Spaces:
Sleeping
Sleeping
set state
Browse files- rlcube/cube2.ipynb +10 -506
- rlcube/envs/cube2.py +12 -8
- rlcube/main.py +11 -1
rlcube/cube2.ipynb
CHANGED
|
@@ -2,249 +2,15 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
-
"id": "
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
| 9 |
"source": [
|
| 10 |
"import gymnasium as gym\n",
|
| 11 |
-
"
|
| 12 |
-
"\n",
|
| 13 |
-
"F = 0\n",
|
| 14 |
-
"B = 1\n",
|
| 15 |
-
"R = 2\n",
|
| 16 |
-
"L = 3\n",
|
| 17 |
-
"U = 4\n",
|
| 18 |
-
"D = 5\n",
|
| 19 |
-
"\n",
|
| 20 |
-
"\n",
|
| 21 |
-
"class Cube2(gym.Env):\n",
|
| 22 |
-
" def __init__(self):\n",
|
| 23 |
-
" super().__init__()\n",
|
| 24 |
-
" self.action_space = gym.spaces.Discrete(12)\n",
|
| 25 |
-
" self.observation_space = gym.spaces.Box(\n",
|
| 26 |
-
" low=0, high=1, shape=(24, 6), dtype=np.int8\n",
|
| 27 |
-
" )\n",
|
| 28 |
-
" self.state = np.zeros((6, 4))\n",
|
| 29 |
-
" self.step_count = 0\n",
|
| 30 |
-
"\n",
|
| 31 |
-
" def reset(self, seed=None, options=None):\n",
|
| 32 |
-
" super().reset(seed=seed, options=options)\n",
|
| 33 |
-
" self.state = np.zeros((6, 4))\n",
|
| 34 |
-
" self.state[0] = np.ones(4) * F\n",
|
| 35 |
-
" self.state[1] = np.ones(4) * B\n",
|
| 36 |
-
" self.state[2] = np.ones(4) * R\n",
|
| 37 |
-
" self.state[3] = np.ones(4) * L\n",
|
| 38 |
-
" self.state[4] = np.ones(4) * U\n",
|
| 39 |
-
" self.state[5] = np.ones(4) * D\n",
|
| 40 |
-
" self.step_count = 0\n",
|
| 41 |
-
" return self._get_obs(), {}\n",
|
| 42 |
-
"\n",
|
| 43 |
-
" def step(self, action):\n",
|
| 44 |
-
" self.step_count += 1\n",
|
| 45 |
-
" new_state = self.state.copy()\n",
|
| 46 |
"\n",
|
| 47 |
-
" # Front Clockwise\n",
|
| 48 |
-
" if action == 0:\n",
|
| 49 |
-
" new_state[F, 0] = self.state[F, 2]\n",
|
| 50 |
-
" new_state[F, 1] = self.state[F, 0]\n",
|
| 51 |
-
" new_state[F, 2] = self.state[F, 3]\n",
|
| 52 |
-
" new_state[F, 3] = self.state[F, 1]\n",
|
| 53 |
-
" new_state[R, 1] = self.state[U, 3]\n",
|
| 54 |
-
" new_state[R, 3] = self.state[U, 1]\n",
|
| 55 |
-
" new_state[L, 1] = self.state[D, 3]\n",
|
| 56 |
-
" new_state[L, 3] = self.state[D, 1]\n",
|
| 57 |
-
" new_state[U, 1] = self.state[L, 1]\n",
|
| 58 |
-
" new_state[U, 3] = self.state[L, 3]\n",
|
| 59 |
-
" new_state[D, 1] = self.state[R, 1]\n",
|
| 60 |
-
" new_state[D, 3] = self.state[R, 3]\n",
|
| 61 |
-
" # Front Counter-Clockwise\n",
|
| 62 |
-
" elif action == 1:\n",
|
| 63 |
-
" new_state[F, 0] = self.state[F, 1]\n",
|
| 64 |
-
" new_state[F, 1] = self.state[F, 3]\n",
|
| 65 |
-
" new_state[F, 2] = self.state[F, 0]\n",
|
| 66 |
-
" new_state[F, 3] = self.state[F, 2]\n",
|
| 67 |
-
" new_state[R, 1] = self.state[D, 1]\n",
|
| 68 |
-
" new_state[R, 3] = self.state[D, 3]\n",
|
| 69 |
-
" new_state[L, 1] = self.state[U, 1]\n",
|
| 70 |
-
" new_state[L, 3] = self.state[U, 3]\n",
|
| 71 |
-
" new_state[U, 1] = self.state[R, 3]\n",
|
| 72 |
-
" new_state[U, 3] = self.state[R, 1]\n",
|
| 73 |
-
" new_state[D, 1] = self.state[L, 3]\n",
|
| 74 |
-
" new_state[D, 3] = self.state[L, 1]\n",
|
| 75 |
-
" # Back Clockwise\n",
|
| 76 |
-
" elif action == 2:\n",
|
| 77 |
-
" new_state[B, 0] = self.state[B, 1]\n",
|
| 78 |
-
