Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,17 +6,14 @@ import gradio as gr
|
|
| 6 |
from PyPDF2 import PdfReader
|
| 7 |
import logging
|
| 8 |
import webbrowser
|
| 9 |
-
from
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Set up logging
|
| 12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
HUGGINGFACE_MODELS = {
|
| 16 |
-
"Phi-3 Mini 128k": "eswardivi/Phi-3-mini-128k-instruct",
|
| 17 |
-
}
|
| 18 |
-
|
| 19 |
-
# Common context window sizes
|
| 20 |
CONTEXT_SIZES = {
|
| 21 |
"4K": 4000,
|
| 22 |
"8K": 8000,
|
|
@@ -25,15 +22,49 @@ CONTEXT_SIZES = {
|
|
| 25 |
"200K": 200000
|
| 26 |
}
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
def
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
| 36 |
-
def extract_text_from_pdf(pdf_path):
|
| 37 |
"""Extract text content from PDF file."""
|
| 38 |
try:
|
| 39 |
reader = PdfReader(pdf_path)
|
|
@@ -51,7 +82,7 @@ def extract_text_from_pdf(pdf_path):
|
|
| 51 |
logging.error(f"Error reading PDF file: {e}")
|
| 52 |
return f"Error reading PDF file: {e}"
|
| 53 |
|
| 54 |
-
def format_content(text, format_type):
|
| 55 |
"""Format extracted text according to specified format."""
|
| 56 |
if format_type == 'txt':
|
| 57 |
return text
|
|
@@ -65,7 +96,7 @@ def format_content(text, format_type):
|
|
| 65 |
logging.error(f"Unsupported format: {format_type}")
|
| 66 |
return f"Unsupported format: {format_type}"
|
| 67 |
|
| 68 |
-
def split_into_snippets(text, context_size):
|
| 69 |
"""Split text into manageable snippets based on context size."""
|
| 70 |
sentences = re.split(r'(?<=[.!?]) +', text)
|
| 71 |
snippets = []
|
|
@@ -87,7 +118,7 @@ def split_into_snippets(text, context_size):
|
|
| 87 |
|
| 88 |
return snippets
|
| 89 |
|
| 90 |
-
def build_prompts(snippets, prompt_instruction, custom_prompt, snippet_num=None):
|
| 91 |
"""Build formatted prompts from text snippets."""
|
| 92 |
if snippet_num is not None:
|
| 93 |
if 1 <= snippet_num <= len(snippets):
|
|
@@ -111,27 +142,120 @@ def build_prompts(snippets, prompt_instruction, custom_prompt, snippet_num=None)
|
|
| 111 |
|
| 112 |
return "\n\n".join(prompts)
|
| 113 |
|
| 114 |
-
def
|
| 115 |
-
"""Send prompt to
|
| 116 |
try:
|
| 117 |
-
client =
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
api_name="/chat"
|
| 124 |
)
|
| 125 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
except Exception as e:
|
| 127 |
-
logging.error(f"Error
|
| 128 |
-
return f"Error
|
| 129 |
|
| 130 |
# Main Interface
|
| 131 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
|
|
|
|
|
|
|
|
| 132 |
# Header
|
| 133 |
gr.Markdown("# π Smart PDF Summarizer")
|
| 134 |
-
gr.Markdown("Upload a PDF document and get AI-powered summaries using
|
| 135 |
|
| 136 |
# Main Content
|
| 137 |
with gr.Row():
|
|
@@ -151,9 +275,10 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 151 |
|
| 152 |
gr.Markdown("### Context Window Size")
|
| 153 |
with gr.Row():
|
|
|
|
| 154 |
for size_name, size_value in CONTEXT_SIZES.items():
|
| 155 |
-
|
| 156 |
-
|
| 157 |
|
| 158 |
context_size = gr.Slider(
|
| 159 |
minimum=1000,
|
|
@@ -176,30 +301,43 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 176 |
)
|
| 177 |
|
| 178 |
model_choice = gr.Radio(
|
| 179 |
-
choices=["OpenAI ChatGPT", "
|
| 180 |
value="OpenAI ChatGPT",
|
| 181 |
label="π€ Model Selection"
|
| 182 |
)
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
label="
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
)
|
| 197 |
|
| 198 |
# Right Column - Output
|
| 199 |
with gr.Column(scale=1):
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
progress_status = gr.Textbox(
|
| 204 |
label="π Progress",
|
| 205 |
interactive=False
|
|
@@ -226,63 +364,51 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 226 |
)
|
| 227 |
|
| 228 |
# Event Handlers
|
| 229 |
-
def
|
| 230 |
-
return gr.update(
|
| 231 |
|
| 232 |
-
def
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
# Split into snippets
|
| 246 |
-
snippets = split_into_snippets(formatted_text, ctx_size)
|
| 247 |
-
|
| 248 |
-
# Build prompts
|
| 249 |
-
default_prompt = "Summarize the following text:"
|
| 250 |
-
full_prompt = build_prompts(snippets, default_prompt, prompt, snippet_num)
|
| 251 |
-
|
| 252 |
-
if isinstance(full_prompt, str) and full_prompt.startswith("Error"):
|
| 253 |
-
return full_prompt, "", "", None
|
| 254 |
-
|
| 255 |
-
# Generate summary based on model choice
|
| 256 |
-
if model_selection == "Hugging Face Model":
|
| 257 |
-
summary = send_to_huggingface(full_prompt, HUGGINGFACE_MODELS[hf_model_choice])
|
| 258 |
-
else:
|
| 259 |
-
summary = "Please use the Copy Prompt button and paste into ChatGPT."
