Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,18 +4,34 @@ import tempfile
|
|
| 4 |
import requests
|
| 5 |
import gradio as gr
|
| 6 |
from PyPDF2 import PdfReader
|
| 7 |
-
import openai
|
| 8 |
import logging
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Set up logging
|
| 11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 12 |
|
| 13 |
# Initialize Hugging Face models
|
| 14 |
HUGGINGFACE_MODELS = {
|
| 15 |
-
"Phi-3 Mini 128k
|
| 16 |
-
"Phi-3 Mini 128k Instruct by TaufiqDP": "taufiqdp/phi-3-mini-128k-instruct"
|
| 17 |
}
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# Utility Functions
|
| 20 |
def extract_text_from_pdf(pdf_path):
|
| 21 |
"""Extract text content from PDF file."""
|
|
@@ -71,66 +87,52 @@ def split_into_snippets(text, context_size):
|
|
| 71 |
|
| 72 |
return snippets
|
| 73 |
|
| 74 |
-
def build_prompts(snippets, prompt_instruction, custom_prompt):
|
| 75 |
"""Build formatted prompts from text snippets."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
prompts = []
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
prompts.append(framed_prompt)
|
| 81 |
-
|
|
|
|
| 82 |
|
| 83 |
def send_to_huggingface(prompt, model_name):
|
| 84 |
-
"""Send prompt to Hugging Face model."""
|
| 85 |
try:
|
| 86 |
-
|
| 87 |
-
response =
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
-
|
| 92 |
-
return response.json()[0].get('generated_text', 'No generated text found.')
|
| 93 |
-
else:
|
| 94 |
-
error_info = response.json()
|
| 95 |
-
error_message = error_info.get('error', 'Unknown error occurred.')
|
| 96 |
-
logging.error(f"Error from Hugging Face model: {error_message}")
|
| 97 |
-
return f"Error from Hugging Face model: {error_message}"
|
| 98 |
except Exception as e:
|
| 99 |
logging.error(f"Error interacting with Hugging Face model: {e}")
|
| 100 |
return f"Error interacting with Hugging Face model: {e}"
|
| 101 |
|
| 102 |
-
def authenticate_openai(api_key):
|
| 103 |
-
"""Authenticate with OpenAI API."""
|
| 104 |
-
if api_key:
|
| 105 |
-
try:
|
| 106 |
-
openai.api_key = api_key
|
| 107 |
-
openai.Model.list()
|
| 108 |
-
return "OpenAI Authentication Successful!"
|
| 109 |
-
except Exception as e:
|
| 110 |
-
logging.error(f"OpenAI API Key Error: {e}")
|
| 111 |
-
return f"OpenAI API Key Error: {e}"
|
| 112 |
-
return "No OpenAI API key provided."
|
| 113 |
-
|
| 114 |
# Main Interface
|
| 115 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
| 116 |
# Header
|
| 117 |
gr.Markdown("# π Smart PDF Summarizer")
|
| 118 |
gr.Markdown("Upload a PDF document and get AI-powered summaries using OpenAI or Hugging Face models.")