" new_state[B, 1] = self.state[B, 3]\n",
|
| 79 |
-
" new_state[B, 2] = self.state[B, 0]\n",
|
| 80 |
-
" new_state[B, 3] = self.state[B, 2]\n",
|
| 81 |
-
" new_state[R, 0] = self.state[D, 0]\n",
|
| 82 |
-
" new_state[R, 2] = self.state[D, 2]\n",
|
| 83 |
-
" new_state[L, 0] = self.state[U, 0]\n",
|
| 84 |
-
" new_state[L, 2] = self.state[U, 2]\n",
|
| 85 |
-
" new_state[U, 0] = self.state[R, 2]\n",
|
| 86 |
-
" new_state[U, 2] = self.state[R, 0]\n",
|
| 87 |
-
" new_state[D, 0] = self.state[L, 2]\n",
|
| 88 |
-
" new_state[D, 2] = self.state[L, 0]\n",
|
| 89 |
-
" # Back Counter-Clockwise\n",
|
| 90 |
-
" elif action == 3:\n",
|
| 91 |
-
" new_state[B, 0] = self.state[B, 2]\n",
|
| 92 |
-
" new_state[B, 1] = self.state[B, 0]\n",
|
| 93 |
-
" new_state[B, 2] = self.state[B, 3]\n",
|
| 94 |
-
" new_state[B, 3] = self.state[B, 1]\n",
|
| 95 |
-
" new_state[R, 0] = self.state[U, 2]\n",
|
| 96 |
-
" new_state[R, 2] = self.state[U, 0]\n",
|
| 97 |
-
" new_state[L, 0] = self.state[D, 2]\n",
|
| 98 |
-
" new_state[L, 2] = self.state[D, 0]\n",
|
| 99 |
-
" new_state[U, 0] = self.state[L, 0]\n",
|
| 100 |
-
" new_state[U, 2] = self.state[L, 2]\n",
|
| 101 |
-
" new_state[D, 0] = self.state[R, 0]\n",
|
| 102 |
-
" new_state[D, 2] = self.state[R, 2]\n",
|
| 103 |
-
" # Right Clockwise\n",
|
| 104 |
-
" elif action == 4:\n",
|
| 105 |
-
" new_state[F, 2] = self.state[D, 2]\n",
|
| 106 |
-
" new_state[F, 3] = self.state[D, 3]\n",
|
| 107 |
-
" new_state[B, 2] = self.state[U, 2]\n",
|
| 108 |
-
" new_state[B, 3] = self.state[U, 3]\n",
|
| 109 |
-
" new_state[R, 0] = self.state[R, 2]\n",
|
| 110 |
-
" new_state[R, 1] = self.state[R, 0]\n",
|
| 111 |
-
" new_state[R, 2] = self.state[R, 3]\n",
|
| 112 |
-
" new_state[R, 3] = self.state[R, 1]\n",
|
| 113 |
-
" new_state[U, 2] = self.state[F, 3]\n",
|
| 114 |
-
" new_state[U, 3] = self.state[F, 2]\n",
|
| 115 |
-
" new_state[D, 2] = self.state[B, 3]\n",
|
| 116 |
-
" new_state[D, 3] = self.state[B, 2]\n",
|
| 117 |
-
" # Right Counter-Clockwise\n",
|
| 118 |
-
" elif action == 5:\n",
|
| 119 |
-
" new_state[F, 2] = self.state[U, 3]\n",
|
| 120 |
-
" new_state[F, 3] = self.state[U, 2]\n",
|
| 121 |
-
" new_state[B, 2] = self.state[D, 3]\n",
|
| 122 |
-
" new_state[B, 3] = self.state[D, 2]\n",
|
| 123 |
-
" new_state[R, 0] = self.state[R, 1]\n",
|
| 124 |
-
" new_state[R, 1] = self.state[R, 3]\n",
|
| 125 |
-
" new_state[R, 2] = self.state[R, 0]\n",
|
| 126 |
-
" new_state[R, 3] = self.state[R, 2]\n",
|
| 127 |
-
" new_state[U, 2] = self.state[B, 2]\n",
|
| 128 |
-
" new_state[U, 3] = self.state[B, 3]\n",
|
| 129 |
-
" new_state[D, 2] = self.state[F, 2]\n",
|
| 130 |
-
" new_state[D, 3] = self.state[F, 3]\n",
|
| 131 |
-
" # Left Clockwise\n",
|
| 132 |
-
" elif action == 6:\n",
|
| 133 |
-
" new_state[F, 0] = self.state[U, 1]\n",
|
| 134 |
-
" new_state[F, 1] = self.state[U, 0]\n",
|
| 135 |
-
" new_state[B, 0] = self.state[D, 1]\n",
|
| 136 |
-
" new_state[B, 1] = self.state[D, 0]\n",
|
| 137 |
-
" new_state[L, 0] = self.state[L, 1]\n",
|
| 138 |
-
" new_state[L, 1] = self.state[L, 3]\n",
|
| 139 |
-
" new_state[L, 2] = self.state[L, 0]\n",
|
| 140 |
-
" new_state[L, 3] = self.state[L, 2]\n",
