 
            +
            			annotation = json.load(open(annotation_path))
         | 
| 540 | 
            +
            			bboxs = annotation['bbox']
         | 
| 541 | 
            +
            			object_names = annotation['target_object']
         | 
| 542 | 
            +
             | 
| 543 | 
            +
            			for i, (gt_bbox, object_name) in enumerate(zip(bboxs, object_names)):
         | 
| 544 | 
            +
            				image = Image.open(image_path).convert('RGB')
         | 
| 545 | 
            +
            				smallest_size = max(int(np.ceil(min(image.width, image.height)/args.minimum_size_scale)), args.minimum_size)
         | 
| 546 | 
            +
            				if args.visualization:
         | 
| 547 | 
            +
            					vis_path = os.path.join(output_folder, "{}_{}".format(image_file.split('.')[0],i))
         | 
| 548 | 
            +
            				else:
         | 
| 549 | 
            +
            					vis_path = None
         | 
| 550 | 
            +
            				final_step, path_length, search_successful, all_valid_boxes = visual_search(vsm, image, object_name, target_bbox=gt_bbox, smallest_size=smallest_size, confidence_high=args.confidence_high, confidence_low=args.confidence_low, target_cue_threshold=args.target_cue_threshold, target_cue_threshold_decay=args.target_cue_threshold_decay, target_cue_threshold_minimum=args.target_cue_threshold_minimum, save_path=vis_path, visualize=args.visualization)
         | 
| 551 | 
            +
            				if search_successful:
         | 
| 552 | 
            +
            					search_bbox = final_step['detection_result']
         | 
| 553 | 
            +
            					search_final_patch = final_step['bbox']
         | 
| 554 | 
            +
            					search_bbox[0] += search_final_patch[0]
         | 
| 555 | 
            +
            					search_bbox[1] += search_final_patch[1]
         | 
| 556 | 
            +
            					iou_i = iou(search_bbox, gt_bbox).item()
         | 
| 557 | 
            +
            					det_acc = 1.0 if iou_i > 0.5 else 0.0
         | 
| 558 | 
            +
            					acc_list.append(det_acc)
         | 
| 559 | 
            +
            					search_path_length_list.append(path_length)
         | 
| 560 | 
            +
            				else:
         | 
| 561 | 
            +
            					acc_list.append(0)
         | 
| 562 | 
            +
            					search_path_length_list.append(0)
         | 
| 563 | 
            +
            	print('Avg search path length:', np.mean([search_path_length_list[i] for i in range(len(search_path_length_list)) if acc_list[i]]))
         | 
| 564 | 
            +
            	print('Top 1 Acc:', np.mean(acc_list))
         | 
| 565 | 
            +
             | 
| 566 | 
            +
            if __name__ == "__main__":
         | 
| 567 | 
            +
            	main(sys.argv[1:])
         | 
    	
        vstar_bench_eval.py
    ADDED
    
    | @@ -0,0 +1,294 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import argparse
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
            import json
         | 
| 4 | 
            +
            from tqdm import tqdm
         | 
| 5 | 
            +
            from collections import defaultdict
         | 
| 6 | 
            +
            from copy import deepcopy
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            from PIL import Image
         | 
| 9 | 
            +
            import numpy as np
         | 
| 10 | 
            +
            import torch
         | 
| 11 | 
            +
            from torch.nn import CrossEntropyLoss
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from LLaVA.llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
         | 
| 14 | 
            +
            from LLaVA.llava.conversation import conv_templates, SeparatorStyle
         | 
| 15 | 
            +
            from LLaVA.llava.model.builder import load_pretrained_model
         | 
| 16 | 
            +
            from LLaVA.llava.utils import disable_torch_init
         | 
| 17 | 
            +
            from LLaVA.llava.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, tokenizer_image_object_token
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from visual_search import parse_args, VSM, visual_search
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            def normalize_bbox(bbox, image_width, image_height):
         | 
| 22 | 
            +
            	normalized_bbox = [bbox[0]/image_width, bbox[1]/image_height, (bbox[0]+bbox[2])/image_width, (bbox[1]+bbox[3])/image_height]
         | 
| 23 | 
            +
            	normalized_bbox = [np.clip(_, 0, 1) for _ in normalized_bbox]
         | 
| 24 | 
            +
            	return normalized_bbox
         | 
| 25 | 
            +