|
| 260 |
-
|
| 261 |
-
# Save files for download
|
| 262 |
-
files_to_download = []
|
| 263 |
-
|
| 264 |
-
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
|
| 265 |
-
prompt_file.write(full_prompt)
|
| 266 |
-
files_to_download.append(prompt_file.name)
|
| 267 |
-
|
| 268 |
-
if summary != "Please use the Copy Prompt button and paste into ChatGPT.":
|
| 269 |
-
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file:
|
| 270 |
-
summary_file.write(summary)
|
| 271 |
-
files_to_download.append(summary_file.name)
|
| 272 |
-
|
| 273 |
-
return "Processing complete!", full_prompt, summary, files_to_download
|
| 274 |
-
|
| 275 |
-
except Exception as e:
|
| 276 |
-
logging.error(f"Error processing PDF: {e}")
|
| 277 |
-
return f"Error processing PDF: {str(e)}", "", "", None
|
| 278 |
|
| 279 |
# Connect event handlers
|
| 280 |
model_choice.change(
|
| 281 |
-
|
| 282 |
inputs=[model_choice],
|
| 283 |
-
outputs=[
|
| 284 |
)
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
process_button.click(
|
| 287 |
process_pdf,
|
| 288 |
inputs=[
|
|
@@ -292,7 +418,11 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 292 |
snippet_number,
|
| 293 |
custom_prompt,
|
| 294 |
model_choice,
|
| 295 |
-
hf_model
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
],
|
| 297 |
outputs=[
|
| 298 |
progress_status,
|
|
@@ -301,19 +431,19 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 301 |
download_files
|
| 302 |
]
|
| 303 |
)
|
| 304 |
-
|
| 305 |
copy_prompt_button.click(
|
| 306 |
copy_to_clipboard,
|
| 307 |
inputs=[generated_prompt],
|
| 308 |
outputs=[progress_status]
|
| 309 |
)
|
| 310 |
-
|
| 311 |
copy_summary_button.click(
|
| 312 |
copy_to_clipboard,
|
| 313 |
inputs=[summary_output],
|
| 314 |
outputs=[progress_status]
|
| 315 |
)
|
| 316 |
-
|
| 317 |
open_chatgpt_button.click(
|
| 318 |
open_chatgpt,
|
| 319 |
outputs=[progress_status]
|
|
@@ -325,7 +455,10 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 325 |
1. Upload a PDF document
|
| 326 |
2. Choose output format and context window size
|
| 327 |
3. Select snippet number (default: 1) or enter custom prompt
|
| 328 |
-
4. Select
|
|
|
|
|
|
|
|
|
|
| 329 |
5. Click 'Process PDF' to generate summary
|
| 330 |
6. Use 'Copy Prompt' and 'Open ChatGPT' for manual processing
|
| 331 |
7. Download generated files as needed
|
|
@@ -334,6 +467,7 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 334 |
- Support for multiple PDF formats
|
| 335 |
- Flexible text formatting options
|
| 336 |
- Predefined context window sizes (4K to 200K)
|
|
|
|
| 337 |
- Copy to clipboard functionality
|
| 338 |
- Direct ChatGPT integration
|
| 339 |
- Downloadable outputs
|
|
|
|
| 6 |
from PyPDF2 import PdfReader
|
| 7 |
import logging
|
| 8 |
import webbrowser
|
| 9 |
+
from huggingface_hub import InferenceClient
|
| 10 |
+
from typing import Dict, List, Optional, Tuple
|
| 11 |
+
import time
|
| 12 |
|
| 13 |
# Set up logging
|
| 14 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 15 |
|
| 16 |
+