|
| 141 |
-
" new_state[U, 0] = self.state[B, 0]\n",
|
| 142 |
-
" new_state[U, 1] = self.state[B, 1]\n",
|
| 143 |
-
" new_state[D, 0] = self.state[F, 0]\n",
|
| 144 |
-
" new_state[D, 1] = self.state[F, 1]\n",
|
| 145 |
-
" # Left Counter-Clockwise\n",
|
| 146 |
-
" elif action == 7:\n",
|
| 147 |
-
" new_state[F, 0] = self.state[D, 0]\n",
|
| 148 |
-
" new_state[F, 1] = self.state[D, 1]\n",
|
| 149 |
-
" new_state[B, 0] = self.state[U, 0]\n",
|
| 150 |
-
" new_state[B, 1] = self.state[U, 1]\n",
|
| 151 |
-
" new_state[L, 0] = self.state[L, 2]\n",
|
| 152 |
-
" new_state[L, 1] = self.state[L, 0]\n",
|
| 153 |
-
" new_state[L, 2] = self.state[L, 3]\n",
|
| 154 |
-
" new_state[L, 3] = self.state[L, 1]\n",
|
| 155 |
-
" new_state[U, 0] = self.state[F, 1]\n",
|
| 156 |
-
" new_state[U, 1] = self.state[F, 0]\n",
|
| 157 |
-
" new_state[D, 0] = self.state[B, 1]\n",
|
| 158 |
-
" new_state[D, 1] = self.state[B, 0]\n",
|
| 159 |
-
" # Up Clockwise\n",
|
| 160 |
-
" elif action == 8:\n",
|
| 161 |
-
" new_state[F, 1] = self.state[R, 3]\n",
|
| 162 |
-
" new_state[F, 3] = self.state[R, 2]\n",
|
| 163 |
-
" new_state[B, 1] = self.state[L, 3]\n",
|
| 164 |
-
" new_state[B, 3] = self.state[L, 2]\n",
|
| 165 |
-
" new_state[R, 2] = self.state[B, 1]\n",
|
| 166 |
-
" new_state[R, 3] = self.state[B, 3]\n",
|
| 167 |
-
" new_state[L, 2] = self.state[F, 1]\n",
|
| 168 |
-
" new_state[L, 3] = self.state[F, 3]\n",
|
| 169 |
-
" new_state[U, 0] = self.state[U, 1]\n",
|
| 170 |
-
" new_state[U, 1] = self.state[U, 3]\n",
|
| 171 |
-
" new_state[U, 2] = self.state[U, 0]\n",
|
| 172 |
-
" new_state[U, 3] = self.state[U, 2]\n",
|
| 173 |
-
" # Up Counter-Clockwise\n",
|
| 174 |
-
" elif action == 9:\n",
|
| 175 |
-
" new_state[F, 1] = self.state[L, 2]\n",
|
| 176 |
-
" new_state[F, 3] = self.state[L, 3]\n",
|
| 177 |
-
" new_state[B, 1] = self.state[R, 2]\n",
|
| 178 |
-
" new_state[B, 3] = self.state[R, 3]\n",
|
| 179 |
-
" new_state[R, 2] = self.state[F, 3]\n",
|
| 180 |
-
" new_state[R, 3] = self.state[F, 1]\n",
|
| 181 |
-
" new_state[L, 2] = self.state[B, 3]\n",
|
| 182 |
-
" new_state[L, 3] = self.state[B, 1]\n",
|
| 183 |
-
" new_state[U, 0] = self.state[U, 2]\n",
|
| 184 |
-
" new_state[U, 1] = self.state[U, 0]\n",
|
| 185 |
-
" new_state[U, 2] = self.state[U, 3]\n",
|
| 186 |
-
" new_state[U, 3] = self.state[U, 1]\n",
|
| 187 |
-
" # Bottom Clockwise\n",
|
| 188 |
-
" elif action == 10:\n",
|
| 189 |
-
" new_state[F, 0] = self.state[L, 0]\n",
|
| 190 |
-
" new_state[F, 2] = self.state[L, 1]\n",
|
| 191 |
-
" new_state[B, 0] = self.state[R, 0]\n",
|
| 192 |
-
" new_state[B, 2] = self.state[R, 1]\n",
|
| 193 |
-
" new_state[R, 0] = self.state[F, 2]\n",
|
| 194 |
-
" new_state[R, 1] = self.state[F, 0]\n",
|
| 195 |
-
" new_state[L, 0] = self.state[B, 2]\n",
|
| 196 |
-
" new_state[L, 1] = self.state[B, 0]\n",
|
| 197 |
-
" new_state[D, 0] = self.state[D, 2]\n",
|
| 198 |
-
" new_state[D, 1] = self.state[D, 0]\n",
|
| 199 |
-
" new_state[D, 2] = self.state[D, 3]\n",
|
| 200 |
-
" new_state[D, 3] = self.state[D, 1]\n",
|
| 201 |
-
" # Bottom Counter-Clockwise\n",
|
| 202 |
-
" elif action == 11:\n",
|
| 203 |
-
" new_state[F, 0] = self.state[R, 1]\n",
