Spaces:
Sleeping
Sleeping
train
Browse files- rlcube/cube2.ipynb +75 -4
- rlcube/rlcube/train/train.py +6 -6
rlcube/cube2.ipynb
CHANGED
|
@@ -2,14 +2,85 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"id": "624c83c1",
|
| 7 |
"metadata": {},
|
| 8 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
"source": [
|
| 10 |
-
"from rlcube.
|
|
|
|
|
|
|
|
|
|
| 11 |
"\n",
|
| 12 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
]
|
| 14 |
}
|
| 15 |
],
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 60,
|
| 6 |
"id": "624c83c1",
|
| 7 |
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"data": {
|
| 11 |
+
"text/plain": [
|
| 12 |
+
"DNN(\n",
|
| 13 |
+
" (fc_in): Linear(in_features=144, out_features=512, bias=True)\n",
|
| 14 |
+
" (residual_blocks): ModuleList(\n",
|
| 15 |
+
" (0-3): 4 x ResidualBlock(\n",
|
| 16 |
+
" (ln1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
|
| 17 |
+
" (fc1): Linear(in_features=512, out_features=1024, bias=True)\n",
|
| 18 |
+
" (ln2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
|
| 19 |
+
" (fc2): Linear(in_features=1024, out_features=512, bias=True)\n",
|
| 20 |
+
" )\n",
|
| 21 |
+
" )\n",
|
| 22 |
+
" (fc_value): Sequential(\n",
|
| 23 |
+
" (0): Linear(in_features=512, out_features=64, bias=True)\n",
|
| 24 |
+
" (1): ReLU()\n",
|
| 25 |
+
" (2): Linear(in_features=64, out_features=1, bias=True)\n",
|
| 26 |
+
" )\n",
|
| 27 |
+
" (fc_policy): Sequential(\n",
|
| 28 |
+
" (0): Linear(in_features=512, out_features=64, bias=True)\n",
|
| 29 |
+
" (1): ReLU()\n",
|
| 30 |
+
" (2): Linear(in_features=64, out_features=12, bias=True)\n",
|
| 31 |
+
" )\n",
|
| 32 |
+
")"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
"execution_count": 60,
|
| 36 |
+
"metadata": {},
|
| 37 |
+
"output_type": "execute_result"
|
| 38 |
+
}
|
| 39 |
+
],
|
| 40 |
"source": [
|
| 41 |
+
"from rlcube.models.models import DNN\n",
|
| 42 |
+
"from rlcube.envs.cube2 import Cube2\n",
|
| 43 |
+
"import numpy as np\n",
|
| 44 |
+
"import torch\n",
|
| 45 |
"\n",
|
| 46 |
+
"net = DNN()\n",
|
| 47 |
+
"net.load(\"models/model_best.pth\")\n",
|
| 48 |
+
"net.eval()"
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"cell_type": "code",
|
| 53 |
+
"execution_count": 61,
|
| 54 |
+
"id": "16736f3a",
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"outputs": [
|
| 57 |
+
{
|
| 58 |
+
"name": "stdout",
|
| 59 |
+
"output_type": "stream",
|
| 60 |
+
"text": [
|
| 61 |
+
"tensor([[ 0.0166],\n",
|
| 62 |
+
" [ 1.0147],\n",
|
| 63 |
+
" [ 1.1610],\n",
|
| 64 |
+
" [ 0.9844],\n",
|
| 65 |
+
" [-0.0268],\n",
|
| 66 |
+
" [ 1.1526]], grad_fn=<AddmmBackward0>)\n",
|
| 67 |
+
"tensor([10, 1, 5, 0, 10, 1])\n"
|
| 68 |
+
]
|
| 69 |
+
}
|
| 70 |
+
],
|
| 71 |
+
"source": [
|
| 72 |
+
"env = Cube2()\n",
|
| 73 |
+
"obs, _ = env.reset()\n",
|
| 74 |
+
"obs1, _, _, _, _ = env.step(0)\n",
|
| 75 |
+
"obs2, _, _, _, _ = env.step(0)\n",
|
| 76 |
+
"obs3, _, _, _, _ = env.step(2)\n",
|
| 77 |
+
"obs4, _, _, _, _ = env.step(2)\n",
|
| 78 |
+
"for _ in range(10):\n",
|
| 79 |
+
" obsMany, _, _, _, _ = env.step(env.action_space.sample())\n",
|
| 80 |
+
"batched_obs = torch.tensor(np.array([obs, obs1, obs2, obs3, obs4, obsMany]), dtype=torch.float32)\n",
|
| 81 |
+
"out = net(batched_obs)\n",
|
| 82 |
+
"print(out[\"value\"])\n",
|
| 83 |
+
"print(torch.argmax(out[\"policy\"], dim=1))"
|
| 84 |
]
|
| 85 |
}
|
| 86 |
],
|
rlcube/rlcube/train/train.py
CHANGED
|
@@ -29,9 +29,9 @@ def train(epochs: int = 100):
|
|
| 29 |
if os.path.exists("models/model_best.pth"):
|
| 30 |
net.load("models/model_best.pth")
|
| 31 |
net = net.to(device)
|
| 32 |
-
optimizer = torch.optim.RMSprop(net.parameters(), lr=0.
|
| 33 |
-
value_loss_fn = torch.nn.MSELoss()
|
| 34 |
-
policy_loss_fn = torch.nn.CrossEntropyLoss()
|
| 35 |
|
| 36 |
best_loss = float("inf")
|
| 37 |
for epoch in range(epochs):
|
|
@@ -56,9 +56,9 @@ def train(epochs: int = 100):
|
|
| 56 |
target_values, indices = (neighbors_values + neighbors_rewards).max(dim=1)
|
| 57 |
indices = indices.reshape(-1)
|
| 58 |
|
| 59 |
-
loss_v = value_loss_fn(values, target_values)
|
| 60 |
-
loss_p = policy_loss_fn(policies, indices)
|
| 61 |
-
loss = loss_v + loss_p
|
| 62 |
epoch_loss += loss.item()
|
| 63 |
optimizer.zero_grad()
|
| 64 |
loss.backward()
|
|
|
|
| 29 |
if os.path.exists("models/model_best.pth"):
|
| 30 |
net.load("models/model_best.pth")
|
| 31 |
net = net.to(device)
|
| 32 |
+
optimizer = torch.optim.RMSprop(net.parameters(), lr=0.000001)
|
| 33 |
+
value_loss_fn = torch.nn.MSELoss(reduction="none")
|
| 34 |
+
policy_loss_fn = torch.nn.CrossEntropyLoss(reduction="none")
|
| 35 |
|
| 36 |
best_loss = float("inf")
|
| 37 |
for epoch in range(epochs):
|
|
|
|
| 56 |
target_values, indices = (neighbors_values + neighbors_rewards).max(dim=1)
|
| 57 |
indices = indices.reshape(-1)
|
| 58 |
|
| 59 |
+
loss_v = value_loss_fn(values, target_values).reshape(-1) / D.reshape(-1).detach()
|
| 60 |
+
loss_p = policy_loss_fn(policies, indices).reshape(-1) / D.reshape(-1).detach()
|
| 61 |
+
loss = (loss_v + loss_p).mean()
|
| 62 |
epoch_loss += loss.item()
|
| 63 |
optimizer.zero_grad()
|
| 64 |
loss.backward()
|