Spaces:
Running
Running
| import os | |
| import re | |
| import tempfile | |
| import requests | |
| import gradio as gr | |
| from PyPDF2 import PdfReader | |
| import logging | |
| import webbrowser | |
| from huggingface_hub import InferenceClient | |
| from typing import Dict, List, Optional, Tuple | |
| import time | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| # Constants | |
| CONTEXT_SIZES = { | |
| "4K": 4000, | |
| "8K": 8000, | |
| "32K": 32000, | |
| "128K": 128000, | |
| "200K": 200000 | |
| } | |
| MODEL_CONTEXT_SIZES = { | |
| "OpenAI ChatGPT": 4096, | |
| "HuggingFace Inference": 4096, | |
| "Groq API": { | |
| "llama-3.1-70b-versatile": 32768, | |
| "mixtral-8x7b-32768": 32768, | |
| "llama-3.1-8b-instant": 8192 | |
| } | |
| } | |
| class ModelRegistry: | |
| def __init__(self): | |
| self.hf_models = { | |
| "Phi-3 Mini 128k": "microsoft/Phi-3-mini-128k-instruct", | |
| "Custom Model": "" | |
| } | |
| self.groq_models = self._fetch_groq_models() | |
| def _fetch_groq_models(self) -> Dict[str, str]: | |
| """Fetch available Groq models with proper error handling""" | |
| try: | |
| groq_api_key = os.getenv('GROQ_API_KEY') | |
| if not groq_api_key: | |
| logging.warning("No GROQ_API_KEY found in environment") | |
| return self._get_default_groq_models() | |
| headers = { | |
| "Authorization": f"Bearer {groq_api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| response = requests.get("https://api.groq.com/openai/v1/models", headers=headers) | |
| if response.status_code == 200: | |
| models = response.json().get("data", []) | |
| return {model["id"]: model["id"] for model in models} | |
| else: | |
| logging.error(f"Failed to fetch Groq models: {response.status_code}") | |
| return self._get_default_groq_models() | |
| except Exception as e: | |
| logging.error(f"Error fetching Groq models: {e}") | |
| return self._get_default_groq_models() | |
| def _get_default_groq_models(self) -> Dict[str, str]: | |
| """Return default Groq models when API is unavailable""" | |
| return { | |
| "llama-3.1-70b-versatile": "llama-3.1-70b-versatile", | |
| "mixtral-8x7b-32768": "mixtral-8x7b-32768", | |
| "llama-3.1-8b-instant": "llama-3.1-8b-instant" | |
| } | |
| def refresh_groq_models(self) -> Dict[str, str]: | |
| """Refresh the list of available Groq models""" | |
| self.groq_models = self._fetch_groq_models() | |
| return self.groq_models | |
| # Initialize model registry | |
| model_registry = ModelRegistry() | |
| def extract_text_from_pdf(pdf_path: str) -> str: | |
| """Extract text content from PDF file.""" | |
| try: | |
| reader = PdfReader(pdf_path) | |
| text = "" | |
| for page_num, page in enumerate(reader.pages, start=1): | |
| page_text = page.extract_text() | |
| if page_text: | |
| text += page_text + "\n" | |
| else: | |
| logging.warning(f"No text found on page {page_num}.") | |
| if not text.strip(): | |
| return "Error: No extractable text found in the PDF." | |
| return text | |
| except Exception as e: | |
| logging.error(f"Error reading PDF file: {e}") | |
| return f"Error reading PDF file: {e}" | |
| def format_content(text: str, format_type: str) -> str: | |
| """Format extracted text according to specified format.""" | |
| if format_type == 'txt': | |
| return text | |
| elif format_type == 'md': | |
| paragraphs = text.split('\n\n') | |
| return '\n\n'.join(paragraphs) | |
| elif format_type == 'html': | |
| paragraphs = text.split('\n\n') | |
| return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()]) | |
| else: | |
| logging.error(f"Unsupported format: {format_type}") | |
| return f"Unsupported format: {format_type}" | |
| def split_into_snippets(text: str, context_size: int) -> List[str]: | |
| """Split text into manageable snippets based on context size.""" | |