            def expand2square(pil_img, background_color):
         | 
| 26 | 
            +
            	width, height = pil_img.size
         | 
| 27 | 
            +
            	if width == height:
         | 
| 28 | 
            +
            		return pil_img, 0, 0
         | 
| 29 | 
            +
            	elif width > height:
         | 
| 30 | 
            +
            		result = Image.new(pil_img.mode, (width, width), background_color)
         | 
| 31 | 
            +
            		result.paste(pil_img, (0, (width - height) // 2))
         | 
| 32 | 
            +
            		return result, 0, (width - height) // 2
         | 
| 33 | 
            +
            	else:
         | 
| 34 | 
            +
            		result = Image.new(pil_img.mode, (height, height), background_color)
         | 
| 35 | 
            +
            		result.paste(pil_img, ((height - width) // 2, 0))
         | 
| 36 | 
            +
            		return result, (height - width) // 2, 0
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            class VQA_LLM:
         | 
| 39 | 
            +
            	def __init__(self, args):
         | 
| 40 | 
            +
            		disable_torch_init()
         | 
| 41 | 
            +
            		model_path = args.vqa_model_path
         | 
| 42 | 
            +
            		model_name = get_model_name_from_path(model_path)
         | 
| 43 | 
            +
            		model_name += 'llava'
         | 
| 44 | 
            +
            		model_base = None
         | 
| 45 | 
            +
            		device_map = "auto"
         | 
| 46 | 
            +
            		self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(model_path, model_base, model_name)
         | 
| 47 | 
            +
            		self.conv_type = args.conv_type
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            	def get_patch(self, bbox, image_width, image_height, patch_size=224, patch_scale=None):
         | 
| 50 | 
            +
            		object_width = int(np.ceil(bbox[2]))
         | 
| 51 | 
            +
            		object_height = int(np.ceil(bbox[3]))
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            		object_center_x = int(bbox[0] + bbox[2]/2)
         | 
| 54 | 
            +
            		object_center_y = int(bbox[1] + bbox[3]/2)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            		if patch_scale is None:
         | 
| 57 | 
            +
            			patch_width = max(object_width, patch_size)
         | 
| 58 | 
            +
            			patch_height = max(object_height, patch_size)
         | 
| 59 | 
            +
            		else:
         | 
| 60 | 
            +
            			patch_width = int(object_width*patch_scale)
         | 
| 61 | 
            +
            			patch_height = int(object_height*patch_scale)
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            		left = max(0, object_center_x-patch_width//2)
         | 
| 64 | 
            +
            		right = min(left+patch_width, image_width)
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            		top = max(0, object_center_y-patch_height//2)
         | 
| 67 | 
            +
            		bottom = min(top+patch_height, image_height)
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            		return [left, top, right, bottom]
         | 
| 70 | 
            +
            	
         | 
| 71 | 
            +
            	def get_object_crop(self, image, bbox, patch_scale):
         | 
| 72 | 
            +
            		resized_bbox = self.get_patch(bbox, image.width, image.height, patch_scale=patch_scale)
         | 
| 73 | 
            +
            		object_crop = image.crop((resized_bbox[0], resized_bbox[1], resized_bbox[2], resized_bbox[3]))
         | 
| 74 | 
            +
            		object_crop = object_crop.resize((self.image_processor.crop_size['width'],self.image_processor.crop_size['height']))
         | 
| 75 | 
            +
            		object_crop = self.image_processor.preprocess(object_crop, return_tensors='pt')['pixel_values'][0]
         | 
| 76 | 
            +
            		return object_crop
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            	@torch.inference_mode()
         | 
| 79 | 
            +
            	def free_form_inference(self, image, question, temperature=0, top_p=None, num_beams=1, max_new_tokens=200, object_crops=None, images_long=None, objects_long=None):
         | 
| 80 | 
            +
            		conv = conv_templates[self.conv_type].copy()
         | 
| 81 | 
            +
            		qs = DEFAULT_IMAGE_TOKEN + '\n' + question	
         | 
| 82 | 
            +
            		conv.append_message(conv.roles[0], qs)
         | 
| 83 | 
            +
            		conv.append_message(conv.roles[1], None)
         | 
| 84 | 
            +
