File size: 7,578 Bytes
509a107 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
#!/usr/bin/env python3
"""
Test script for FastVLM-7B model loading and configuration
"""
import asyncio
import sys
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Add backend to path
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
def check_dependencies():
"""Check if all required dependencies are installed"""
print("Checking dependencies...")
deps = {
"torch": None,
"transformers": None,
"sentencepiece": None,
"einops": None,
"accelerate": None
}
for dep in deps:
try:
module = __import__(dep)
deps[dep] = getattr(module, "__version__", "installed")
print(f"β {dep}: {deps[dep]}")
except ImportError:
print(f"β {dep}: NOT INSTALLED")
deps[dep] = None
return all(v is not None for v in deps.values())
def check_hardware():
"""Check hardware capabilities"""
print("\nHardware check:")
if torch.cuda.is_available():
print(f"β CUDA available: {torch.cuda.get_device_name(0)}")
print(f" Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
elif torch.backends.mps.is_available():
print("β Apple Silicon MPS available")
# Get system memory
import subprocess
result = subprocess.run(['sysctl', 'hw.memsize'], capture_output=True, text=True)
if result.returncode == 0:
mem_bytes = int(result.stdout.split()[1])
print(f" System Memory: {mem_bytes / 1e9:.2f} GB")
else:
print("β CPU mode")
import psutil
print(f" Available Memory: {psutil.virtual_memory().available / 1e9:.2f} GB")
async def test_fastvlm_loading():
"""Test loading FastVLM-7B model"""
print("\n" + "="*50)
print("Testing FastVLM-7B Model Loading")
print("="*50)
model_name = "apple/FastVLM-7B"
try:
print(f"\n1. Loading tokenizer from {model_name}...")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
use_fast=True
)
print(" β Tokenizer loaded successfully")
print(f" Tokenizer class: {tokenizer.__class__.__name__}")
print(f" Vocab size: {tokenizer.vocab_size}")
# Check for IMAGE_TOKEN_INDEX
IMAGE_TOKEN_INDEX = -200
if hasattr(tokenizer, 'IMAGE_TOKEN_INDEX'):
print(f" IMAGE_TOKEN_INDEX: {tokenizer.IMAGE_TOKEN_INDEX}")
else:
print(f" Setting IMAGE_TOKEN_INDEX to {IMAGE_TOKEN_INDEX}")
tokenizer.IMAGE_TOKEN_INDEX = IMAGE_TOKEN_INDEX
print("\n2. Attempting to load model...")
print(" Note: This requires ~14GB RAM for full precision")
# Determine device
if torch.cuda.is_available():
device = "cuda"
dtype = torch.float16
elif torch.backends.mps.is_available():
device = "mps"
dtype = torch.float16
else:
device = "cpu"
dtype = torch.float32
print(f" Device: {device}")
print(f" Dtype: {dtype}")
# Try loading with minimal memory usage
print(" Loading with low_cpu_mem_usage=True...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=dtype,
low_cpu_mem_usage=True
)
print(" β Model loaded successfully!")
# Count parameters
total_params = sum(p.numel() for p in model.parameters())
print(f" Parameters: {total_params / 1e9:.2f}B")
# Move to device
print(f"\n3. Moving model to {device}...")
model = model.to(device)
model.eval()
print(" β Model ready for inference")
# Test a simple generation
print("\n4. Testing generation...")
test_prompt = "Hello, this is a test of"
inputs = tokenizer(test_prompt, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=10,
temperature=0.7,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f" Input: {test_prompt}")
print(f" Output: {response}")
print("\nβ FastVLM-7B is working correctly!")
return True
except ImportError as e:
print(f"\nβ Import Error: {e}")
if "trust_remote_code" in str(e):
print("\nSolution: The model requires trust_remote_code=True")
print("This is already set in the code, but the model files may need to be re-downloaded.")
return False
except RuntimeError as e:
if "out of memory" in str(e).lower():
print(f"\nβ Out of Memory Error")
print("\nSolutions:")
print("1. Use the quantized version:")
print(" model_name = 'apple/FastVLM-7B-int4'")
print("2. Use a smaller variant:")
print(" model_name = 'apple/FastVLM-1.5B'")
print("3. Enable 8-bit quantization (requires bitsandbytes)")
print("4. Increase system RAM or use a GPU")
else:
print(f"\nβ Runtime Error: {e}")
return False
except Exception as e:
print(f"\nβ Error: {e}")
print(f" Error type: {type(e).__name__}")
import traceback
traceback.print_exc()
return False
async def test_alternative_models():
"""Test alternative model options if FastVLM-7B fails"""
print("\n" + "="*50)
print("Alternative Model Options")
print("="*50)
alternatives = [
("apple/FastVLM-1.5B", "Smaller FastVLM variant (1.5B params)"),
("apple/FastVLM-7B-int4", "Quantized FastVLM for lower memory"),
("apple/FastVLM-0.5B", "Smallest FastVLM variant (0.5B params)")
]
for model_name, description in alternatives:
print(f"\nβ’ {model_name}")
print(f" {description}")
try:
# Just check if the model card exists
from transformers import AutoConfig
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
print(f" β Model available")
except Exception as e:
print(f" β Not accessible: {str(e)[:50]}...")
async def main():
"""Main test function"""
print("FastVLM-7B Integration Test")
print("="*50)
# Check dependencies
if not check_dependencies():
print("\nβ Missing dependencies. Please install all requirements.")
return
# Check hardware
check_hardware()
# Test FastVLM loading
success = await test_fastvlm_loading()
if not success:
# Show alternatives
await test_alternative_models()
print("\n" + "="*50)
print("Recommendations:")
print("="*50)
print("\n1. If memory is limited, use FastVLM-1.5B or FastVLM-0.5B")
print("2. For Apple Silicon, ensure you have enough RAM (16GB+ recommended)")
print("3. Consider using the quantized version (FastVLM-7B-int4)")
print("4. Make sure transformers >= 4.40.0 is installed")
if __name__ == "__main__":
asyncio.run(main()) |