| sentences = re.split(r'(?<=[.!?]) +', text) | |
| snippets = [] | |
| current_snippet = "" | |
| for sentence in sentences: | |
| if len(current_snippet) + len(sentence) + 1 > context_size: | |
| if current_snippet: | |
| snippets.append(current_snippet.strip()) | |
| current_snippet = sentence + " " | |
| else: | |
| snippets.append(sentence.strip()) | |
| current_snippet = "" | |
| else: | |
| current_snippet += sentence + " " | |
| if current_snippet.strip(): | |
| snippets.append(current_snippet.strip()) | |
| return snippets | |
| def build_prompts(snippets: List[str], prompt_instruction: str, custom_prompt: Optional[str], snippet_num: Optional[int] = None) -> str: | |
| """Build formatted prompts from text snippets.""" | |
| if snippet_num is not None: | |
| if 1 <= snippet_num <= len(snippets): | |
| selected_snippets = [snippets[snippet_num - 1]] | |
| else: | |
| return f"Error: Invalid snippet number. Please choose between 1 and {len(snippets)}." | |
| else: | |
| selected_snippets = snippets | |
| prompts = [] | |
| base_prompt = custom_prompt if custom_prompt else prompt_instruction | |
| for idx, snippet in enumerate(selected_snippets, start=1): | |
| if len(selected_snippets) > 1: | |
| prompt_header = f"{base_prompt} Part {idx} of {len(selected_snippets)}: ---\n" | |
| else: | |
| prompt_header = f"{base_prompt} ---\n" | |
| framed_prompt = f"{prompt_header}{snippet}\n---" | |
| prompts.append(framed_prompt) | |
| return "\n\n".join(prompts) | |
| def send_to_model(*args, **kwargs): | |
| try: | |
| with gr.Progress() as progress: | |
| progress(0, "Preparing to send to model...") | |
| result = send_to_model_impl(*args, **kwargs) | |
| progress(1, "Complete!") | |
| return result | |
| except Exception as e: | |
| return f"Error: {str(e)}", None | |
| def send_to_model_impl(prompt, model_selection, hf_model_choice, hf_custom_model, hf_api_key, | |
| groq_model_choice, groq_api_key, openai_api_key): | |
| """Implementation of send to model functionality""" | |
| if model_selection == "HuggingFace Inference": | |
| if not hf_api_key: | |
| return "HuggingFace API key required.", [] | |
| model_id = hf_custom_model if hf_model_choice == "Custom Model" else model_registry.hf_models[hf_model_choice] | |
| summary = send_to_hf_inference(prompt, model_id, hf_api_key) | |
| elif model_selection == "Groq API": | |
| if not groq_api_key: | |
| return "Groq API key required.", [] | |
| summary = send_to_groq(prompt, groq_model_choice, groq_api_key) | |
| elif model_selection == "OpenAI ChatGPT": | |
| if not openai_api_key: | |
| return "OpenAI API key required.", [] | |
| summary = send_to_openai(prompt, openai_api_key) | |
| else: | |
| return "Invalid model selection.", [] | |
| if summary.startswith("Error"): | |
| return summary, [] | |
| # Save summary for download | |
| with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f: | |
| f.write(summary) | |
| return summary, [f.name] | |
| def send_to_hf_inference(prompt: str, model_name: str, api_key: str) -> str: | |
| """Send prompt to HuggingFace using Inference API""" | |
| try: | |
| client = InferenceClient(token=api_key) | |
| response = client.text_generation( | |
| prompt, | |
| model=model_name, | |
| max_new_tokens=500, | |
| temperature=0.7, | |
| details=True, # Get full response details | |
| stream=False # Don't stream output | |
| ) | |
| return response.generated_text # Return just the generated text | |
| except Exception as e: | |
| logging.error(f"Error with HF inference: {e}") | |
| return f"Error with HF inference: {e}" | |
| def send_to_groq(prompt: str, model_name: str, api_key: str) -> str: | |
| """Send prompt to Groq API""" | |
| try: | |
| headers = { | |
| "Authorization": f"Bearer {api_key}", | |