            		prompt = conv.get_prompt()
         | 
| 85 | 
            +
            		stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
         | 
| 86 | 
            +
            		keywords = [stop_str]
         | 
| 87 | 
            +
            		input_ids = tokenizer_image_object_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
         | 
| 88 | 
            +
            		image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
         | 
| 89 | 
            +
            		stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            		output_ids = self.model.generate(
         | 
| 92 | 
            +
            			input_ids,
         | 
| 93 | 
            +
            			images=image_tensor.unsqueeze(0).half().cuda(),
         | 
| 94 | 
            +
            			object_features=object_crops.half().cuda() if object_crops is not None else None,
         | 
| 95 | 
            +
            			images_long = images_long,
         | 
| 96 | 
            +
            			objects_long = objects_long,
         | 
| 97 | 
            +
            			do_sample= True if temperature > 0 else False,
         | 
| 98 | 
            +
            			num_beams=num_beams,
         | 
| 99 | 
            +
            			temperature=temperature,
         | 
| 100 | 
            +
            			top_p = top_p,
         | 
| 101 | 
            +
            			max_new_tokens=max_new_tokens,
         | 
| 102 | 
            +
            			use_cache=True,
         | 
| 103 | 
            +
            			stopping_criteria=[stopping_criteria])
         | 
| 104 | 
            +
            			
         | 
| 105 | 
            +
            		input_token_len = input_ids.shape[1]
         | 
| 106 | 
            +
            		n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
         | 
| 107 | 
            +
            		if n_diff_input_output > 0:
         | 
| 108 | 
            +
            			print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
         | 
| 109 | 
            +
            		outputs = self.tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
         | 
| 110 | 
            +
            		outputs = outputs.strip()
         | 
| 111 | 
            +
            		if outputs.endswith(stop_str):
         | 
| 112 | 
            +
            			outputs = outputs[:-len(stop_str)]
         | 
| 113 | 
            +
            		outputs = outputs.strip()
         | 
| 114 | 
            +
            		return outputs
         | 
| 115 | 
            +
             | 
| 116 | 
            +
            	@torch.inference_mode()
         | 
| 117 | 
            +
            	def multiple_choices_inference(self, image, question, options, object_crops=None, images_long=None, objects_long=None):
         | 
| 118 | 
            +
            		conv = conv_templates[self.conv_type].copy()
         | 
| 119 | 
            +
            		qs = DEFAULT_IMAGE_TOKEN + '\n' + question	
         | 
| 120 | 
            +
            		conv.append_message(conv.roles[0], qs)
         | 
| 121 | 
            +
            		conv.append_message(conv.roles[1], None)
         | 
| 122 | 
            +
            		prompt = conv.get_prompt()
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            		question_input_ids = tokenizer_image_object_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
         | 
| 125 | 
            +
            		image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            		output_question = self.model(
         | 
| 128 | 
            +
            			question_input_ids,
         | 
| 129 | 
            +
            			use_cache=True,
         | 
| 130 | 
            +
            			images=image_tensor.unsqueeze(0).half().cuda(),
         | 
| 131 | 
            +
            			object_features=object_crops.half().cuda() if object_crops is not None else None,
         | 
| 132 | 
            +
            			images_long = images_long,
         | 
| 133 | 
            +
            			objects_long = objects_long)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            		question_logits = output_question.logits
         | 
| 136 | 
            +
            		question_past_key_values = output_question.past_key_values
         | 
| 137 | 
            +
             | 
| 138 | 
            +
            		loss_list = []
         | 
| 139 | 
            +
             | 
| 140 | 
            +
            		for option in options:
         | 
| 141 | 
            +
            			conv = conv_templates[self.conv_type].copy()
         | 
| 142 | 
            +
            			conv.append_message(conv.roles[0], qs)
         | 
| 143 | 
            +
            			conv.append_message(conv.roles[1], option)
         | 
| 144 | 
            +
            			full_prompt = conv.get_prompt()
         | 
| 145 | 
            +
             | 
