Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,75 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
try:
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
except Exception as e:
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
|
|
|
|
| 64 |
with gr.Row():
|
| 65 |
-
with gr.Column():
|
| 66 |
-
gr.
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
|
|
|
| 74 |
if __name__ == "__main__":
|
| 75 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import tempfile
|
| 4 |
+
import requests
|
| 5 |
import gradio as gr
|
| 6 |
+
from PyPDF2 import PdfReader
|
| 7 |
+
import openai
|
| 8 |
+
import logging
|
| 9 |
|
| 10 |
+
# Set up logging
|
| 11 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 12 |
+
|
| 13 |
+
# Initialize Hugging Face models
|
| 14 |
+
HUGGINGFACE_MODELS = {
|
| 15 |
+
"Phi-3 Mini 128k Instruct by EswardiVI": "eswardivi/Phi-3-mini-128k-instruct",
|
| 16 |
+
"Phi-3 Mini 128k Instruct by TaufiqDP": "taufiqdp/phi-3-mini-128k-instruct"
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
# Utility Functions
|
| 20 |
+
def extract_text_from_pdf(pdf_path):
|
| 21 |
+
"""Extract text content from PDF file."""
|
| 22 |
try:
|
| 23 |
+
reader = PdfReader(pdf_path)
|
| 24 |
+
text = ""
|
| 25 |
+
for page_num, page in enumerate(reader.pages, start=1):
|
| 26 |
+
page_text = page.extract_text()
|
| 27 |
+
if page_text:
|
| 28 |
+
text += page_text + "\n"
|
| 29 |
+
else:
|
| 30 |
+
logging.warning(f"No text found on page {page_num}.")
|
| 31 |
+
if not text.strip():
|
| 32 |
+
return "Error: No extractable text found in the PDF."
|
| 33 |
+
return text
|
| 34 |
except Exception as e:
|
| 35 |
+
logging.error(f"Error reading PDF file: {e}")
|
| 36 |
+
return f"Error reading PDF file: {e}"
|
| 37 |
+
|
| 38 |
+
def format_content(text, format_type):
|
| 39 |
+
"""Format extracted text according to specified format."""
|
| 40 |
+
if format_type == 'txt':
|
| 41 |
+
return text
|
| 42 |
+
elif format_type == 'md':
|
| 43 |
+
paragraphs = text.split('\n\n')
|
| 44 |
+
return '\n\n'.join(paragraphs)
|
| 45 |
+
elif format_type == 'html':
|
| 46 |
+
paragraphs = text.split('\n\n')
|
| 47 |
+
return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()])
|
| 48 |
+
else:
|
| 49 |
+
logging.error(f"Unsupported format: {format_type}")
|
| 50 |
+
return f"Unsupported format: {format_type}"
|
| 51 |
+
|
| 52 |
+
def split_into_snippets(text, context_size):
|
| 53 |
+
"""Split text into manageable snippets based on context size."""
|
| 54 |
+
sentences = re.split(r'(?<=[.!?]) +', text)
|
| 55 |
+
snippets = []
|
| 56 |
+
current_snippet = ""
|
| 57 |
+
|
| 58 |
+
for sentence in sentences:
|
| 59 |
+
if len(current_snippet) + len(sentence) + 1 > context_size:
|
| 60 |
+
if current_snippet:
|
| 61 |
+
snippets.append(current_snippet.strip())
|
| 62 |
+
current_snippet = sentence + " "
|
| 63 |
+
else:
|
| 64 |
+
snippets.append(sentence.strip())
|
| 65 |
+
current_snippet = ""
|
| 66 |
+
else:
|
| 67 |
+
current_snippet += sentence + " "
|
| 68 |
+
|
| 69 |
+
if current_snippet.strip():
|
| 70 |
+
snippets.append(current_snippet.strip())
|
| 71 |
+
|
| 72 |
+
return snippets
|
| 73 |
+
|
| 74 |
+
def build_prompts(snippets, prompt_instruction, custom_prompt):
|
| 75 |
+
"""Build formatted prompts from text snippets."""