| "Content-Type": "application/json" | |
| } | |
| data = { | |
| "model": model_name, | |
| "messages": [{"role": "user", "content": prompt}], | |
| "temperature": 0.7, | |
| "max_tokens": 500 | |
| } | |
| response = requests.post( | |
| "https://api.groq.com/openai/v1/chat/completions", | |
| headers=headers, | |
| json=data | |
| ) | |
| if response.status_code != 200: | |
| return f"Error: Groq API returned status {response.status_code}" | |
| response_json = response.json() | |
| if "choices" not in response_json or not response_json["choices"]: | |
| return "Error: No response from Groq API" | |
| return response_json["choices"][0]["message"]["content"] | |
| except Exception as e: | |
| logging.error(f"Error with Groq API: {e}") | |
| return f"Error with Groq API: {e}" | |
| def send_to_openai(prompt: str, api_key: str) -> str: | |
| """Send prompt to OpenAI API""" | |
| try: | |
| import openai | |
| openai.api_key = api_key | |
| response = openai.ChatCompletion.create( | |
| model="gpt-3.5-turbo", | |
| messages=[{"role": "user", "content": prompt}], | |
| temperature=0.7, | |
| max_tokens=500 | |
| ) | |
| return response.choices[0].message.content | |
| except Exception as e: | |
| logging.error(f"Error with OpenAI API: {e}") | |
| return f"Error with OpenAI API: {e}" | |
| def copy_to_clipboard(element_id: str) -> str: | |
| return f""" | |
| () => {{ | |
| try {{ | |
| const text = document.querySelector('#{element_id} textarea').value; | |
| navigator.clipboard.writeText(text); | |
| return "Copied to clipboard!"; | |
| }} catch (e) {{ | |
| console.error(e); | |
| return "Failed to copy to clipboard"; | |
| }} | |
| }} | |
| """ | |
| def open_chatgpt_old() -> str: | |
| webbrowser.open_new_tab('https://chat.openai.com') | |
| return "Opening ChatGPT in new tab" | |
| def open_chatgpt() -> str: | |
| """Open ChatGPT in new browser tab""" | |
| return """window.open('https://chat.openai.com/', '_blank');""" | |
| def process_pdf(pdf, fmt, ctx_size): | |
| """Process PDF and return text and snippets""" | |
| try: | |
| if not pdf: | |
| return "Please upload a PDF file.", "", [], None | |
| # Extract text | |
| text = extract_text_from_pdf(pdf.name) | |
| if text.startswith("Error"): | |
| return text, "", [], None | |
| # Format content | |
| formatted_text = format_content(text, fmt) | |
| # Split into snippets | |
| snippets = split_into_snippets(formatted_text, ctx_size) | |
| # Save full text for download | |
| with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as text_file: | |
| text_file.write(formatted_text) | |
| snippet_choices = [f"Snippet {i+1} of {len(snippets)}" for i in range(len(snippets))] | |
| return ( | |
| "PDF processed successfully!", | |
| formatted_text, | |
| snippets, | |
| snippet_choices, | |
| [text_file.name] | |
| ) | |
| except Exception as e: | |
| logging.error(f"Error processing PDF: {e}") | |
| return f"Error processing PDF: {str(e)}", "", [], None | |
| def generate_prompt(text, template, snippet_idx=None): | |
| """Generate prompt from text or selected snippet""" | |
| try: | |
| if not text: | |
| return "No text available.", "", None | |
| default_prompt = "Summarize the following text:" | |
| prompt_template = template if template else default_prompt | |
| if isinstance(text, list): | |
| # If text is list of snippets | |
| if snippet_idx is not None: | |
| if 0 <= snippet_idx < len(text): | |
| content = text[snippet_idx] | |
| else: | |
| return "Invalid snippet index.", "", None | |
| else: | |
| content = "\n\n".join(text) | |
| else: | |
| content = text | |
| prompt = f"{prompt_template}\n---\n{content}\n---" | |
| # Save prompt for download | |
| with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file: | |