| 146 | 
            +
            			full_input_ids = tokenizer_image_object_token(full_prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
         | 
| 147 | 
            +
            			option_answer_input_ids = full_input_ids[:, question_input_ids.shape[1]:]
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            			output_option = self.model(input_ids=option_answer_input_ids,
         | 
| 150 | 
            +
            								use_cache=True,
         | 
| 151 | 
            +
            								attention_mask=torch.ones(1, question_logits.shape[1]+option_answer_input_ids.shape[1], device=full_input_ids.device),
         | 
| 152 | 
            +
            								past_key_values=question_past_key_values)
         | 
| 153 | 
            +
            			
         | 
| 154 | 
            +
            			logits = torch.cat([question_logits[:, -1:], output_option.logits[:, :-1]], 1)
         | 
| 155 | 
            +
             | 
| 156 | 
            +
            			loss_fct = CrossEntropyLoss()
         | 
| 157 | 
            +
            			logits = logits.view(-1, self.model.config.vocab_size)
         | 
| 158 | 
            +
            			labels = option_answer_input_ids.view(-1)
         | 
| 159 | 
            +
            			loss = loss_fct(logits, labels)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
            			loss_list.append(loss)
         | 
| 162 | 
            +
             | 
| 163 | 
            +
            		option_chosen = torch.stack(loss_list).argmin()
         | 
| 164 | 
            +
             | 
| 165 | 
            +
            		return option_chosen.cpu().item()
         | 
| 166 | 
            +
             | 
| 167 | 
            +
             | 
| 168 | 
            +
            def eval_model(args):
         | 
| 169 | 
            +
            	# init VQA LLM
         | 
| 170 | 
            +
            	vqa_llm = VQA_LLM(args)
         | 
| 171 | 
            +
            	# init VSM
         | 
| 172 | 
            +
            	vsm_args = parse_args({})
         | 
| 173 | 
            +
            	vsm_args.version = args.vsm_model_path
         | 
| 174 | 
            +
            	vsm = VSM(vsm_args)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
            	results = {}
         | 
| 177 | 
            +
            	per_type_acc = defaultdict(list)
         | 
| 178 | 
            +
            	all_acc = []
         | 
| 179 | 
            +
             | 
| 180 | 
            +
            	missing_objects_msg = "Sorry, I can not answer the question. Some visual information about the following objects is missing or unclear:"
         | 
| 181 | 
            +
            	focus_msg = "Additional visual information to focus on: "
         | 
| 182 | 
            +
            	for test_type in ['direct_attributes', 'relative_position']:
         | 
| 183 | 
            +
            		results[test_type] = []
         | 
| 184 | 
            +
            		folder = os.path.join(args.benchmark_folder, test_type)
         | 
| 185 | 
            +
            		image_files = list(filter(lambda file: '.json' not in file, os.listdir(folder)))
         | 
| 186 | 
            +
            		for image_file in tqdm(image_files):
         | 
| 187 | 
            +
            			result_single_sample = {}
         | 
| 188 | 
            +
            			image_path = os.path.join(folder, image_file)
         | 
| 189 | 
            +
            			annotation_path = image_path.split('.')[0] + '.json'
         | 
| 190 | 
            +
            			image = Image.open(image_path).convert('RGB')
         | 
| 191 | 
            +
            			annotation = json.load(open(annotation_path))
         | 
| 192 | 
            +
            			image, _, _ = expand2square(image, tuple(int(x*255) for x in vqa_llm.image_processor.image_mean))
         | 
| 193 | 
            +
            			
         | 
| 194 | 
            +
            			question = annotation['question']
         | 
| 195 | 
            +
            			# generate free-form response to check whether visual search needs to be activated
         | 
| 196 | 
            +
            			prediction = vqa_llm.free_form_inference(image, question)
         | 
| 197 | 
            +
            			missing_objects = []
         | 
| 198 | 
            +
            			if missing_objects_msg in prediction:
         | 
| 199 | 
            +
            				missing_objects = prediction.split(missing_objects_msg)[-1]
         | 
| 200 | 
            +
            				if missing_objects.endswith('.'):
         | 
| 201 | 
            +
            					missing_objects = missing_objects[:-1]
         | 
| 202 | 
            +
            				missing_objects = missing_objects.split(',')
         | 
| 203 | 
            +