|
| 76 |
+
prompts = []
|
| 77 |
+
for idx, snippet in enumerate(snippets, start=1):
|
| 78 |
+
current_prompt = custom_prompt if custom_prompt else prompt_instruction
|
| 79 |
+
framed_prompt = f"---\nPart {idx} of {len(snippets)}:\n{current_prompt}\n\n{snippet}\n\nEnd of Part {idx}.\n---"
|
| 80 |
+
prompts.append(framed_prompt)
|
| 81 |
+
return prompts
|
| 82 |
+
|
| 83 |
+
def send_to_huggingface(prompt, model_name):
|
| 84 |
+
"""Send prompt to Hugging Face model."""
|
| 85 |
+
try:
|
| 86 |
+
payload = {"inputs": prompt}
|
| 87 |
+
response = requests.post(
|
| 88 |
+
f"https://api-inference.huggingface.co/models/{model_name}",
|
| 89 |
+
json=payload
|
| 90 |
)
|
| 91 |
+
if response.status_code == 200:
|
| 92 |
+
return response.json()[0].get('generated_text', 'No generated text found.')
|
| 93 |
+
else:
|
| 94 |
+
error_info = response.json()
|
| 95 |
+
error_message = error_info.get('error', 'Unknown error occurred.')
|
| 96 |
+
logging.error(f"Error from Hugging Face model: {error_message}")
|
| 97 |
+
return f"Error from Hugging Face model: {error_message}"
|
| 98 |
+
except Exception as e:
|
| 99 |
+
logging.error(f"Error interacting with Hugging Face model: {e}")
|
| 100 |
+
return f"Error interacting with Hugging Face model: {e}"
|
| 101 |
+
|
| 102 |
+
def authenticate_openai(api_key):
|
| 103 |
+
"""Authenticate with OpenAI API."""
|
| 104 |
+
if api_key:
|
| 105 |
+
try:
|
| 106 |
+
openai.api_key = api_key
|
| 107 |
+
openai.Model.list()
|
| 108 |
+
return "OpenAI Authentication Successful!"
|
| 109 |
+
except Exception as e:
|
| 110 |
+
logging.error(f"OpenAI API Key Error: {e}")
|
| 111 |
+
return f"OpenAI API Key Error: {e}"
|
| 112 |
+
return "No OpenAI API key provided."
|
| 113 |
+
|
| 114 |
+
# Main Interface
|
| 115 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
| 116 |
+
# Header
|
| 117 |
+
gr.Markdown("# π Smart PDF Summarizer")
|
| 118 |
+
gr.Markdown("Upload a PDF document and get AI-powered summaries using OpenAI or Hugging Face models.")
|
| 119 |
|
| 120 |
+
# Authentication Section
|
| 121 |
with gr.Row():
|
| 122 |
+
with gr.Column(scale=1):
|
| 123 |
+
openai_api_key = gr.Textbox(
|
| 124 |
+
label="π OpenAI API Key",
|
| 125 |
+
type="password",
|
| 126 |
+
placeholder="Enter your OpenAI API key (optional)"
|
| 127 |
+
)
|
| 128 |
+
auth_status = gr.Textbox(
|
| 129 |
+
label="Authentication Status",
|
| 130 |
+
interactive=False
|
| 131 |
+
)
|
| 132 |
+
auth_button = gr.Button("π Authenticate", variant="primary")
|
| 133 |
+
|
| 134 |
+
# Main Content
|
| 135 |
+
with gr.Row():
|
| 136 |
+
# Left Column - Input Options
|
| 137 |
+
with gr.Column(scale=1):
|
| 138 |
+
pdf_input = gr.File(
|
| 139 |
+
label="π Upload PDF",
|
| 140 |
+
file_types=[".pdf"]
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
with gr.Row():
|
| 144 |
+
format_type = gr.Radio(
|
| 145 |
+
choices=["txt", "md", "html"],
|
| 146 |
+
value="txt",
|
| 147 |
+
label="π Output Format"
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
context_size = gr.Slider(
|
| 151 |
+
minimum=4000,
|
| 152 |
+
maximum=128000,
|
| 153 |
+
step=4000,
|
| 154 |
+
value=32000,
|
| 155 |
+
label="π Context Window Size"