# Constants
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
CONTEXT_SIZES = {
|
| 18 |
"4K": 4000,
|
| 19 |
"8K": 8000,
|
|
|
|
| 22 |
"200K": 200000
|
| 23 |
}
|
| 24 |
|
| 25 |
+
class ModelRegistry:
|
| 26 |
+
def __init__(self):
|
| 27 |
+
self.hf_models = {
|
| 28 |
+
"Phi-3 Mini 128k": "microsoft/Phi-3-mini-128k-instruct",
|
| 29 |
+
"Custom Model": ""
|
| 30 |
+
}
|
| 31 |
+
self.groq_models = self._fetch_groq_models()
|
| 32 |
|
| 33 |
+
def _fetch_groq_models(self) -> Dict[str, str]:
|
| 34 |
+
"""Fetch available Groq models"""
|
| 35 |
+
try:
|
| 36 |
+
headers = {
|
| 37 |
+
"Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}",
|
| 38 |
+
"Content-Type": "application/json"
|
| 39 |
+
}
|
| 40 |
+
response = requests.get("https://api.groq.com/openai/v1/models", headers=headers)
|
| 41 |
+
if response.status_code == 200:
|
| 42 |
+
models = response.json().get("data", [])
|
| 43 |
+
return {model["id"]: model["id"] for model in models}
|
| 44 |
+
else:
|
| 45 |
+
logging.error(f"Failed to fetch Groq models: {response.status_code}")
|
| 46 |
+
return self._get_default_groq_models()
|
| 47 |
+
except Exception as e:
|
| 48 |
+
logging.error(f"Error fetching Groq models: {e}")
|
| 49 |
+
return self._get_default_groq_models()
|
| 50 |
+
|
| 51 |
+
def _get_default_groq_models(self) -> Dict[str, str]:
|
| 52 |
+
"""Return default Groq models when API is unavailable"""
|
| 53 |
+
return {
|
| 54 |
+
"llama-3.1-70b-versatile": "llama-3.1-70b-versatile",
|
| 55 |
+
"mixtral-8x7b-32768": "mixtral-8x7b-32768",
|
| 56 |
+
"llama-3.1-8b-instant": "llama-3.1-8b-instant"
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
def refresh_groq_models(self) -> Dict[str, str]:
|
| 60 |
+
"""Refresh the list of available Groq models"""
|
| 61 |
+
self.groq_models = self._fetch_groq_models()
|
| 62 |
+
return self.groq_models
|
| 63 |
+
|
| 64 |
+
# Initialize model registry
|
| 65 |
+
model_registry = ModelRegistry()
|
| 66 |
|
| 67 |
+
def extract_text_from_pdf(pdf_path: str) -> str:
|
|
|
|
| 68 |
"""Extract text content from PDF file."""
|
| 69 |
try:
|
| 70 |
reader = PdfReader(pdf_path)
|
|
|
|
| 82 |
logging.error(f"Error reading PDF file: {e}")
|
| 83 |
return f"Error reading PDF file: {e}"
|
| 84 |
|
| 85 |
+
def format_content(text: str, format_type: str) -> str:
|
| 86 |
"""Format extracted text according to specified format."""
|
| 87 |
if format_type == 'txt':
|
| 88 |
return text
|
|
|
|
| 96 |
logging.error(f"Unsupported format: {format_type}")
|
| 97 |
return f"Unsupported format: {format_type}"
|
| 98 |
|
| 99 |
+
def split_into_snippets(text: str, context_size: int) -> List[str]:
|
| 100 |
"""Split text into manageable snippets based on context size."""
|
| 101 |
sentences = re.split(r'(?<=[.!?]) +', text)
|
| 102 |
snippets = []
|
|
|
|
| 118 |
|
| 119 |
return snippets
|
| 120 |
|
| 121 |
+
def build_prompts(snippets: List[str], prompt_instruction: str, custom_prompt: Optional[str], snippet_num: Optional[int] = None) -> str:
|
| 122 |
"""Build formatted prompts from text snippets."""
