Spaces:
Sleeping
Sleeping
close to solve!
Browse files- rlcube/cube2.ipynb +50 -158
- rlcube/rlcube/models/models.py +25 -0
- rlcube/rlcube/models/search.py +6 -3
- rlcube/rlcube/train/train.py +5 -1
rlcube/cube2.ipynb
CHANGED
|
@@ -40,6 +40,7 @@
|
|
| 40 |
"source": [
|
| 41 |
"from rlcube.models.models import DNN\n",
|
| 42 |
"from rlcube.envs.cube2 import Cube2Env\n",
|
|
|
|
| 43 |
"\n",
|
| 44 |
"net = DNN()\n",
|
| 45 |
"net.load(\"models/model_best.pth\")\n",
|
|
@@ -48,190 +49,81 @@
|
|
| 48 |
},
|
| 49 |
{
|
| 50 |
"cell_type": "code",
|
| 51 |
-
"execution_count":
|
| 52 |
-
"id": "
|
| 53 |
"metadata": {},
|
| 54 |
"outputs": [
|
| 55 |
{
|
| 56 |
-
"name": "
|
| 57 |
"output_type": "stream",
|
| 58 |
"text": [
|
| 59 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
]
|
| 61 |
}
|
| 62 |
],
|
| 63 |
"source": [
|
| 64 |
-
"
|
| 65 |
"\n",
|
| 66 |
"env = Cube2Env()\n",
|
|
|
|
| 67 |
"actions = []\n",
|
| 68 |
-
"
|
|
|
|
| 69 |
" action = env.action_space.sample()\n",
|
| 70 |
-
" actions.append(action)\n",
|
| 71 |
" env.step(action)\n",
|
| 72 |
-
"
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
"id": "aee2a911",
|
| 79 |
-
"metadata": {},
|
| 80 |
-
"outputs": [],
|
| 81 |
-
"source": [
|
| 82 |
-
"node = tree.root"
|
| 83 |
-
]
|
| 84 |
-
},
|
| 85 |
-
{
|
| 86 |
-
"cell_type": "code",
|
| 87 |
-
"execution_count": 4,
|
| 88 |
-
"id": "048f58c9",
|
| 89 |
-
"metadata": {},
|
| 90 |
-
"outputs": [
|
| 91 |
-
{
|
| 92 |
-
"data": {
|
| 93 |
-
"text/plain": [
|
| 94 |
-
"[np.int64(8), np.int64(1), np.int64(4)]"
|
| 95 |
-
]
|
| 96 |
-
},
|
| 97 |
-
"execution_count": 4,
|
| 98 |
-
"metadata": {},
|
| 99 |
-
"output_type": "execute_result"
|
| 100 |
-
}
|
| 101 |
-
],
|
| 102 |
-
"source": [
|
| 103 |
-
"actions"
|
| 104 |
-
]
|
| 105 |
-
},
|
| 106 |
-
{
|
| 107 |
-
"cell_type": "code",
|
| 108 |
-
"execution_count": 5,
|
| 109 |
-
"id": "00994021",
|
| 110 |
-
"metadata": {},
|
| 111 |
-
"outputs": [
|
| 112 |
-
{
|
| 113 |
-
"data": {
|
| 114 |
-
"text/plain": [
|
| 115 |
-
"tensor([3.4725e+00, 3.3189e+00, 1.2619e-02, 3.1231e-01, 1.1286e-02, 2.5817e-02,\n",
|
| 116 |
-
" 1.6722e-02, 2.1334e-02, 3.4603e+00, 7.5021e-02, 2.5891e-02, 2.8712e-03])"
|
| 117 |
-
]
|
| 118 |
-
},
|
| 119 |
-
"execution_count": 5,
|
| 120 |
-
"metadata": {},
|
| 121 |
-
"output_type": "execute_result"
|
| 122 |
-
}
|
| 123 |
-
],
|
| 124 |
-
"source": [
|
| 125 |
-
"node.u()"
|
| 126 |
]
|
| 127 |
},
|
| 128 |
{
|
| 129 |
"cell_type": "code",
|
| 130 |
-
"execution_count":