|
| 204 |
-
" new_state[F, 2] = self.state[R, 0]\n",
|
| 205 |
-
" new_state[B, 0] = self.state[L, 1]\n",
|
| 206 |
-
" new_state[B, 2] = self.state[L, 0]\n",
|
| 207 |
-
" new_state[R, 0] = self.state[B, 0]\n",
|
| 208 |
-
" new_state[R, 1] = self.state[B, 2]\n",
|
| 209 |
-
" new_state[L, 0] = self.state[F, 0]\n",
|
| 210 |
-
" new_state[L, 1] = self.state[F, 2]\n",
|
| 211 |
-
" new_state[D, 0] = self.state[D, 1]\n",
|
| 212 |
-
" new_state[D, 1] = self.state[D, 3]\n",
|
| 213 |
-
" new_state[D, 2] = self.state[D, 0]\n",
|
| 214 |
-
" new_state[D, 3] = self.state[D, 2]\n",
|
| 215 |
-
" self.state = new_state\n",
|
| 216 |
-
" return (\n",
|
| 217 |
-
" self._get_obs(),\n",
|
| 218 |
-
" 1 if self._is_solved() else -1,\n",
|
| 219 |
-
" self._is_solved(),\n",
|
| 220 |
-
" self.step_count >= 100,\n",
|
| 221 |
-
" {},\n",
|
| 222 |
-
" )\n",
|
| 223 |
"\n",
|
| 224 |
-
" def _get_obs(self):\n",
|
| 225 |
-
" one_hots = []\n",
|
| 226 |
-
" for i in range(6):\n",
|
| 227 |
-
" for j in range(4):\n",
|
| 228 |
-
" label = int(self.state[i, j])\n",
|
| 229 |
-
" zeros = np.zeros(6)\n",
|
| 230 |
-
" zeros[label] = 1\n",
|
| 231 |
-
" one_hots.append(zeros)\n",
|
| 232 |
-
" return np.array(one_hots)\n",
|
| 233 |
-
"\n",
|
| 234 |
-
" def _is_solved(self):\n",
|
| 235 |
-
" for i in range(6):\n",
|
| 236 |
-
" if np.mean(self.state[i]) != self.state[i][0]:\n",
|
| 237 |
-
" return False\n",
|
| 238 |
-
" return True"
|
| 239 |
-
]
|
| 240 |
-
},
|
| 241 |
-
{
|
| 242 |
-
"cell_type": "code",
|
| 243 |
-
"execution_count": 2,
|
| 244 |
-
"id": "624c83c1",
|
| 245 |
-
"metadata": {},
|
| 246 |
-
"outputs": [],
|
| 247 |
-
"source": [
|
| 248 |
"class RewardWrapper(gym.Wrapper):\n",
|
| 249 |
" def __init__(self, *args, **kwargs):\n",
|
| 250 |
" super().__init__(*args, **kwargs)\n",
|
|
@@ -271,7 +37,7 @@
|
|
| 271 |
},
|
| 272 |
{
|
| 273 |
"cell_type": "code",
|
| 274 |
-
"execution_count":
|
| 275 |
"id": "7a81c85a",
|
| 276 |
"metadata": {},
|
| 277 |
"outputs": [
|
|
@@ -279,30 +45,12 @@
|
|
| 279 |
"name": "stdout",
|
| 280 |
"output_type": "stream",
|
| 281 |
"text": [
|
| 282 |
-
"[[
|
| 283 |
-
" [
|
| 284 |
-
" [
|
| 285 |
-
" [
|
| 286 |
-
" [
|
| 287 |
-
" [
|
| 288 |
-
" [0. 0. 0. 0. 1. 0.]\n",
|
| 289 |
-
" [0. 0. 0. 0. 1. 0.]\n",
|
| 290 |
-
" [0. 0. 1. 0. 0. 0.]\n",
|
| 291 |
-
" [0. 1. 0. 0. 0. 0.]\n",
|
| 292 |
-
" [0. 0. 1. 0. 0. 0.]\n",
|
| 293 |
-
" [0. 1. 0. 0. 0. 0.]\n",
|
| 294 |
-
" [1. 0. 0. 0. 0. 0.]\n",
|
| 295 |
-
" [1. 0. 0. 0. 0. 0.]\n",
|
| 296 |
-
" [0. 0. 0. 1. 0. 0.]\n",
|
| 297 |
-
" [0. 0. 0. 1. 0. 0.]\n",
|
| 298 |
-
" [0. 0. 0. 0. 1. 0.]\n",
|
| 299 |
-
" [0. 0. 0. 0. 1. 0.]\n",
|
| 300 |
-
" [1. 0. 0. 0. 0. 0.]\n",
|
| 301 |
-
" [0. 0. 1. 0. 0. 0.]\n",
|
| 302 |
-
" [0. 0. 0. 0. 0. 1.]\n",
|
| 303 |
-
" [0. 0. 0. 0. 0. 1.]\n",
|
| 304 |
-
" [0. 1. 0. 0. 0. 0.]\n",
|
| 305 |
-
" [0. 0. 0. 1. 0. 0.]]\n"
|
| 306 |
]
|
| 307 |
}
|
| 308 |
],
|
|
@@ -311,250 +59,6 @@
|
|
| 311 |
"obs, _ = env.reset()\n",
|
| 312 |
"print(env.state())"
|
| 313 |
]
|
| 314 |
-
},
|
| 315 |
-
{
|
| 316 |
-
"cell_type": "code",
|
| 317 |
-
"execution_count": null,
|
| 318 |
-
"id": "f8b4d968",
