|
|
""" |
|
|
Lightweight version of the API for deployment without FastVLM model. |
|
|
This version provides mock responses for demo purposes. |
|
|
""" |
|
|
|
|
|
from fastapi import FastAPI, HTTPException |
|
|
from fastapi.middleware.cors import CORSMiddleware |
|
|
from fastapi.responses import JSONResponse, StreamingResponse |
|
|
from pydantic import BaseModel |
|
|
from datetime import datetime |
|
|
import json |
|
|
import random |
|
|
from typing import Optional |
|
|
|
|
|
app = FastAPI(title="FastVLM Screen Observer API (Lightweight)") |
|
|
|
|
|
|
|
|
app.add_middleware( |
|
|
CORSMiddleware, |
|
|
allow_origins=["*"], |
|
|
allow_credentials=True, |
|
|
allow_methods=["*"], |
|
|
allow_headers=["*"], |
|
|
) |
|
|
|
|
|
class AnalyzeRequest(BaseModel): |
|
|
capture_screen: bool = True |
|
|
include_thumbnail: bool = False |
|
|
prompt: Optional[str] = None |
|
|
|
|
|
@app.get("/") |
|
|
async def root(): |
|
|
return { |
|
|
"status": "FastVLM Screen Observer API is running (Lightweight Mode)", |
|
|
"model": { |
|
|
"is_loaded": False, |
|
|
"model_type": "mock", |
|
|
"model_name": "Mock Model (for demo)", |
|
|
"device": "cpu", |
|
|
"error": None, |
|
|
"note": "This is a lightweight version without the actual FastVLM model", |
|
|
"timestamp": datetime.now().isoformat() |
|
|
} |
|
|
} |
|
|
|
|
|
@app.post("/analyze") |
|
|
async def analyze_screen(request: AnalyzeRequest): |
|
|
"""Mock analysis endpoint for demo purposes""" |
|
|
|
|
|
|
|
|
mock_result = { |
|
|
"timestamp": datetime.now().isoformat(), |
|
|
"summary": "Mock analysis: Screen captured successfully", |
|
|
"ui_elements": [ |
|
|
{"type": "button", "text": "Submit", "location": "bottom-right"}, |
|
|
{"type": "link", "text": "Home", "location": "top-left"}, |
|
|
{"type": "input", "text": "Search...", "location": "top-center"} |
|
|
], |
|
|
"text_snippets": [ |
|
|
"Welcome to the application", |
|
|
"Click here to continue", |
|
|
f"Current time: {datetime.now().strftime('%H:%M:%S')}" |
|
|
], |
|
|
"risk_flags": [], |
|
|
"frame_id": f"frame_{random.randint(1000, 9999)}", |
|
|
"processing_time": round(random.uniform(0.1, 0.5), 3), |
|
|
"model_used": "mock", |
|
|
"include_thumbnail": request.include_thumbnail |
|
|
} |
|
|
|
|
|
if request.include_thumbnail: |
|
|
mock_result["thumbnail"] = "" |
|
|
|
|
|
return JSONResponse(content=mock_result) |
|
|
|
|
|
@app.post("/demo") |
|
|
async def run_demo(): |
|
|
"""Mock demo endpoint""" |
|
|
return { |
|
|
"status": "success", |
|
|
"message": "Demo completed (mock mode)", |
|
|
"actions": [ |
|
|
"Opened browser", |
|
|
"Navigated to example.com", |
|
|
"Captured screenshot", |
|
|
"Analyzed content" |
|
|
], |
|
|
"timestamp": datetime.now().isoformat() |
|
|
} |
|
|
|
|
|
@app.get("/export") |
|
|
async def export_logs(): |
|
|
"""Mock export endpoint""" |
|
|
return { |
|
|
"status": "success", |
|
|
"message": "Export feature available in full version", |
|
|
"timestamp": datetime.now().isoformat() |
|
|
} |
|
|
|
|
|
@app.get("/logs/stream") |
|
|
async def stream_logs(): |
|
|
"""Mock SSE endpoint for logs""" |
|
|
def generate(): |
|
|
for i in range(5): |
|
|
log_entry = { |
|
|
"timestamp": datetime.now().isoformat(), |
|
|
"level": "INFO", |
|
|
"message": f"Mock log entry {i+1}", |
|
|
"type": "analysis" |
|
|
} |
|
|
yield f"data: {json.dumps(log_entry)}\n\n" |
|
|
|
|
|
return StreamingResponse(generate(), media_type="text/event-stream") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
import uvicorn |
|
|
uvicorn.run(app, host="0.0.0.0", port=8000) |