| prompt_file.write(prompt) | |
| return "Prompt generated!", prompt, [prompt_file.name] | |
| except Exception as e: | |
| logging.error(f"Error generating prompt: {e}") | |
| return f"Error generating prompt: {str(e)}", "", None | |
| def download_file(content: str, prefix: str = "file") -> List[str]: | |
| """Create a downloadable file with content and better error handling""" | |
| if not content: | |
| return [] | |
| try: | |
| with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt', prefix=prefix) as f: | |
| f.write(content) | |
| return [f.name] | |
| except Exception as e: | |
| logging.error(f"Error creating download file: {e}") | |
| return [] | |
| # Main Interface | |
| with gr.Blocks(theme=gr.themes.Default()) as demo: | |
| # State variables | |
| pdf_content = gr.State("") | |
| snippets = gr.State([]) | |
| # Header | |
| gr.Markdown("# π Smart PDF Summarizer") | |
| gr.Markdown("Upload a PDF document and get AI-powered summaries using various AI models.") | |
| with gr.Tabs() as tabs: | |
| # Tab 1: PDF Processing | |
| with gr.Tab("1οΈβ£ PDF Processing"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| pdf_input = gr.File( | |
| label="π Upload PDF", | |
| file_types=[".pdf"] | |
| ) | |
| format_type = gr.Radio( | |
| choices=["txt", "md", "html"], | |
| value="txt", | |
| label="π Output Format" | |
| ) | |
| context_size = gr.Slider( | |
| minimum=1000, | |
| maximum=200000, | |
| step=1000, | |
| value=4096, | |
| label="Context Size" | |
| ) | |
| with gr.Row(): | |
| for size_name, size_value in CONTEXT_SIZES.items(): | |
| gr.Button( | |
| size_name, | |
| size="sm", | |
| scale=1 | |
| ).click( | |
| lambda v=size_value: v, # Simplified | |
| None, | |
| context_size | |
| ) | |
| process_button = gr.Button("π Process PDF", variant="primary") | |
| with gr.Column(scale=1): | |
| progress_status = gr.Textbox( | |
| label="Status", | |
| interactive=False, | |
| show_label=True, | |
| visible=True # Ensure error messages are always visible | |
| ) | |
| processed_text = gr.Textbox( | |
| label="Processed Text", | |
| lines=10, | |
| max_lines=50, | |
| show_copy_button=True | |
| ) | |
| download_full_text = gr.Button("π₯ Download Full Text") | |
| # Tab 2: Snippet Selection | |
| with gr.Tab("2οΈβ£ Snippet Selection"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| snippet_selector = gr.Dropdown( | |
| label="Select Snippet", | |
| choices=[], | |
| interactive=True | |
| ) | |
| custom_prompt = gr.Textbox( | |
| label="βοΈ Custom Prompt Template", | |
| placeholder="Enter your custom prompt here...", | |
| lines=2 | |
| ) | |
| generate_prompt_btn = gr.Button("Generate Prompt", variant="primary") | |
| with gr.Column(scale=1): | |
| generated_prompt = gr.Textbox( | |
| label="π Generated Prompt", | |
| lines=10, | |
| max_lines=50, | |
| show_copy_button=True, | |
| elem_id="generated_prompt" # Add this | |
| ) | |
| with gr.Row(): | |
| copy_prompt_button = gr.Button("π Copy Prompt") | |
| download_prompt = gr.Button("π₯ Download Prompt") | |
| download_snippet = gr.Button("π₯ Download Selected Snippet") | |
| # Tab 3: Model Processing | |
| with gr.Tab("3οΈβ£ Model Processing"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| model_choice = gr.Radio( | |
| choices=["OpenAI ChatGPT", "HuggingFace Inference", "Groq API"], | |
| value="OpenAI ChatGPT", | |
| label="π€ Model Selection" | |
| ) | |
| with gr.Column(visible=False) as openai_options: | |
| openai_api_key = gr.Textbox( | |
| label="π OpenAI API Key", | |
| type="password" | |
| ) | |
| with gr.Column(visible=False) as hf_options: | |
| hf_model = gr.Dropdown( | |
| choices=list(model_registry.hf_models.keys()), | |
| label="π§ HuggingFace Model", | |
| value="Phi-3 Mini 128k" | |
| ) | |