|
| 319 |
-
"metadata": {},
|
| 320 |
-
"outputs": [
|
| 321 |
-
{
|
| 322 |
-
"name": "stdout",
|
| 323 |
-
"output_type": "stream",
|
| 324 |
-
"text": [
|
| 325 |
-
"Using cpu device\n",
|
| 326 |
-
"Wrapping the env with a `Monitor` wrapper\n",
|
| 327 |
-
"Wrapping the env in a DummyVecEnv.\n",
|
| 328 |
-
"----------------------------------\n",
|
| 329 |
-
"| rollout/ | |\n",
|
| 330 |
-
"| ep_len_mean | 94.2 |\n",
|
| 331 |
-
"| ep_rew_mean | -88.2 |\n",
|
| 332 |
-
"| exploration_rate | 0.105 |\n",
|
| 333 |
-
"| time/ | |\n",
|
| 334 |
-
"| episodes | 100 |\n",
|
| 335 |
-
"| fps | 4943 |\n",
|
| 336 |
-
"| time_elapsed | 1 |\n",
|
| 337 |
-
"| total_timesteps | 9424 |\n",
|
| 338 |
-
"| train/ | |\n",
|
| 339 |
-
"| learning_rate | 0.0001 |\n",
|
| 340 |
-
"| loss | 0.0004 |\n",
|
| 341 |
-
"| n_updates | 2330 |\n",
|
| 342 |
-
"----------------------------------\n",
|
| 343 |
-
"----------------------------------\n",
|
| 344 |
-
"| rollout/ | |\n",
|
| 345 |
-
"| ep_len_mean | 98.1 |\n",
|
| 346 |
-
"| ep_rew_mean | -96.1 |\n",
|
| 347 |
-
"| exploration_rate | 0.05 |\n",
|
| 348 |
-
"| time/ | |\n",
|
| 349 |
-
"| episodes | 200 |\n",
|
| 350 |
-
"| fps | 4426 |\n",
|
| 351 |
-
"| time_elapsed | 4 |\n",
|
| 352 |
-
"| total_timesteps | 19236 |\n",
|
| 353 |
-
"| train/ | |\n",
|
| 354 |
-
"| learning_rate | 0.0001 |\n",
|
| 355 |
-
"| loss | 0.000292 |\n",
|
| 356 |
-
"| n_updates | 4783 |\n",
|
| 357 |
-
"----------------------------------\n",
|
| 358 |
-
"----------------------------------\n",
|
| 359 |
-
"| rollout/ | |\n",
|
| 360 |
-
"| ep_len_mean | 95.2 |\n",
|
| 361 |
-
"| ep_rew_mean | -90.1 |\n",
|
| 362 |
-
"| exploration_rate | 0.05 |\n",
|
| 363 |
-
"| time/ | |\n",
|
| 364 |
-
"| episodes | 300 |\n",
|
| 365 |
-
"| fps | 4349 |\n",
|
| 366 |
-
"| time_elapsed | 6 |\n",
|
| 367 |
-
"| total_timesteps | 28754 |\n",
|
| 368 |
-
"| train/ | |\n",
|
| 369 |
-
"| learning_rate | 0.0001 |\n",
|
| 370 |
-
"| loss | 0.000103 |\n",
|
| 371 |
-
"| n_updates | 7163 |\n",
|
| 372 |
-
"----------------------------------\n",
|
| 373 |
-
"----------------------------------\n",
|
| 374 |
-
"| rollout/ | |\n",
|
| 375 |
-
"| ep_len_mean | 88.4 |\n",
|
| 376 |
-
"| ep_rew_mean | -76.3 |\n",
|
| 377 |
-
"| exploration_rate | 0.05 |\n",
|
| 378 |
-
"| time/ | |\n",
|
| 379 |
-
"| episodes | 400 |\n",
|
| 380 |
-
"| fps | 4391 |\n",
|
| 381 |
-
"| time_elapsed | 8 |\n",
|
| 382 |
-
"| total_timesteps | 37598 |\n",
|
| 383 |
-
"| train/ | |\n",
|
| 384 |
-
"| learning_rate | 0.0001 |\n",
|
| 385 |
-
"| loss | 0.000121 |\n",
|
| 386 |
-
"| n_updates | 9374 |\n",
|
| 387 |
-
"----------------------------------\n",
|
| 388 |
-
"----------------------------------\n",
|
| 389 |
-
"| rollout/ | |\n",
|
| 390 |
-
"| ep_len_mean | 86.6 |\n",
|
| 391 |
-
"| ep_rew_mean | -72.5 |\n",
|
| 392 |
-
"| exploration_rate | 0.05 |\n",
|
| 393 |
-
"| time/ | |\n",
|
| 394 |
-
"| episodes | 500 |\n",
|
| 395 |
-
"| fps | 4417 |\n",
|
| 396 |
-
"| time_elapsed | 10 |\n",
|
| 397 |
-
"| total_timesteps | 46260 |\n",
|
| 398 |
-
"| train/ | |\n",
|
| 399 |
-
"| learning_rate | 0.0001 |\n",
|
| 400 |
-
"| loss | 0.000169 |\n",
|