|
| 123 |
if snippet_num is not None:
|
| 124 |
if 1 <= snippet_num <= len(snippets):
|
|
|
|
| 142 |
|
| 143 |
return "\n\n".join(prompts)
|
| 144 |
|
| 145 |
+
def send_to_hf_inference(prompt: str, model_name: str, api_key: str) -> str:
|
| 146 |
+
"""Send prompt to HuggingFace using Inference API"""
|
| 147 |
try:
|
| 148 |
+
client = InferenceClient(api_key=api_key)
|
| 149 |
+
messages = [{"role": "user", "content": prompt}]
|
| 150 |
+
completion = client.chat.completions.create(
|
| 151 |
+
model=model_name,
|
| 152 |
+
messages=messages,
|
| 153 |
+
max_tokens=500
|
|
|
|
| 154 |
)
|
| 155 |
+
return completion.choices[0].message.content
|
| 156 |
+
except Exception as e:
|
| 157 |
+
logging.error(f"Error with HF inference: {e}")
|
| 158 |
+
return f"Error with HF inference: {e}"
|
| 159 |
+
|
| 160 |
+
def send_to_groq(prompt: str, model_name: str, api_key: str) -> str:
|
| 161 |
+
"""Send prompt to Groq API"""
|
| 162 |
+
try:
|
| 163 |
+
headers = {
|
| 164 |
+
"Authorization": f"Bearer {api_key}",
|
| 165 |
+
"Content-Type": "application/json"
|
| 166 |
+
}
|
| 167 |
+
data = {
|
| 168 |
+
"model": model_name,
|
| 169 |
+
"messages": [{"role": "user", "content": prompt}]
|
| 170 |
+
}
|
| 171 |
+
response = requests.post(
|
| 172 |
+
"https://api.groq.com/openai/v1/chat/completions",
|
| 173 |
+
headers=headers,
|
| 174 |
+
json=data
|
| 175 |
+
)
|
| 176 |
+
return response.json()["choices"][0]["message"]["content"]
|
| 177 |
+
except Exception as e:
|
| 178 |
+
logging.error(f"Error with Groq API: {e}")
|
| 179 |
+
return f"Error with Groq API: {e}"
|
| 180 |
+
|
| 181 |
+
def copy_to_clipboard(text: str) -> str:
|
| 182 |
+
"""Copy text to clipboard"""
|
| 183 |
+
return "Text copied to clipboard!"
|
| 184 |
+
|
| 185 |
+
def open_chatgpt() -> str:
|
| 186 |
+
"""Open ChatGPT in browser"""
|
| 187 |
+
webbrowser.open('https://chat.openai.com/')
|
| 188 |
+
return "Opening ChatGPT in browser..."
|
| 189 |
+
|
| 190 |
+
def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection,
|
| 191 |
+
hf_model_choice, hf_custom_model, hf_api_key,
|
| 192 |
+
groq_model_choice, groq_api_key) -> Tuple[str, str, str, List[str]]:
|
| 193 |
+
"""Process PDF and generate summary"""
|
| 194 |
+
try:
|
| 195 |
+
if not pdf:
|
| 196 |
+
return "Please upload a PDF file.", "", "", []
|
| 197 |
+
|
| 198 |
+
# Extract text
|
| 199 |
+
text = extract_text_from_pdf(pdf.name)
|
| 200 |
+
if text.startswith("Error"):
|
| 201 |
+
return text, "", "", []
|
| 202 |
+
|
| 203 |
+
# Format content
|
| 204 |
+
formatted_text = format_content(text, fmt)
|
| 205 |
+
|
| 206 |
+
# Split into snippets
|
| 207 |
+
snippets = split_into_snippets(formatted_text, ctx_size)
|
| 208 |
+
|
| 209 |
+
# Build prompts
|
| 210 |
+
default_prompt = "Summarize the following text:"
|
| 211 |
+
full_prompt = build_prompts(snippets, default_prompt, prompt, snippet_num)
|
| 212 |
+
|
| 213 |
+
if isinstance(full_prompt, str) and full_prompt.startswith("Error"):
|
| 214 |
+
return full_prompt, "", "", []
|
| 215 |
+
|
| 216 |
+
# Process with selected model
|
| 217 |
+
if model_selection == "HuggingFace Inference":
|
| 218 |
+
if not hf_api_key:
|
| 219 |
+
return "HuggingFace API key required.", full_prompt, "", []
|
| 220 |
+
|
| 221 |
+
model_id = hf_custom_model if hf_model_choice == "Custom Model" else model_registry.hf_models[hf_model_choice]
|
| 222 |
+
summary = send_to_hf_inference(full_prompt, model_id, hf_api_key)
|
| 223 |
+
|
| 224 |
+
elif model_selection == "Groq API":
|
| 225 |
+
if not groq_api_key:
|
| 226 |
+
return "Groq API key required.", full_prompt, "", []
|
| 227 |
+
|
| 228 |
+
summary = send_to_groq(full_prompt, groq_model_choice, groq_api_key)
|
| 229 |
+
|
| 230 |
+
else: # OpenAI ChatGPT
|
| 231 |
+
summary = "Please use the Copy Prompt button and paste into ChatGPT."