| hf_custom_model = gr.Textbox( | |
| label="Custom Model ID", | |
| visible=False | |
| ) | |
| hf_api_key = gr.Textbox( | |
| label="π HuggingFace API Key", | |
| type="password" | |
| ) | |
| with gr.Column(visible=False) as groq_options: | |
| groq_model = gr.Dropdown( | |
| choices=list(model_registry.groq_models.keys()), | |
| label="π§ Groq Model" | |
| ) | |
| groq_refresh_btn = gr.Button("π Refresh Models") | |
| groq_api_key = gr.Textbox( | |
| label="π Groq API Key", | |
| type="password" | |
| ) | |
| send_to_model_btn = gr.Button("π Send to Model", variant="primary") | |
| open_chatgpt_button = gr.Button("π Open ChatGPT") | |
| with gr.Column(scale=1): | |
| summary_output = gr.Textbox( | |
| label="π Summary", | |
| lines=15, | |
| max_lines=50, | |
| show_copy_button=True, | |
| elem_id="summary_output" # Add this | |
| ) | |
| with gr.Row(): | |
| copy_summary_button = gr.Button("π Copy Summary") | |
| download_summary = gr.Button("π₯ Download Summary") | |
| # Hidden components for file handling | |
| download_files = gr.Files(label="π₯ Downloads", visible=False) | |
| # Event Handlers | |
| def update_context_size(size: int) -> None: | |
| """Update context size slider with validation""" | |
| if not isinstance(size, (int, float)): | |
| size = 4096 # Default size | |
| return gr.update(value=int(size)) | |
| def get_model_context_size(choice: str, groq_model: str = None) -> int: | |
| """Get context size for model with better defaults""" | |
| if choice == "Groq API" and groq_model: | |
| return MODEL_CONTEXT_SIZES["Groq API"].get(groq_model, 4096) | |
| elif choice == "OpenAI ChatGPT": | |
| return 4096 | |
| elif choice == "HuggingFace Inference": | |
| return 4096 | |
| return 32000 # Safe default | |
| def update_snippet_choices(snippets_list: List[str]) -> List[str]: | |
| """Create formatted snippet choices""" | |
| return [f"Snippet {i+1} of {len(snippets_list)}" for i in range(len(snippets_list))] | |
| def get_snippet_index(choice: str) -> int: | |
| """Extract snippet index from choice string""" | |
| if not choice: | |
| return 0 | |
| try: | |
| return int(choice.split()[1]) - 1 | |
| except: | |
| return 0 | |
| def toggle_model_options(choice): | |
| return ( | |
| gr.update(visible=choice == "HuggingFace Inference"), | |
| gr.update(visible=choice == "Groq API"), | |
| gr.update(visible=choice == "OpenAI ChatGPT") | |
| ) | |
| def refresh_groq_models_list(): | |
| updated_models = model_registry.refresh_groq_models() | |
| return gr.update(choices=list(updated_models.keys())) | |
| def toggle_custom_model(model_name): | |
| return gr.update(visible=model_name == "Custom Model") | |
| def handle_model_change(choice): | |
| """Handle model selection change""" | |
| return ( | |
| gr.update(visible=choice == "HuggingFace Inference"), | |
| gr.update(visible=choice == "Groq API"), | |
| gr.update(visible=choice == "OpenAI ChatGPT"), | |
| update_context_size(choice) | |
| ) | |
| def handle_groq_model_change(model_name): | |
| """Handle Groq model selection change""" | |
| return update_context_size("Groq API", model_name) | |
| def handle_model_selection(choice): | |
| """Handle model selection and update UI""" | |
| ctx_size = get_model_context_size(choice) | |
| return { | |
| hf_options: gr.update(visible=choice == "HuggingFace Inference"), | |
| groq_options: gr.update(visible=choice == "Groq API"), | |
| openai_options: gr.update(visible=choice == "OpenAI ChatGPT"), | |
| context_size: gr.update(value=ctx_size) | |
| } | |
| # PDF Processing Handlers | |
| def handle_pdf_process(pdf, fmt, ctx_size): | |
| """Process PDF and update UI state""" | |
| if not pdf: | |
| return { | |
| progress_status: "Please upload a PDF file.", | |
| processed_text: "", | |
| pdf_content: "", | |