|
| 131 |
-
"id": "
|
| 132 |
"metadata": {},
|
| 133 |
"outputs": [
|
| 134 |
{
|
| 135 |
-
"
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
" 3: 0,\n",
|
| 142 |
-
" 4: 0,\n",
|
| 143 |
-
" 5: 0,\n",
|
| 144 |
-
" 6: 0,\n",
|
| 145 |
-
" 7: 0,\n",
|
| 146 |
-
" 8: 16,\n",
|
| 147 |
-
" 9: 0,\n",
|
| 148 |
-
" 10: 0,\n",
|
| 149 |
-
" 11: 0})"
|
| 150 |
-
]
|
| 151 |
-
},
|
| 152 |
-
"execution_count": 6,
|
| 153 |
-
"metadata": {},
|
| 154 |
-
"output_type": "execute_result"
|
| 155 |
-
}
|
| 156 |
-
],
|
| 157 |
-
"source": [
|
| 158 |
-
"node.N"
|
| 159 |
-
]
|
| 160 |
-
},
|
| 161 |
-
{
|
| 162 |
-
"cell_type": "code",
|
| 163 |
-
"execution_count": 7,
|
| 164 |
-
"id": "2f8a09d1",
|
| 165 |
-
"metadata": {},
|
| 166 |
-
"outputs": [
|
| 167 |
{
|
| 168 |
-
"
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
" 3: 0,\n",
|
| 175 |
-
" 4: 0,\n",
|
| 176 |
-
" 5: 0,\n",
|
| 177 |
-
" 6: 0,\n",
|
| 178 |
-
" 7: 0,\n",
|
| 179 |
-
" 8: tensor([2.7285]),\n",
|
| 180 |
-
" 9: 0,\n",
|
| 181 |
-
" 10: 0,\n",
|
| 182 |
-
" 11: 0})"
|
| 183 |
-
]
|
| 184 |
-
},
|
| 185 |
-
"execution_count": 7,
|
| 186 |
-
"metadata": {},
|
| 187 |
-
"output_type": "execute_result"
|
| 188 |
-
}
|
| 189 |
-
],
|
| 190 |
-
"source": [
|
| 191 |
-
"node.W"
|
| 192 |
-
]
|
| 193 |
-
},
|
| 194 |
-
{
|
| 195 |
-
"cell_type": "code",
|
| 196 |
-
"execution_count": 8,
|
| 197 |
-
"id": "3e341459",
|
| 198 |
-
"metadata": {},
|
| 199 |
-
"outputs": [
|
| 200 |
{
|
| 201 |
-
"
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
" 2: 0,\n",
|
| 207 |
-
" 3: 0,\n",
|
| 208 |
-
" 4: 0,\n",
|
| 209 |
-
" 5: 2,\n",
|
| 210 |
-
" 6: 0,\n",
|
| 211 |
-
" 7: 0,\n",
|
| 212 |
-
" 8: 269,\n",
|
| 213 |
-
" 9: 0,\n",
|
| 214 |
-
" 10: 0,\n",
|
| 215 |
-
" 11: 0})"
|
| 216 |
-
]
|
| 217 |
-
},
|
| 218 |
-
"execution_count": 8,
|
| 219 |
-
"metadata": {},
|
| 220 |
-
"output_type": "execute_result"
|
| 221 |
}
|
| 222 |
],
|
| 223 |
"source": [
|
| 224 |
-
"
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
"execution_count": null,
|
| 230 |
-
"id": "51dddf56",
|
| 231 |
-
"metadata": {},
|
| 232 |
-
"outputs": [],
|
| 233 |
-
"source": [
|
| 234 |
-
"node.children[8].N"
|
| 235 |
]
|
| 236 |
}
|
| 237 |
],
|
|
|
|
| 40 |
"source": [
|
| 41 |
"from rlcube.models.models import DNN\n",
|
| 42 |
"from rlcube.envs.cube2 import Cube2Env\n",
|
| 43 |
+
"import torch\n",
|
| 44 |
"\n",
|
| 45 |
"net = DNN()\n",
|
| 46 |
"net.load(\"models/model_best.pth\")\n",
|
|
|
|
| 49 |
},
|
| 50 |
{
|
| 51 |