|
| 232 |
+
|
| 233 |
+
# Save files for download
|
| 234 |
+
files_to_download = []
|
| 235 |
+
|
| 236 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
|
| 237 |
+
prompt_file.write(full_prompt)
|
| 238 |
+
files_to_download.append(prompt_file.name)
|
| 239 |
+
|
| 240 |
+
if summary != "Please use the Copy Prompt button and paste into ChatGPT.":
|
| 241 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file:
|
| 242 |
+
summary_file.write(summary)
|
| 243 |
+
files_to_download.append(summary_file.name)
|
| 244 |
+
|
| 245 |
+
return "Processing complete!", full_prompt, summary, files_to_download
|
| 246 |
+
|
| 247 |
except Exception as e:
|
| 248 |
+
logging.error(f"Error processing PDF: {e}")
|
| 249 |
+
return f"Error processing PDF: {str(e)}", "", "", []
|
| 250 |
|
| 251 |
# Main Interface
|
| 252 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
| 253 |
+
# Store context size value
|
| 254 |
+
context_size_value = gr.State(value=32000)
|
| 255 |
+
|
| 256 |
# Header
|
| 257 |
gr.Markdown("# π Smart PDF Summarizer")
|
| 258 |
+
gr.Markdown("Upload a PDF document and get AI-powered summaries using various AI models.")
|
| 259 |
|
| 260 |
# Main Content
|
| 261 |
with gr.Row():
|
|
|
|
| 275 |
|
| 276 |
gr.Markdown("### Context Window Size")
|
| 277 |
with gr.Row():
|
| 278 |
+
context_buttons = []
|
| 279 |
for size_name, size_value in CONTEXT_SIZES.items():
|
| 280 |
+
btn = gr.Button(size_name)
|
| 281 |
+
context_buttons.append((btn, size_value))
|
| 282 |
|
| 283 |
context_size = gr.Slider(
|
| 284 |
minimum=1000,
|
|
|
|
| 301 |
)
|
| 302 |
|
| 303 |
model_choice = gr.Radio(
|
| 304 |
+
choices=["OpenAI ChatGPT", "HuggingFace Inference", "Groq API"],
|
| 305 |
value="OpenAI ChatGPT",
|
| 306 |
label="π€ Model Selection"
|
| 307 |
)
|
| 308 |
|
| 309 |
+
with gr.Column(visible=False) as hf_options:
|
| 310 |
+
hf_model = gr.Dropdown(
|
| 311 |
+
choices=list(model_registry.hf_models.keys()),
|
| 312 |
+
label="π§ HuggingFace Model",
|
| 313 |
+
value="Phi-3 Mini 128k"
|
| 314 |
+
)
|
| 315 |
+
hf_custom_model = gr.Textbox(
|
| 316 |
+
label="Custom Model ID",
|
| 317 |
+
placeholder="Enter custom model ID...",
|
| 318 |
+
visible=False
|
| 319 |
+
)
|
| 320 |
+
hf_api_key = gr.Textbox(
|
| 321 |
+
label="π HuggingFace API Key",
|
| 322 |
+
type="password"
|
| 323 |
+
)
|
| 324 |
|
| 325 |
+
with gr.Column(visible=False) as groq_options:
|
| 326 |
+
groq_model = gr.Dropdown(
|
| 327 |
+
choices=list(model_registry.groq_models.keys()),
|
| 328 |
+
label="π§ Groq Model",
|
| 329 |
+
value=list(model_registry.groq_models.keys())[0]
|
| 330 |
+
)
|
| 331 |
+
groq_refresh_btn = gr.Button("π Refresh Models")
|
| 332 |
+
groq_api_key = gr.Textbox(
|
| 333 |
+
label="π Groq API Key",
|
| 334 |
+
type="password"
|
| 335 |
)
|
| 336 |
|
| 337 |
# Right Column - Output
|
| 338 |
with gr.Column(scale=1):
|
| 339 |
+
process_button = gr.Button("π Process PDF", variant="primary")
|
| 340 |
+
|
|
|
|
| 341 |
progress_status = gr.Textbox(
|
| 342 |
label="π Progress",
|
| 343 |
interactive=False
|
|
|
|
| 364 |
)
|
| 365 |
|
| 366 |
# Event Handlers
|
| 367 |
+
def update_context_size(size):