| 401 |
-
"| n_updates | 11539 |\n",
|
| 402 |
-
"----------------------------------\n",
|
| 403 |
-
"----------------------------------\n",
|
| 404 |
-
"| rollout/ | |\n",
|
| 405 |
-
"| ep_len_mean | 82.6 |\n",
|
| 406 |
-
"| ep_rew_mean | -64.4 |\n",
|
| 407 |
-
"| exploration_rate | 0.05 |\n",
|
| 408 |
-
"| time/ | |\n",
|
| 409 |
-
"| episodes | 600 |\n",
|
| 410 |
-
"| fps | 4436 |\n",
|
| 411 |
-
"| time_elapsed | 12 |\n",
|
| 412 |
-
"| total_timesteps | 54520 |\n",
|
| 413 |
-
"| train/ | |\n",
|
| 414 |
-
"| learning_rate | 0.0001 |\n",
|
| 415 |
-
"| loss | 9.72e-05 |\n",
|
| 416 |
-
"| n_updates | 13604 |\n",
|
| 417 |
-
"----------------------------------\n",
|
| 418 |
-
"----------------------------------\n",
|
| 419 |
-
"| rollout/ | |\n",
|
| 420 |
-
"| ep_len_mean | 79.4 |\n",
|
| 421 |
-
"| ep_rew_mean | -57.2 |\n",
|
| 422 |
-
"| exploration_rate | 0.05 |\n",
|
| 423 |
-
"| time/ | |\n",
|
| 424 |
-
"| episodes | 700 |\n",
|
| 425 |
-
"| fps | 4445 |\n",
|
| 426 |
-
"| time_elapsed | 14 |\n",
|
| 427 |
-
"| total_timesteps | 62462 |\n",
|
| 428 |
-
"| train/ | |\n",
|
| 429 |
-
"| learning_rate | 0.0001 |\n",
|
| 430 |
-
"| loss | 6.99e-05 |\n",
|
| 431 |
-
"| n_updates | 15590 |\n",
|
| 432 |
-
"----------------------------------\n",
|
| 433 |
-
"----------------------------------\n",
|
| 434 |
-
"| rollout/ | |\n",
|
| 435 |
-
"| ep_len_mean | 75.5 |\n",
|
| 436 |
-
"| ep_rew_mean | -49.2 |\n",
|
| 437 |
-
"| exploration_rate | 0.05 |\n",
|
| 438 |
-
"| time/ | |\n",
|
| 439 |
-
"| episodes | 800 |\n",
|
| 440 |
-
"| fps | 4456 |\n",
|
| 441 |
-
"| time_elapsed | 15 |\n",
|
| 442 |
-
"| total_timesteps | 70012 |\n",
|
| 443 |
-
"| train/ | |\n",
|
| 444 |
-
"| learning_rate | 0.0001 |\n",
|
| 445 |
-
"| loss | 0.264 |\n",
|
| 446 |
-
"| n_updates | 17477 |\n",
|
| 447 |
-
"----------------------------------\n",
|
| 448 |
-
"----------------------------------\n",
|
| 449 |
-
"| rollout/ | |\n",
|
| 450 |
-
"| ep_len_mean | 70.5 |\n",
|
| 451 |
-
"| ep_rew_mean | -39.2 |\n",
|
| 452 |
-
"| exploration_rate | 0.05 |\n",
|
| 453 |
-
"| time/ | |\n",
|
| 454 |
-
"| episodes | 900 |\n",
|
| 455 |
-
"| fps | 4471 |\n",
|
| 456 |
-
"| time_elapsed | 17 |\n",
|
| 457 |
-
"| total_timesteps | 77066 |\n",
|
| 458 |
-
"| train/ | |\n",
|
| 459 |
-
"| learning_rate | 0.0001 |\n",
|
| 460 |
-
"| loss | 0.000102 |\n",
|
| 461 |
-
"| n_updates | 19241 |\n",
|
| 462 |
-
"----------------------------------\n",
|
| 463 |
-
"----------------------------------\n",
|
| 464 |
-
"| rollout/ | |\n",
|
| 465 |
-
"| ep_len_mean | 66.1 |\n",
|
| 466 |
-
"| ep_rew_mean | -28.8 |\n",
|
| 467 |
-
"| exploration_rate | 0.05 |\n",
|
| 468 |
-
"| time/ | |\n",
|
| 469 |
-
"| episodes | 1000 |\n",
|
| 470 |
-
"| fps | 4489 |\n",
|
| 471 |
-
"| time_elapsed | 18 |\n",
|
| 472 |
-
"| total_timesteps | 83678 |\n",
|
| 473 |
-
"| train/ | |\n",
|
| 474 |
-
"| learning_rate | 0.0001 |\n",
|
| 475 |
-
"| loss | 0.000145 |\n",
|
| 476 |
-
"| n_updates | 20894 |\n",
|
| 477 |
-
"----------------------------------\n",
|
| 478 |
-
"----------------------------------\n",
|
| 479 |
-
"| rollout/ | |\n",
|
| 480 |
-
"| ep_len_mean | 66.9 |\n",
|