"cell_type": "code",
|
| 52 |
+
"execution_count": 16,
|
| 53 |
+
"id": "defde44e",
|
| 54 |
"metadata": {},
|
| 55 |
"outputs": [
|
| 56 |
{
|
| 57 |
+
"name": "stdout",
|
| 58 |
"output_type": "stream",
|
| 59 |
"text": [
|
| 60 |
+
"[2, 3, 7, 6, 8, 6, 3, 2, 2, 5]\n",
|
| 61 |
+
"tensor([[ 1.1924],\n",
|
| 62 |
+
" [ 0.0826],\n",
|
| 63 |
+
" [ 1.0202],\n",
|
| 64 |
+
" [ 0.0826],\n",
|
| 65 |
+
" [ 1.1121],\n",
|
| 66 |
+
" [-0.0302],\n",
|
| 67 |
+
" [-1.5963],\n",
|
| 68 |
+
" [-0.0302],\n",
|
| 69 |
+
" [-1.3707],\n",
|
| 70 |
+
" [-2.4068]], grad_fn=<AddmmBackward0>)\n"
|
| 71 |
]
|
| 72 |
}
|
| 73 |
],
|
| 74 |
"source": [
|
| 75 |
+
"import numpy as np\n",
|
| 76 |
"\n",
|
| 77 |
"env = Cube2Env()\n",
|
| 78 |
+
"\n",
|
| 79 |
"actions = []\n",
|
| 80 |
+
"obs = []\n",
|
| 81 |
+
"for _ in range(10):\n",
|
| 82 |
" action = env.action_space.sample()\n",
|
| 83 |
+
" actions.append(action.item())\n",
|
| 84 |
" env.step(action)\n",
|
| 85 |
+
" obs.append(env.obs())\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"obs = torch.tensor(np.array(obs), dtype=torch.float32)\n",
|
| 88 |
+
"values, policies = net(obs)\n",
|
| 89 |
+
"print(actions)\n",
|
| 90 |
+
"print(values)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
]
|
| 92 |
},
|
| 93 |
{
|
| 94 |
"cell_type": "code",
|
| 95 |
+
"execution_count": 18,
|
| 96 |
+
"id": "cae20b12",
|
| 97 |
"metadata": {},
|
| 98 |
"outputs": [
|
| 99 |
{
|
| 100 |
+
"name": "stderr",
|
| 101 |
+
"output_type": "stream",
|
| 102 |
+
"text": [
|
| 103 |
+
" 14%|ββ | 43/300 [00:00<00:02, 127.98it/s]"
|
| 104 |
+
]
|
| 105 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
{
|
| 107 |
+
"name": "stdout",
|
| 108 |
+
"output_type": "stream",
|
| 109 |
+
"text": [
|
| 110 |
+
"[4, 3, 7, 11]\n"
|
| 111 |
+
]
|
| 112 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
{
|
| 114 |
+
"name": "stderr",
|
| 115 |
+
"output_type": "stream",
|
| 116 |
+
"text": [
|
| 117 |
+
"\n"
|
| 118 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
}
|
| 120 |
],
|
| 121 |
"source": [
|
| 122 |
+
"from rlcube.models.search import MonteCarloTree\n",
|
| 123 |
+
"\n",
|
| 124 |
+
"tree = MonteCarloTree(env.obs(), max_simulations=300)\n",
|
| 125 |
+
"if tree.is_solved:\n",
|
| 126 |
+
" print([action for _, action in tree.solved_path])"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
]
|
| 128 |
}
|
| 129 |
],
|
rlcube/rlcube/models/models.py
CHANGED
|
@@ -79,6 +79,31 @@ class DNN(nn.Module):
|
|
| 79 |
self.load_state_dict(torch.load(filepath))