| snippets: [], | |
| snippet_selector: gr.update(choices=[], value=None), | |
| download_files: None | |
| } | |
| try: | |
| # Extract and format text | |
| text = extract_text_from_pdf(pdf.name) | |
| if text.startswith("Error"): | |
| return { | |
| progress_status: text, | |
| processed_text: "", | |
| pdf_content: "", | |
| snippets: [], | |
| snippet_selector: gr.update(choices=[], value=None), | |
| download_files: None | |
| } | |
| formatted_text = format_content(text, fmt) | |
| snippets_list = split_into_snippets(formatted_text, ctx_size) | |
| # Create downloadable full text | |
| with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f: | |
| f.write(formatted_text) | |
| download_file = f.name | |
| return { | |
| progress_status: f"PDF processed successfully! Generated {len(snippets_list)} snippets.", | |
| processed_text: formatted_text, | |
| pdf_content: formatted_text, | |
| snippets: snippets_list, | |
| snippet_selector: gr.update(choices=update_snippet_choices(snippets_list), value="Snippet 1 of " + str(len(snippets_list))), | |
| download_files: [download_file] | |
| } | |
| except Exception as e: | |
| error_msg = f"Error processing PDF: {str(e)}" | |
| logging.error(error_msg) | |
| return { | |
| progress_status: error_msg, | |
| processed_text: "", | |
| pdf_content: "", | |
| snippets: [], | |
| snippet_selector: gr.update(choices=[], value=None), | |
| download_files: None | |
| } | |
| def handle_snippet_selection(choice, snippets_list): | |
| """Handle snippet selection and update prompt""" | |
| if not snippets_list: | |
| return { | |
| progress_status: "No snippets available.", | |
| generated_prompt: "", | |
| download_files: None | |
| } | |
| try: | |
| idx = get_snippet_index(choice) | |
| selected_snippet = snippets_list[idx] | |
| # Create downloadable snippet | |
| with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f: | |
| f.write(selected_snippet) | |
| return { | |
| progress_status: f"Selected snippet {idx + 1}", | |
| generated_prompt: selected_snippet, | |
| download_files: [f.name] | |
| } | |
| except Exception as e: | |
| error_msg = f"Error selecting snippet: {str(e)}" | |
| logging.error(error_msg) | |
| return { | |
| progress_status: error_msg, | |
| generated_prompt: "", | |
| download_files: None | |
| } | |
| # Copy button handlers | |
| def copy_text_js(element_id: str) -> str: | |
| return f""" | |
| () => {{ | |
| const text = document.querySelector('#{element_id} textarea').value; | |
| navigator.clipboard.writeText(text); | |
| return "Copied to clipboard!"; | |
| }} | |
| """ | |
| def handle_prompt_generation(snippet_text, template, snippet_choice, snippets_list): | |
| """Generate prompt from selected snippet""" | |
| if not snippet_text or not snippets_list: | |
| return { | |
| progress_status: "No text available for prompt generation.", | |
| generated_prompt: "", | |
| download_files: None | |
| } | |
| try: | |
| idx = get_snippet_index(snippet_choice) | |
| prompt = generate_prompt(snippets_list[idx], template or "Summarize the following text:") | |
| # Create downloadable prompt | |
| with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f: | |
| f.write(prompt) | |
| return { | |
| progress_status: "Prompt generated successfully!", | |
| generated_prompt: prompt, | |
| download_files: [f.name] | |
| } | |
| except Exception as e: | |
| error_msg = f"Error generating prompt: {str(e)}" | |
| logging.error(error_msg) | |
| return { | |
| progress_status: error_msg, | |
| generated_prompt: "", | |
| download_files: None | |
| } | |
| def handle_copy_action(text): | |
| """Handle copy to clipboard action""" | |
| return { | |
| progress_status: gr.update(value="Text copied to clipboard!", visible=True) | |
| } | |