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
snippet_number = gr.Number(
|
| 159 |
+
label="π’ Snippet Number (Optional)",
|
| 160 |
+
value=None,
|
| 161 |
+
precision=0
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
custom_prompt = gr.Textbox(
|
| 165 |
+
label="βοΈ Custom Prompt",
|
| 166 |
+
placeholder="Enter your custom prompt here...",
|
| 167 |
+
lines=2
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
model_choice = gr.Radio(
|
| 171 |
+
choices=["OpenAI ChatGPT", "Hugging Face Model"],
|
| 172 |
+
value="OpenAI ChatGPT",
|
| 173 |
+
label="π€ Model Selection"
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
hf_model = gr.Dropdown(
|
| 177 |
+
choices=list(HUGGINGFACE_MODELS.keys()),
|
| 178 |
+
label="π§ Hugging Face Model",
|
| 179 |
+
visible=False
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
# Right Column - Output
|
| 183 |
+
with gr.Column(scale=1):
|
| 184 |
+
with gr.Row():
|
| 185 |
+
process_button = gr.Button("π Process PDF", variant="primary")
|
| 186 |
+
|
| 187 |
+
progress_status = gr.Textbox(
|
| 188 |
+
label="π Progress",
|
| 189 |
+
interactive=False
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
generated_prompt = gr.Textbox(
|
| 193 |
+
label="π Generated Prompt",
|
| 194 |
+
lines=10
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
summary_output = gr.Textbox(
|
| 198 |
+
label="π Summary",
|
| 199 |
+
lines=15
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
with gr.Row():
|
| 203 |
+
download_prompt = gr.File(
|
| 204 |
+
label="π₯ Download Prompt"
|
| 205 |
+
)
|
| 206 |
+
download_summary = gr.File(
|
| 207 |
+
label="π₯ Download Summary"
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
# Event Handlers
|
| 211 |
+
def toggle_hf_model(choice):
|
| 212 |
+
return gr.update(visible=choice == "Hugging Face Model")
|
| 213 |
+
|
| 214 |
+
def handle_authentication(api_key):
|
| 215 |
+
return authenticate_openai(api_key)
|
| 216 |
+
|
| 217 |
+
def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection, hf_model_choice, api_key):
|
| 218 |
+
try:
|
| 219 |
+
if not pdf:
|
| 220 |
+
return "Please upload a PDF file.", "", "", None, None
|
| 221 |
+
|
| 222 |
+
# Extract text
|
| 223 |
+
text = extract_text_from_pdf(pdf.name)
|
| 224 |
+
if text.startswith("Error"):
|
| 225 |
+
return text, "", "", None, None
|
| 226 |
+
|
| 227 |
+
# Format content
|
| 228 |
+
formatted_text = format_content(text, fmt)
|
| 229 |
+
|
| 230 |
+
# Split into snippets
|
| 231 |
+
snippets = split_into_snippets(formatted_text, ctx_size)
|
| 232 |
+
|
| 233 |
+
# Process specific snippet or all
|
| 234 |
+
if snippet_num is not None:
|
| 235 |
+
if 1 <= snippet_num <= len(snippets):
|
| 236 |
+
selected_snippets = [snippets[snippet_num - 1]]
|
| 237 |
+
else:
|
| 238 |
+
return f"Invalid snippet number. Please choose between 1 and {len(snippets)}.", "", "", None, None
|
| 239 |
+
else:
|
| 240 |
+
selected_snippets = snippets
|
| 241 |
+
|
| 242 |
+
# Build prompts
|
| 243 |
+
default_prompt = "Summarize the following text:"
|
| 244 |
+
prompts = build_prompts(selected_snippets, default_prompt, prompt)
|
| 245 |
+
full_prompt = "\n".join(prompts)