|
| 80 |
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
if __name__ == "__main__":
|
| 83 |
print("Testing RewardNet")
|
| 84 |
env = Cube2Env()
|
|
|
|
| 79 |
self.load_state_dict(torch.load(filepath))
|
| 80 |
|
| 81 |
|
| 82 |
+
class DNN2(nn.Module):
|
| 83 |
+
def __init__(self):
|
| 84 |
+
super(DNN2, self).__init__()
|
| 85 |
+
|
| 86 |
+
self.body = nn.Sequential(
|
| 87 |
+
nn.Linear(24 * 6, 4096), nn.ELU(), nn.Linear(4096, 2048), nn.ELU()
|
| 88 |
+
)
|
| 89 |
+
self.policy = nn.Sequential(nn.Linear(2048, 512), nn.ELU(), nn.Linear(512, 12))
|
| 90 |
+
self.value = nn.Sequential(nn.Linear(2048, 512), nn.ELU(), nn.Linear(512, 1))
|
| 91 |
+
|
| 92 |
+
def forward(self, x):
|
| 93 |
+
batch_size = x.size(0)
|
| 94 |
+
x = x.view(batch_size, -1)
|
| 95 |
+
x = self.body(x)
|
| 96 |
+
value = self.value(x)
|
| 97 |
+
policy = self.policy(x)
|
| 98 |
+
return value, policy
|
| 99 |
+
|
| 100 |
+
def save(self, filepath: str):
|
| 101 |
+
torch.save(self.state_dict(), filepath)
|
| 102 |
+
|
| 103 |
+
def load(self, filepath: str):
|
| 104 |
+
self.load_state_dict(torch.load(filepath))
|
| 105 |
+
|
| 106 |
+
|
| 107 |
if __name__ == "__main__":
|
| 108 |
print("Testing RewardNet")
|
| 109 |
env = Cube2Env()
|
rlcube/rlcube/models/search.py
CHANGED
|
@@ -14,9 +14,9 @@ class Node:
|
|
| 14 |
self.obs = torch.tensor(obs, dtype=torch.float32)
|
| 15 |
self.parent = parent
|
| 16 |
|
| 17 |
-
|
| 18 |
-
value =
|
| 19 |
-
policy = torch.softmax(
|
| 20 |
|
| 21 |
self.is_solved = Cube2Env.from_obs(obs).is_solved()
|
| 22 |
self.value = torch.tensor(1) if self.is_solved else value.view(-1)
|
|
@@ -55,6 +55,7 @@ class MonteCarloTree:
|
|
| 55 |
self.root = Node(obs)
|
| 56 |
self.nodes = [self.root]
|
| 57 |
self.is_solved = False
|
|
|
|
| 58 |
self._build()
|
| 59 |
|
| 60 |
def _build(self):
|
|
@@ -80,6 +81,8 @@ class MonteCarloTree:
|
|
| 80 |
node.children[i] = child
|
| 81 |
self.nodes.append(child)
|
| 82 |
self.is_solved = self.is_solved or child.is_solved
|
|
|
|
|
|
|
| 83 |
|
| 84 |
# Backup
|
| 85 |
for parent, action in reversed(path):
|
|
|
|
| 14 |
self.obs = torch.tensor(obs, dtype=torch.float32)
|
| 15 |
self.parent = parent
|
| 16 |
|
| 17 |
+
value, policy = net(self.obs.unsqueeze(0))
|
| 18 |
+
value = value.detach()
|
| 19 |
+
policy = torch.softmax(policy.detach(), dim=1)
|
| 20 |
|
| 21 |
self.is_solved = Cube2Env.from_obs(obs).is_solved()
|
| 22 |
self.value = torch.tensor(1) if self.is_solved else value.view(-1)
|
|
|
|
| 55 |