            				missing_objects = [missing_object.strip() for missing_object in missing_objects]
         | 
| 204 | 
            +
             | 
| 205 | 
            +
            			search_result = []
         | 
| 206 | 
            +
            			if len(missing_objects) > 0:
         | 
| 207 | 
            +
            				# visual search
         | 
| 208 | 
            +
            				for object_name in missing_objects:
         | 
| 209 | 
            +
            					image = Image.open(image_path).convert('RGB')
         | 
| 210 | 
            +
            					smallest_size = max(int(np.ceil(min(image.width, image.height)/args.minimum_size_scale)), args.minimum_size)
         | 
| 211 | 
            +
            					final_step, path_length, search_successful, all_valid_boxes = visual_search(vsm, image, object_name, target_bbox=None, smallest_size=smallest_size)
         | 
| 212 | 
            +
            					if all_valid_boxes is not None:
         | 
| 213 | 
            +
            						# might exist multiple target instances
         | 
| 214 | 
            +
            						for search_bbox in all_valid_boxes:
         | 
| 215 | 
            +
            							search_final_patch = final_step['bbox']
         | 
| 216 | 
            +
            							search_bbox[0] += search_final_patch[0]
         | 
| 217 | 
            +
            							search_bbox[1] += search_final_patch[1]
         | 
| 218 | 
            +
            							search_result.append({'bbox':search_bbox.tolist(),'name':object_name})
         | 
| 219 | 
            +
            					else:
         | 
| 220 | 
            +
            						search_bbox = final_step['detection_result']
         | 
| 221 | 
            +
            						search_final_patch = final_step['bbox']
         | 
| 222 | 
            +
            						search_bbox[0] += search_final_patch[0]
         | 
| 223 | 
            +
            						search_bbox[1] += search_final_patch[1]
         | 
| 224 | 
            +
            						search_result.append({'bbox':search_bbox.tolist(),'name':object_name})
         | 
| 225 | 
            +
            			# predict the multiple-choice option
         | 
| 226 | 
            +
            			options = annotation['options']
         | 
| 227 | 
            +
            			image = Image.open(image_path).convert('RGB')
         | 
| 228 | 
            +
            			if len(missing_objects) > 0:
         | 
| 229 | 
            +
            				object_names = [_['name'] for _ in search_result]
         | 
| 230 | 
            +
            				bboxs = deepcopy([_['bbox'] for _ in search_result])
         | 
| 231 | 
            +
            				if len(object_names) <= 2:
         | 
| 232 | 
            +
            					images_long = [False]
         | 
| 233 | 
            +
            					objects_long = [True]*len(object_names)
         | 
| 234 | 
            +
            				else:
         | 
| 235 | 
            +
            					images_long = [False]
         | 
| 236 | 
            +
            					objects_long = [False]*len(object_names)
         | 
| 237 | 
            +
            				object_crops = []
         | 
| 238 | 
            +
            				for bbox in bboxs:
         | 
| 239 | 
            +
            					object_crop = vqa_llm.get_object_crop(image, bbox, patch_scale=1.2)
         | 
| 240 | 
            +
            					object_crops.append(object_crop)
         | 
| 241 | 
            +
            				object_crops = torch.stack(object_crops, 0)
         | 
| 242 | 
            +
            				image, left, top = expand2square(image, tuple(int(x*255) for x in vqa_llm.image_processor.image_mean))
         | 
| 243 | 
            +
            				bbox_list = []
         | 
| 244 | 
            +
            				for bbox in bboxs:
         | 
| 245 | 
            +
            					bbox[0] += left
         | 
| 246 | 
            +
            					bbox[1] += top
         | 
| 247 | 
            +
            					bbox_list.append(bbox)
         | 
| 248 | 
            +
            				bbox_list = [normalize_bbox(bbox, image.width, image.height) for bbox in bbox_list]
         | 
| 249 | 
            +
            				cur_focus_msg = focus_msg
         | 
| 250 | 
            +
            				for i, (object_name, bbox) in enumerate(zip(object_names, bbox_list)):
         | 
| 251 | 
            +
            					cur_focus_msg = cur_focus_msg + "{} <object> at location [{:.3f},{:.3f},{:.3f},{:.3f}]".format(object_name, bbox[0], bbox[1], bbox[2], bbox[3])
         | 
| 252 | 
            +
            					if i != len(bbox_list)-1:
         | 
| 253 | 
            +
            						cur_focus_msg = cur_focus_msg+"; "
         | 
| 254 | 
            +
            					else:
         | 
| 255 | 
            +
            						cur_focus_msg = cur_focus_msg +'.'