|
| 119 |
|
| 120 |
-
# Authentication Section
|
| 121 |
-
with gr.Row():
|
| 122 |
-
with gr.Column(scale=1):
|
| 123 |
-
openai_api_key = gr.Textbox(
|
| 124 |
-
label="π OpenAI API Key",
|
| 125 |
-
type="password",
|
| 126 |
-
placeholder="Enter your OpenAI API key (optional)"
|
| 127 |
-
)
|
| 128 |
-
auth_status = gr.Textbox(
|
| 129 |
-
label="Authentication Status",
|
| 130 |
-
interactive=False
|
| 131 |
-
)
|
| 132 |
-
auth_button = gr.Button("π Authenticate", variant="primary")
|
| 133 |
-
|
| 134 |
# Main Content
|
| 135 |
with gr.Row():
|
| 136 |
# Left Column - Input Options
|
|
@@ -146,18 +148,24 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 146 |
value="txt",
|
| 147 |
label="π Output Format"
|
| 148 |
)
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
context_size = gr.Slider(
|
| 151 |
-
minimum=
|
| 152 |
-
maximum=
|
| 153 |
-
step=
|
| 154 |
value=32000,
|
| 155 |
-
label="π Context
|
| 156 |
)
|
| 157 |
|
| 158 |
snippet_number = gr.Number(
|
| 159 |
-
label="π’ Snippet Number
|
| 160 |
-
value=
|
| 161 |
precision=0
|
| 162 |
)
|
| 163 |
|
|
@@ -178,6 +186,14 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 178 |
label="π§ Hugging Face Model",
|
| 179 |
visible=False
|
| 180 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
# Right Column - Output
|
| 183 |
with gr.Column(scale=1):
|
|
@@ -194,35 +210,34 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 194 |
lines=10
|
| 195 |
)
|
| 196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
summary_output = gr.Textbox(
|
| 198 |
label="π Summary",
|
| 199 |
lines=15
|
| 200 |
)
|
| 201 |
|
| 202 |
with gr.Row():
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
download_summary = gr.File(
|
| 207 |
-
label="π₯ Download Summary"
|
| 208 |
)
|
| 209 |
|
| 210 |
# Event Handlers
|
| 211 |
def toggle_hf_model(choice):
|
| 212 |
-
return gr.update(visible=choice == "Hugging Face Model")
|
| 213 |
|
| 214 |
-
def
|
| 215 |
-
return authenticate_openai(api_key)
|
| 216 |
-
|
| 217 |
-
def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection, hf_model_choice, api_key):
|
| 218 |
try:
|
| 219 |
if not pdf:
|
| 220 |
-
return "Please upload a PDF file.", "", "", None
|
| 221 |
|
| 222 |
# Extract text
|
| 223 |
text = extract_text_from_pdf(pdf.name)
|
| 224 |
if text.startswith("Error"):
|
| 225 |
-
return text, "", "", None
|
| 226 |
|
| 227 |
# Format content
|
| 228 |
formatted_text = format_content(text, fmt)
|
|
@@ -230,62 +245,42 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 230 |
# Split into snippets
|
| 231 |
snippets = split_into_snippets(formatted_text, ctx_size)
|
| 232 |
|
| 233 |
-
# Process specific snippet or all
|
| 234 |
-
if snippet_num is not None:
|
| 235 |
-
if 1 <= snippet_num <= len(snippets):
|
| 236 |
-
selected_snippets = [snippets[snippet_num - 1]]
|
| 237 |
-
else:
|
| 238 |
-
return f"Invalid snippet number. Please choose between 1 and {len(snippets)}.", "", "", None, None
|
| 239 |
-
else:
|
| 240 |
-
selected_snippets = snippets
|
| 241 |
-
|
| 242 |
# Build prompts
|
| 243 |
default_prompt = "Summarize the following text:"
|
| 244 |
-
|
| 245 |
-
full_prompt = "\n".join(prompts)
|
| 246 |
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
openai.api_key = api_key
|
| 253 |
-
response = openai.ChatCompletion.create(
|
| 254 |
-
model="gpt-3.5-turbo",
|
| 255 |
-
messages=[{"role": "user", "content": full_prompt}]
|
| 256 |
-
)
|
| 257 |
-
summary = response.choices[0].message.content
|
| 258 |
-
except Exception as e:
|
| 259 |
-
return f"OpenAI API error: {str(e)}", full_prompt, "", None, None
|
| 260 |
-
else:
|
| 261 |
summary = send_to_huggingface(full_prompt, HUGGINGFACE_MODELS[hf_model_choice])
|
|
|
|
|
|
|
| 262 |
|
| 263 |
# Save files for download
|
|
|
|
|
|
|
| 264 |
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
|
| 265 |
prompt_file.write(full_prompt)
|
| 266 |
-
|
| 267 |
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
|
|
|
| 271 |
|
| 272 |
-
return "Processing complete!", full_prompt, summary,
|
| 273 |
|
| 274 |
except Exception as e:
|
| 275 |
logging.error(f"Error processing PDF: {e}")
|
| 276 |
-
return f"Error processing PDF: {str(e)}", "", "", None
|
| 277 |
|
| 278 |
# Connect event handlers
|
| 279 |
model_choice.change(
|
| 280 |
toggle_hf_model,
|
| 281 |
inputs=[model_choice],
|
| 282 |
-
outputs=[hf_model]
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
auth_button.click(
|
| 286 |
-
handle_authentication,
|
| 287 |
-
inputs=[openai_api_key],
|
| 288 |
-
outputs=[auth_status]
|
| 289 |
)
|
| 290 |
|
| 291 |
process_button.click(
|
|
@@ -297,35 +292,50 @@ with gr.Blocks(theme=gr.themes.Default()) as demo:
|
|
| 297 |
snippet_number,
|
| 298 |
custom_prompt,
|
| 299 |
model_choice,
|
| 300 |
-
hf_model
|
| 301 |
-
openai_api_key
|
| 302 |
],
|
| 303 |
outputs=[
|
| 304 |
progress_status,
|
| 305 |
generated_prompt,
|
| 306 |
summary_output,
|
| 307 |
-
|
| 308 |
-
download_summary
|
| 309 |
]
|
| 310 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
# Instructions
|
| 313 |
gr.Markdown("""
|
| 314 |
### π Instructions:
|
| 315 |
-
1.