|
| 246 |
+
|
| 247 |
+
# Generate summary
|
| 248 |
+
if model_selection == "OpenAI ChatGPT":
|
| 249 |
+
if not api_key:
|
| 250 |
+
return "OpenAI API key required.", full_prompt, "", None, None
|
| 251 |
+
try:
|
| 252 |
+
openai.api_key = api_key
|
| 253 |
+
response = openai.ChatCompletion.create(
|
| 254 |
+
model="gpt-3.5-turbo",
|
| 255 |
+
messages=[{"role": "user", "content": full_prompt}]
|
| 256 |
+
)
|
| 257 |
+
summary = response.choices[0].message.content
|
| 258 |
+
except Exception as e:
|
| 259 |
+
return f"OpenAI API error: {str(e)}", full_prompt, "", None, None
|
| 260 |
+
else:
|
| 261 |
+
summary = send_to_huggingface(full_prompt, HUGGINGFACE_MODELS[hf_model_choice])
|
| 262 |
+
|
| 263 |
+
# Save files for download
|
| 264 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
|
| 265 |
+
prompt_file.write(full_prompt)
|
| 266 |
+
prompt_path = prompt_file.name
|
| 267 |
+
|
| 268 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file:
|
| 269 |
+
summary_file.write(summary)
|
| 270 |
+
summary_path = summary_file.name
|
| 271 |
+
|
| 272 |
+
return "Processing complete!", full_prompt, summary, prompt_path, summary_path
|
| 273 |
+
|
| 274 |
+
except Exception as e:
|
| 275 |
+
logging.error(f"Error processing PDF: {e}")
|
| 276 |
+
return f"Error processing PDF: {str(e)}", "", "", None, None
|
| 277 |
+
|
| 278 |
+
# Connect event handlers
|
| 279 |
+
model_choice.change(
|
| 280 |
+
toggle_hf_model,
|
| 281 |
+
inputs=[model_choice],
|
| 282 |
+
outputs=[hf_model]
|
| 283 |
+
)
|
| 284 |
|
| 285 |
+
auth_button.click(
|
| 286 |
+
handle_authentication,
|
| 287 |
+
inputs=[openai_api_key],
|
| 288 |
+
outputs=[auth_status]
|
| 289 |
+
)
|
| 290 |
|
| 291 |
+
process_button.click(
|
| 292 |
+
process_pdf,
|
| 293 |
+
inputs=[
|
| 294 |
+
pdf_input,
|
| 295 |
+
format_type,
|
| 296 |
+
context_size,
|
| 297 |
+
snippet_number,
|
| 298 |
+
custom_prompt,
|
| 299 |
+
model_choice,
|
| 300 |
+
hf_model,
|
| 301 |
+
openai_api_key
|
| 302 |
+
],
|
| 303 |
+
outputs=[
|
| 304 |
+
progress_status,
|
| 305 |
+
generated_prompt,
|
| 306 |
+
summary_output,
|
| 307 |
+
download_prompt,
|
| 308 |
+
download_summary
|
| 309 |
+
]
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
# Instructions
|
| 313 |
+
gr.Markdown("""
|
| 314 |
+
### π Instructions:
|
| 315 |
+
1. (Optional) Enter your OpenAI API key and authenticate
|
| 316 |
+
2. Upload a PDF document
|
| 317 |
+
3. Choose output format and context window size
|
| 318 |
+
4. Optionally specify a snippet number or custom prompt
|
| 319 |
+
5. Select between OpenAI ChatGPT or Hugging Face model
|
| 320 |
+
6. Click 'Process PDF' to generate summary
|
| 321 |
+
7. Download the generated prompt and summary as needed
|
| 322 |
+
|
| 323 |
+
### βοΈ Features:
|
| 324 |
+
- Support for multiple PDF formats
|
| 325 |
+
- Flexible text formatting options
|
| 326 |
+
- Custom prompt creation
|
| 327 |
+
- Multiple AI model options
|
| 328 |
+
- Snippet-based processing
|
| 329 |
+
- Downloadable outputs
|
| 330 |
+
""")
|
| 331 |
|
| 332 |
+
# Launch the interface
|
| 333 |
if __name__ == "__main__":
|
| 334 |
+
demo.launch(share=False, debug=True)
|