         | 
| 256 | 
            +
            				question_with_focus = cur_focus_msg+"\n"+question
         | 
| 257 | 
            +
            				option_chosen = vqa_llm.multiple_choices_inference(image, question_with_focus, options, object_crops, images_long=images_long, objects_long=objects_long)
         | 
| 258 | 
            +
            			else:
         | 
| 259 | 
            +
            				option_chosen = vqa_llm.multiple_choices_inference(image, question, options)
         | 
| 260 | 
            +
             | 
| 261 | 
            +
            			correct = 1 if option_chosen==0 else 0
         | 
| 262 | 
            +
            			per_type_acc[test_type].append(correct)
         | 
| 263 | 
            +
            			all_acc.append(correct)
         | 
| 264 | 
            +
             | 
| 265 | 
            +
            			result_single_sample['question'] = question
         | 
| 266 | 
            +
            			result_single_sample['options'] = options
         | 
| 267 | 
            +
            			result_single_sample['image'] = image_file
         | 
| 268 | 
            +
            			result_single_sample['prediction_freeform'] = prediction
         | 
| 269 | 
            +
            			result_single_sample['missing_objects'] = missing_objects
         | 
| 270 | 
            +
            			result_single_sample['search_result'] = search_result	
         | 
| 271 | 
            +
            			result_single_sample['option_chosen'] = option_chosen
         | 
| 272 | 
            +
            			result_single_sample['correct'] = correct
         | 
| 273 | 
            +
            			results[test_type].append(result_single_sample)
         | 
| 274 | 
            +
             | 
| 275 | 
            +
            		print(test_type, np.mean(per_type_acc[test_type]))
         | 
| 276 | 
            +
             | 
| 277 | 
            +
            	print(np.mean(all_acc))
         | 
| 278 | 
            +
             | 
| 279 | 
            +
            	with open(args.output_path, 'w') as f:
         | 
| 280 | 
            +
            		json.dump(results, f, indent=4)
         | 
| 281 | 
            +
             | 
| 282 | 
            +
            if __name__ == "__main__":
         | 
| 283 | 
            +
            	parser = argparse.ArgumentParser()
         | 
| 284 | 
            +
            	parser.add_argument("--vqa-model-path", type=str, default="craigwu/seal_vqa_7b")
         | 
| 285 | 
            +
            	parser.add_argument("--vqa-model-base", type=str, default=None)
         | 
| 286 | 
            +
            	parser.add_argument("--conv_type", default="v1", type=str,)
         | 
| 287 | 
            +
            	parser.add_argument("--benchmark-folder", type=str, default="vstar_bench")
         | 
| 288 | 
            +
            	parser.add_argument("--vsm-model-path", type=str, default="craigwu/seal_vsm_7b")
         | 
| 289 | 
            +
            	parser.add_argument("--output-path", type=str, default="eval_result.json")
         | 
| 290 | 
            +
            	parser.add_argument("--minimum_size_scale", default=4.0, type=float, help="minimum sub-image scale for the termination of search")
         | 
| 291 | 
            +
            	parser.add_argument("--minimum_size", default=224, type=int, help="minimum sub-image size for the termination of search")
         | 
| 292 | 
            +
             | 
| 293 | 
            +
            	args = parser.parse_args()
         | 
| 294 | 
            +
            	eval_model(args)
         |