|
| 368 |
+
return gr.update(value=size)
|
| 369 |
|
| 370 |
+
def toggle_model_options(choice):
|
| 371 |
+
return (
|
| 372 |
+
gr.update(visible=choice == "HuggingFace Inference"),
|
| 373 |
+
gr.update(visible=choice == "Groq API")
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
def refresh_groq_models_list():
|
| 377 |
+
updated_models = model_registry.refresh_groq_models()
|
| 378 |
+
return gr.update(choices=list(updated_models.keys()))
|
| 379 |
+
|
| 380 |
+
def toggle_custom_model(model_name):
|
| 381 |
+
return gr.update(visible=model_name == "Custom Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
|
| 383 |
# Connect event handlers
|
| 384 |
model_choice.change(
|
| 385 |
+
toggle_model_options,
|
| 386 |
inputs=[model_choice],
|
| 387 |
+
outputs=[hf_options, groq_options]
|
| 388 |
)
|
| 389 |
+
|
| 390 |
+
for btn, size_value in context_buttons:
|
| 391 |
+
btn.click(
|
| 392 |
+
update_context_size,
|
| 393 |
+
inputs=[],
|
| 394 |
+
outputs=[context_size]
|
| 395 |
+
).then(
|
| 396 |
+
lambda x=size_value: x,
|
| 397 |
+
None,
|
| 398 |
+
context_size
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
hf_model.change(
|
| 402 |
+
toggle_custom_model,
|
| 403 |
+
inputs=[hf_model],
|
| 404 |
+
outputs=[hf_custom_model]
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
groq_refresh_btn.click(
|
| 408 |
+
refresh_groq_models_list,
|
| 409 |
+
outputs=[groq_model]
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
process_button.click(
|
| 413 |
process_pdf,
|
| 414 |
inputs=[
|
|
|
|
| 418 |
snippet_number,
|
| 419 |
custom_prompt,
|
| 420 |
model_choice,
|
| 421 |
+
hf_model,
|
| 422 |
+
hf_custom_model,
|
| 423 |
+
hf_api_key,
|
| 424 |
+
groq_model,
|
| 425 |
+
groq_api_key
|
| 426 |
],
|
| 427 |
outputs=[
|
| 428 |
progress_status,
|
|
|
|
| 431 |
download_files
|
| 432 |
]
|
| 433 |
)
|
| 434 |
+
|
| 435 |
copy_prompt_button.click(
|
| 436 |
copy_to_clipboard,
|
| 437 |
inputs=[generated_prompt],
|
| 438 |
outputs=[progress_status]
|
| 439 |
)
|
| 440 |
+
|
| 441 |
copy_summary_button.click(
|
| 442 |
copy_to_clipboard,
|
| 443 |
inputs=[summary_output],
|
| 444 |
outputs=[progress_status]
|
| 445 |
)
|
| 446 |
+
|
| 447 |
open_chatgpt_button.click(
|
| 448 |
open_chatgpt,
|
| 449 |
outputs=[progress_status]
|
|
|
|
| 455 |
1. Upload a PDF document
|
| 456 |
2. Choose output format and context window size
|
| 457 |
3. Select snippet number (default: 1) or enter custom prompt
|
| 458 |
+
4. Select your preferred model:
|
| 459 |
+
- OpenAI ChatGPT: Manual copy/paste workflow
|
| 460 |
+
- HuggingFace Inference: Direct API integration
|
| 461 |
+
- Groq API: High-performance inference
|
| 462 |
5. Click 'Process PDF' to generate summary
|
| 463 |
6. Use 'Copy Prompt' and 'Open ChatGPT' for manual processing
|
| 464 |
7. Download generated files as needed
|
|
|
|
| 467 |
- Support for multiple PDF formats
|
| 468 |
- Flexible text formatting options
|
| 469 |
- Predefined context window sizes (4K to 200K)
|
| 470 |
+
- Multiple model integrations
|
| 471 |
- Copy to clipboard functionality
|
| 472 |
- Direct ChatGPT integration
|
| 473 |
- Downloadable outputs
|