| 481 |
-
"| ep_rew_mean | -31.6 |\n",
|
| 482 |
-
"| exploration_rate | 0.05 |\n",
|
| 483 |
-
"| time/ | |\n",
|
| 484 |
-
"| episodes | 1100 |\n",
|
| 485 |
-
"| fps | 4504 |\n",
|
| 486 |
-
"| time_elapsed | 20 |\n",
|
| 487 |
-
"| total_timesteps | 90370 |\n",
|
| 488 |
-
"| train/ | |\n",
|
| 489 |
-
"| learning_rate | 0.0001 |\n",
|
| 490 |
-
"| loss | 0.000488 |\n",
|
| 491 |
-
"| n_updates | 22567 |\n",
|
| 492 |
-
"----------------------------------\n",
|
| 493 |
-
"----------------------------------\n",
|
| 494 |
-
"| rollout/ | |\n",
|
| 495 |
-
"| ep_len_mean | 68.6 |\n",
|
| 496 |
-
"| ep_rew_mean | -34.3 |\n",
|
| 497 |
-
"| exploration_rate | 0.05 |\n",
|
| 498 |
-
"| time/ | |\n",
|
| 499 |
-
"| episodes | 1200 |\n",
|
| 500 |
-
"| fps | 4517 |\n",
|
| 501 |
-
"| time_elapsed | 21 |\n",
|
| 502 |
-
"| total_timesteps | 97230 |\n",
|
| 503 |
-
"| train/ | |\n",
|
| 504 |
-
"| learning_rate | 0.0001 |\n",
|
| 505 |
-
"| loss | 0.00045 |\n",
|
| 506 |
-
"| n_updates | 24282 |\n",
|
| 507 |
-
"----------------------------------\n"
|
| 508 |
-
]
|
| 509 |
-
}
|
| 510 |
-
],
|
| 511 |
-
"source": [
|
| 512 |
-
"from stable_baselines3 import DQN\n",
|
| 513 |
-
"\n",
|
| 514 |
-
"env = Cube2()\n",
|
| 515 |
-
"env = RewardWrapper(env)\n",
|
| 516 |
-
"model = DQN(\"MlpPolicy\", env, verbose=1)\n",
|
| 517 |
-
"model.learn(total_timesteps=100000, log_interval=100)"
|
| 518 |
-
]
|
| 519 |
-
},
|
| 520 |
-
{
|
| 521 |
-
"cell_type": "code",
|
| 522 |
-
"execution_count": 75,
|
| 523 |
-
"id": "24132717",
|
| 524 |
-
"metadata": {},
|
| 525 |
-
"outputs": [
|
| 526 |
-
{
|
| 527 |
-
"name": "stdout",
|
| 528 |
-
"output_type": "stream",
|
| 529 |
-
"text": [
|
| 530 |
-
"rotationController.setState([[0.0, 0.0, 3.0, 4.0], [5.0, 2.0, 1.0, 1.0], [3.0, 4.0, 3.0, 2.0], [2.0, 5.0, 4.0, 5.0], [0.0, 3.0, 5.0, 1.0], [1.0, 2.0, 4.0, 0.0]])\n",
|
| 531 |
-
"rotationController.addRotationStepCode(...[3, 1, 8, 3])\n",
|
| 532 |
-
"\n",
|
| 533 |
-
"Solved in 4 steps\n"
|
| 534 |
-
]
|
| 535 |
-
}
|
| 536 |
-
],
|
| 537 |
-
"source": [
|
| 538 |
-
"# model = DQN.load(\"dqn_cube2.pkl\")\n",
|
| 539 |
-
"import json\n",
|
| 540 |
-
"\n",
|
| 541 |
-
"env = Cube2()\n",
|
| 542 |
-
"env = RewardWrapper(env)\n",
|
| 543 |
-
"obs, _ = env.reset()\n",
|
| 544 |
-
"print(f\"rotationController.setState({json.dumps(env.state().tolist())})\")\n",
|
| 545 |
-
"\n",
|
| 546 |
-
"solved_actions = []\n",
|
| 547 |
-
"for i in range(100):\n",
|
| 548 |
-
" action, _ = model.predict(obs, deterministic=True)\n",
|
| 549 |
-
" solved_actions.append(action.item())\n",
|
| 550 |
-
" obs, reward, terminated, truncated, _ = env.step(action)\n",
|
| 551 |
-
" if terminated or truncated:\n",
|
| 552 |
-
" break\n",
|
| 553 |
-
"print(f\"rotationController.addRotationStepCode(...{json.dumps(solved_actions)})\")\n",
|
| 554 |
-
"\n",
|
| 555 |
-
"print()\n",
|
| 556 |
-
"print(f\"Solved in {len(solved_actions)} steps\")"
|
| 557 |
-
]
|
| 558 |
}
|
| 559 |
],
|
| 560 |
"metadata": {
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 3,
|
| 6 |
+
"id": "624c83c1",
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
| 9 |
"source": [
|
| 10 |