|
| 316 |
-
2.
|
| 317 |
-
3.
|
| 318 |
-
4.
|
| 319 |
-
5.
|
| 320 |
-
6.
|
| 321 |
-
7. Download
|
| 322 |
|
| 323 |
### βοΈ Features:
|
| 324 |
- Support for multiple PDF formats
|
| 325 |
- Flexible text formatting options
|
| 326 |
-
-
|
| 327 |
-
-
|
| 328 |
-
-
|
| 329 |
- Downloadable outputs
|
| 330 |
""")
|
| 331 |
|
|
|
|
| 4 |
import requests
|
| 5 |
import gradio as gr
|
| 6 |
from PyPDF2 import PdfReader
|
|
|
|
| 7 |
import logging
|
| 8 |
+
import webbrowser
|
| 9 |
+
from gradio_client import Client
|
| 10 |
|
| 11 |
# Set up logging
|
| 12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 13 |
|
| 14 |
# Initialize Hugging Face models
|
| 15 |
HUGGINGFACE_MODELS = {
|
| 16 |
+
"Phi-3 Mini 128k": "eswardivi/Phi-3-mini-128k-instruct",
|
|
|
|
| 17 |
}
|
| 18 |
|
| 19 |
+
# Common context window sizes
|
| 20 |
+
CONTEXT_SIZES = {
|
| 21 |
+
"4K": 4000,
|
| 22 |
+
"8K": 8000,
|
| 23 |
+
"32K": 32000,
|
| 24 |
+
"128K": 128000,
|
| 25 |
+
"200K": 200000
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
def copy_to_clipboard(text):
|
| 29 |
+
return text
|
| 30 |
+
|
| 31 |
+
def open_chatgpt():
|
| 32 |
+
webbrowser.open('https://chat.openai.com/')
|
| 33 |
+
return "Opening ChatGPT in browser..."
|
| 34 |
+
|
| 35 |
# Utility Functions
|
| 36 |
def extract_text_from_pdf(pdf_path):
|
| 37 |
"""Extract text content from PDF file."""
|
|
|
|
| 87 |
|
| 88 |
return snippets
|
| 89 |
|
| 90 |
+
def build_prompts(snippets, prompt_instruction, custom_prompt, snippet_num=None):
|
| 91 |
"""Build formatted prompts from text snippets."""
|
| 92 |
+
if snippet_num is not None:
|
| 93 |
+
if 1 <= snippet_num <= len(snippets):
|
| 94 |
+
selected_snippets = [snippets[snippet_num - 1]]
|
| 95 |
+
else:
|
| 96 |
+
return f"Error: Invalid snippet number. Please choose between 1 and {len(snippets)}."
|
| 97 |
+
else:
|
| 98 |
+
selected_snippets = snippets
|
| 99 |
+
|
| 100 |
prompts = []
|
| 101 |
+
base_prompt = custom_prompt if custom_prompt else prompt_instruction
|
| 102 |
+
|
| 103 |
+
for idx, snippet in enumerate(selected_snippets, start=1):
|
| 104 |
+
if len(selected_snippets) > 1:
|
| 105 |
+
prompt_header = f"{base_prompt} Part {idx} of {len(selected_snippets)}: ---\n"
|
| 106 |
+
else:
|
| 107 |
+
prompt_header = f"{base_prompt} ---\n"
|
| 108 |
+
|
| 109 |
+
framed_prompt = f"{prompt_header}{snippet}\n---"
|
| 110 |
prompts.append(framed_prompt)
|
| 111 |
+
|
| 112 |
+
return "\n\n".join(prompts)
|
| 113 |
|
| 114 |
def send_to_huggingface(prompt, model_name):
|
| 115 |
+
"""Send prompt to Hugging Face model using gradio_client."""