self.root = Node(obs)
|
| 56 |
self.nodes = [self.root]
|
| 57 |
self.is_solved = False
|
| 58 |
+
self.solved_path = []
|
| 59 |
self._build()
|
| 60 |
|
| 61 |
def _build(self):
|
|
|
|
| 81 |
node.children[i] = child
|
| 82 |
self.nodes.append(child)
|
| 83 |
self.is_solved = self.is_solved or child.is_solved
|
| 84 |
+
if child.is_solved:
|
| 85 |
+
self.solved_path = path + [(node, i)]
|
| 86 |
|
| 87 |
# Backup
|
| 88 |
for parent, action in reversed(path):
|
rlcube/rlcube/train/train.py
CHANGED
|
@@ -29,7 +29,7 @@ def train(epochs: int = 100):
|
|
| 29 |
if os.path.exists("models/model_best.pth"):
|
| 30 |
net.load("models/model_best.pth")
|
| 31 |
net = net.to(device)
|
| 32 |
-
optimizer = torch.optim.RMSprop(net.parameters(), lr=0.
|
| 33 |
value_loss_fn = torch.nn.MSELoss(reduction="none")
|
| 34 |
policy_loss_fn = torch.nn.CrossEntropyLoss(reduction="none")
|
| 35 |
|
|
@@ -42,6 +42,8 @@ def train(epochs: int = 100):
|
|
| 42 |
states, neighbors, D = states.to(device), neighbors.to(device), D.to(device)
|
| 43 |
|
| 44 |
values, policies = net(states)
|
|
|
|
|
|
|
| 45 |
|
| 46 |
with torch.no_grad():
|
| 47 |
batch_size = neighbors.shape[0]
|
|
@@ -53,7 +55,9 @@ def train(epochs: int = 100):
|
|
| 53 |
nrewards = rewards_out.view(batch_size, 12, -1)
|
| 54 |
|
| 55 |
target_values, indices = (nvalues + nrewards).max(dim=1)
|
|
|
|
| 56 |
target_values = target_values.detach()
|
|
|
|
| 57 |
indices = indices.reshape(-1)
|
| 58 |
weights = 1 / D.reshape(-1).detach()
|
| 59 |
|
|
|
|
| 29 |
if os.path.exists("models/model_best.pth"):
|
| 30 |
net.load("models/model_best.pth")
|
| 31 |
net = net.to(device)
|
| 32 |
+
optimizer = torch.optim.RMSprop(net.parameters(), lr=0.000001)
|
| 33 |
value_loss_fn = torch.nn.MSELoss(reduction="none")
|
| 34 |
policy_loss_fn = torch.nn.CrossEntropyLoss(reduction="none")
|
| 35 |
|
|
|
|
| 42 |
states, neighbors, D = states.to(device), neighbors.to(device), D.to(device)
|
| 43 |
|
| 44 |
values, policies = net(states)
|
| 45 |
+
rewards = reward(states)
|
| 46 |
+
masks = torch.where(rewards > 0, 0, 1).unsqueeze(1)
|
| 47 |
|
| 48 |
with torch.no_grad():
|
| 49 |
batch_size = neighbors.shape[0]
|
|
|
|
| 55 |
nrewards = rewards_out.view(batch_size, 12, -1)
|
| 56 |
|
| 57 |
target_values, indices = (nvalues + nrewards).max(dim=1)
|
| 58 |
+
target_values = target_values * masks
|
| 59 |
target_values = target_values.detach()
|
| 60 |
+
|
| 61 |
indices = indices.reshape(-1)
|
| 62 |
weights = 1 / D.reshape(-1).detach()
|
| 63 |
|