| # Connect all event handlers | |
| # Core event handlers | |
| process_button.click( | |
| handle_pdf_process, | |
| inputs=[pdf_input, format_type, context_size], | |
| outputs=[ # List of outputs, not dict | |
| progress_status, | |
| processed_text, | |
| pdf_content, | |
| snippets, | |
| snippet_selector, | |
| download_files | |
| ] | |
| ) | |
| generate_prompt_btn.click( | |
| handle_prompt_generation, | |
| inputs=[generated_prompt, custom_prompt, snippet_selector, snippets], | |
| outputs={ | |
| progress_status: progress_status, | |
| generated_prompt: generated_prompt, | |
| download_files: download_files | |
| } | |
| ) | |
| # Snippet handling | |
| snippet_selector.change( | |
| handle_snippet_selection, | |
| inputs=[snippet_selector, snippets], | |
| outputs={ | |
| progress_status: progress_status, | |
| generated_prompt: generated_prompt, | |
| download_files: download_files | |
| } | |
| ) | |
| # Model selection | |
| model_choice.change( | |
| handle_model_selection, | |
| inputs=[model_choice], | |
| outputs={ | |
| hf_options: hf_options, | |
| groq_options: groq_options, | |
| openai_options: openai_options, | |
| context_size: context_size | |
| } | |
| ) | |
| hf_model.change( | |
| toggle_custom_model, | |
| inputs=[hf_model], | |
| outputs=[hf_custom_model] | |
| ) | |
| groq_model.change( | |
| handle_groq_model_change, | |
| inputs=[groq_model], | |
| outputs=[context_size] | |
| ) | |
| # Context size buttons | |
| """ | |
| for size_name, size_value in CONTEXT_SIZES.items(): | |
| gr.Button(size_name, size="sm").click( | |
| update_context_size, | |
| inputs=[], | |
| outputs=context_size | |
| ).success( | |
| lambda s=size_value: int(s), | |
| None, | |
| context_size | |
| ) """ | |
| # Download handlers | |
| for btn, content in [ | |
| (download_full_text, pdf_content), | |
| (download_snippet, generated_prompt), | |
| (download_prompt, generated_prompt), | |
| (download_summary, summary_output) | |
| ]: | |
| btn.click( | |
| lambda x: [x] if x else None, | |
| inputs=[content], | |
| outputs=download_files | |
| ) | |
| # Copy button handlers | |
| for btn, elem_id in [ | |
| (copy_prompt_button, "generated_prompt"), | |
| (copy_summary_button, "summary_output") | |
| ]: | |
| btn.click( | |
| fn=None, | |
| _js=copy_text_js(elem_id), | |
| outputs=progress_status | |
| ) | |
| # ChatGPT handler | |
| open_chatgpt_button.click( | |
| fn=None, | |
| _js="() => { window.open('https://chat.openai.com/', '_blank'); return 'Opened ChatGPT in new tab'; }", | |
| outputs=progress_status | |
| ) | |
| # Model processing | |
| send_to_model_btn.click( | |
| send_to_model, | |
| inputs=[ | |
| generated_prompt, | |
| model_choice, | |
| hf_model, | |
| hf_custom_model, | |
| hf_api_key, | |
| groq_model, | |
| groq_api_key, | |
| openai_api_key | |
| ], | |
| outputs=[ | |
| summary_output, | |
| download_files | |
| ] | |
| ) | |
| groq_refresh_btn.click( | |
| refresh_groq_models_list, | |
| outputs=[groq_model] | |
| ) | |
| # Instructions | |
| gr.Markdown(""" | |
| ### π Instructions: | |
| 1. Upload a PDF document | |
| 2. Choose output format and context window size | |
| 3. Select snippet number (default: 1) or enter custom prompt | |
| 4. Select your preferred model in case you want to proceed directly (or continue with 5): | |
| - OpenAI ChatGPT: Manual copy/paste workflow | |
| - HuggingFace Inference: Direct API integration | |
| - Groq API: High-performance inference | |
| 5. Click 'Process PDF' to generate summary | |
| 6. Use 'Copy Prompt' and, optionally, 'Open ChatGPT' for manual processing | |
| 7. Download generated files as needed | |
| """) | |
| # Launch the interface | |
| if __name__ == "__main__": | |
| demo.launch(share=False, debug=True) |