|
| 116 |
try:
|
| 117 |
+
client = Client(model_name)
|
| 118 |
+
response = client.predict(
|
| 119 |
+
prompt, # message
|
| 120 |
+
0.9, # temperature
|
| 121 |
+
True, # sampling
|
| 122 |
+
512, # max_new_tokens
|
| 123 |
+
api_name="/chat"
|
| 124 |
)
|
| 125 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
except Exception as e:
|
| 127 |
logging.error(f"Error interacting with Hugging Face model: {e}")
|
| 128 |
return f"Error interacting with Hugging Face model: {e}"
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
# Main Interface
|
| 131 |
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
| 132 |
# Header
|
| 133 |
gr.Markdown("# π Smart PDF Summarizer")
|
| 134 |
gr.Markdown("Upload a PDF document and get AI-powered summaries using OpenAI or Hugging Face models.")
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
# Main Content
|
| 137 |
with gr.Row():
|
| 138 |
# Left Column - Input Options
|
|
|
|
| 148 |
value="txt",
|
| 149 |
label="π Output Format"
|
| 150 |
)
|
| 151 |
+
|
| 152 |
+
gr.Markdown("### Context Window Size")
|
| 153 |
+
with gr.Row():
|
| 154 |
+
for size_name, size_value in CONTEXT_SIZES.items():
|
| 155 |
+
if gr.Button(size_name).click:
|
| 156 |
+
context_size.value = size_value
|
| 157 |
+
|
| 158 |
context_size = gr.Slider(
|
| 159 |
+
minimum=1000,
|
| 160 |
+
maximum=200000,
|
| 161 |
+
step=1000,
|
| 162 |
value=32000,
|
| 163 |
+
label="π Custom Context Size"
|
| 164 |
)
|
| 165 |
|
| 166 |
snippet_number = gr.Number(
|
| 167 |
+
label="π’ Snippet Number",
|
| 168 |
+
value=1,
|
| 169 |
precision=0
|
| 170 |
)
|
| 171 |
|
|
|
|
| 186 |
label="π§ Hugging Face Model",
|
| 187 |
visible=False
|
| 188 |
)
|
| 189 |
+
|
| 190 |
+
# Authentication moved down
|
| 191 |
+
with gr.Row(visible=False) as auth_row:
|
| 192 |
+
openai_api_key = gr.Textbox(
|
| 193 |
+
label="π OpenAI API Key",
|
| 194 |
+
type="password",
|
| 195 |
+
placeholder="Enter your OpenAI API key (optional)"
|
| 196 |
+
)
|
| 197 |
|
| 198 |
# Right Column - Output
|
| 199 |
with gr.Column(scale=1):
|
|
|
|
| 210 |
lines=10
|
| 211 |
)
|
| 212 |
|
| 213 |
+
with gr.Row():
|
| 214 |
+
copy_prompt_button = gr.Button("π Copy Prompt")
|
| 215 |
+
open_chatgpt_button = gr.Button("π Open ChatGPT")
|
| 216 |
+
|
| 217 |
summary_output = gr.Textbox(
|
| 218 |
label="π Summary",
|
| 219 |
lines=15
|
| 220 |
)
|
| 221 |
|
| 222 |
with gr.Row():
|
| 223 |
+
copy_summary_button = gr.Button("π Copy Summary")
|
| 224 |
+
download_files = gr.Files(
|
| 225 |
+
label="π₯ Download Files"
|
|
|
|
|
|
|
| 226 |
)
|
| 227 |
|
| 228 |
# Event Handlers
|
| 229 |
def toggle_hf_model(choice):
|
| 230 |
+
return gr.update(visible=choice == "Hugging Face Model"), gr.update(visible=choice == "OpenAI ChatGPT")
|
| 231 |
|
| 232 |
+
def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection, hf_model_choice):
|
|
|
|
|
|
|
|
|
|
| 233 |
try:
|
| 234 |
if not pdf:
|
| 235 |
+
return "Please upload a PDF file.", "", "", None
|
| 236 |
|
| 237 |
# Extract text
|
| 238 |
text = extract_text_from_pdf(pdf.name)
|
| 239 |
if text.startswith("Error"):
|
| 240 |
+
return text, "", "", None
|
| 241 |
|
| 242 |
# Format content
|
| 243 |
formatted_text = format_content(text, fmt)
|
|
|
|
| 245 |
# Split into snippets
|
| 246 |
snippets = split_into_snippets(formatted_text, ctx_size)
|
| 247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
# Build prompts
|
| 249 |
default_prompt = "Summarize the following text:"
|
| 250 |
+
full_prompt = build_prompts(snippets, default_prompt, prompt, snippet_num)
|
|
|
|
| 251 |
|
| 252 |
+
if isinstance(full_prompt, str) and full_prompt.startswith("Error"):
|
| 253 |
+
return full_prompt, "", "", None
|
| 254 |
+
|
| 255 |
+
# Generate summary based on model choice
|
| 256 |
+
if model_selection == "Hugging Face Model":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
summary = send_to_huggingface(full_prompt, HUGGINGFACE_MODELS[hf_model_choice])
|
| 258 |
+
else:
|
| 259 |
+
summary = "Please use the Copy Prompt button and paste into ChatGPT."