"import gymnasium as gym\n",
|
| 11 |
+
"from envs.cube2 import Cube2\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
"class RewardWrapper(gym.Wrapper):\n",
|
| 15 |
" def __init__(self, *args, **kwargs):\n",
|
| 16 |
" super().__init__(*args, **kwargs)\n",
|
|
|
|
| 37 |
},
|
| 38 |
{
|
| 39 |
"cell_type": "code",
|
| 40 |
+
"execution_count": 4,
|
| 41 |
"id": "7a81c85a",
|
| 42 |
"metadata": {},
|
| 43 |
"outputs": [
|
|
|
|
| 45 |
"name": "stdout",
|
| 46 |
"output_type": "stream",
|
| 47 |
"text": [
|
| 48 |
+
"[[3 3 0 4]\n",
|
| 49 |
+
" [2 2 1 5]\n",
|
| 50 |
+
" [5 5 0 0]\n",
|
| 51 |
+
" [1 4 1 4]\n",
|
| 52 |
+
" [4 0 2 2]\n",
|
| 53 |
+
" [5 1 3 3]]\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
]
|
| 55 |
}
|
| 56 |
],
|
|
|
|
| 59 |
"obs, _ = env.reset()\n",
|
| 60 |
"print(env.state())"
|
| 61 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
}
|
| 63 |
],
|
| 64 |
"metadata": {
|
rlcube/envs/cube2.py
CHANGED
|
@@ -19,15 +19,19 @@ class Cube2(gym.Env):
|
|
| 19 |
self.state = np.zeros((6, 4))
|
| 20 |
self.step_count = 0
|
| 21 |
|
| 22 |
-
def reset(self, seed=None, options=None):
|
| 23 |
super().reset(seed=seed, options=options)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
self.step_count = 0
|
| 32 |
return self._get_obs(), {}
|
| 33 |
|
|
|
|
| 19 |
self.state = np.zeros((6, 4))
|
| 20 |
self.step_count = 0
|
| 21 |
|
| 22 |
+
def reset(self, seed=None, options=None, state: np.ndarray = None):
|
| 23 |
super().reset(seed=seed, options=options)
|
| 24 |
+
if state is None:
|
| 25 |
+
self.state = np.zeros((6, 4), dtype=np.int8)
|
| 26 |
+
self.state[0] = np.ones(4, dtype=np.int8) * F
|
| 27 |
+
self.state[1] = np.ones(4, dtype=np.int8) * B
|
| 28 |
+
self.state[2] = np.ones(4, dtype=np.int8) * R
|
| 29 |
+
self.state[3] = np.ones(4, dtype=np.int8) * L
|
| 30 |
+
self.state[4] = np.ones(4, dtype=np.int8) * U
|
| 31 |
+
self.state[5] = np.ones(4, dtype=np.int8) * D
|
| 32 |
+
else:
|
| 33 |
+
assert state.shape == (6, 4) and state.dtype == np.int8
|
| 34 |
+
self.state = state
|
| 35 |
self.step_count = 0
|
| 36 |
return self._get_obs(), {}
|
| 37 |
|
rlcube/main.py
CHANGED
|
@@ -2,6 +2,8 @@ from typing import List
|
|
| 2 |
from fastapi import FastAPI
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from fastapi import HTTPException
|
|
|
|
|
|
|
| 5 |
|
| 6 |
app = FastAPI()
|
| 7 |
|
|
@@ -20,4 +22,12 @@ def solve(body: StateArgs):
|
|
| 20 |
):
|
| 21 |
raise HTTPException(status_code=400, detail="state must be a 6x4 matrix")
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from fastapi import FastAPI
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from fastapi import HTTPException
|
| 5 |
+
from envs.cube2 import Cube2
|
| 6 |
+
import numpy as np
|
| 7 |
|
| 8 |
app = FastAPI()
|
| 9 |
|
|
|
|
| 22 |
):
|
| 23 |
raise HTTPException(status_code=400, detail="state must be a 6x4 matrix")
|
| 24 |
|
| 25 |
+
env = Cube2()
|
| 26 |
+
env.reset(state=np.array(state, dtype=np.int8))
|
| 27 |
+
|
| 28 |
+
steps = []
|
| 29 |
+
for _ in range(10):
|
| 30 |
+
action = env.action_space.sample()
|
| 31 |
+
steps.append(action.item())
|
| 32 |
+
|
| 33 |
+
return {"steps": steps}
|