|
| 260 |
|
| 261 |
# Save files for download
|
| 262 |
+
files_to_download = []
|
| 263 |
+
|
| 264 |
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
|
| 265 |
prompt_file.write(full_prompt)
|
| 266 |
+
files_to_download.append(prompt_file.name)
|
| 267 |
|
| 268 |
+
if summary != "Please use the Copy Prompt button and paste into ChatGPT.":
|
| 269 |
+
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file:
|
| 270 |
+
summary_file.write(summary)
|
| 271 |
+
files_to_download.append(summary_file.name)
|
| 272 |
|
| 273 |
+
return "Processing complete!", full_prompt, summary, files_to_download
|
| 274 |
|
| 275 |
except Exception as e:
|
| 276 |
logging.error(f"Error processing PDF: {e}")
|
| 277 |
+
return f"Error processing PDF: {str(e)}", "", "", None
|
| 278 |
|
| 279 |
# Connect event handlers
|
| 280 |
model_choice.change(
|
| 281 |
toggle_hf_model,
|
| 282 |
inputs=[model_choice],
|
| 283 |
+
outputs=[hf_model, auth_row]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
)
|
| 285 |
|
| 286 |
process_button.click(
|
|
|
|
| 292 |
snippet_number,
|
| 293 |
custom_prompt,
|
| 294 |
model_choice,
|
| 295 |
+
hf_model
|
|
|
|
| 296 |
],
|
| 297 |
outputs=[
|
| 298 |
progress_status,
|
| 299 |
generated_prompt,
|
| 300 |
summary_output,
|
| 301 |
+
download_files
|
|
|
|
| 302 |
]
|
| 303 |
)
|
| 304 |
+
|
| 305 |
+
copy_prompt_button.click(
|
| 306 |
+
copy_to_clipboard,
|
| 307 |
+
inputs=[generated_prompt],
|
| 308 |
+
outputs=[progress_status]
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
copy_summary_button.click(
|
| 312 |
+
copy_to_clipboard,
|
| 313 |
+
inputs=[summary_output],
|
| 314 |
+
outputs=[progress_status]
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
open_chatgpt_button.click(
|
| 318 |
+
open_chatgpt,
|
| 319 |
+
outputs=[progress_status]
|
| 320 |
+
)
|
| 321 |
|
| 322 |
# Instructions
|
| 323 |
gr.Markdown("""
|
| 324 |
### π Instructions:
|
| 325 |
+
1. Upload a PDF document
|
| 326 |
+
2. Choose output format and context window size
|
| 327 |
+
3. Select snippet number (default: 1) or enter custom prompt
|
| 328 |
+
4. Select between OpenAI ChatGPT or Hugging Face model
|
| 329 |
+
5. Click 'Process PDF' to generate summary
|
| 330 |
+
6. Use 'Copy Prompt' and 'Open ChatGPT' for manual processing
|
| 331 |
+
7. Download generated files as needed
|
| 332 |
|
| 333 |
### βοΈ Features:
|
| 334 |
- Support for multiple PDF formats
|
| 335 |
- Flexible text formatting options
|
| 336 |
+
- Predefined context window sizes (4K to 200K)
|
| 337 |
+
- Copy to clipboard functionality
|
| 338 |
+
- Direct ChatGPT integration
|
| 339 |
- Downloadable outputs
|
| 340 |
""")
|
| 341 |
|