File size: 8,156 Bytes
981b0ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
from torch import nn
from torch.nn import functional as F
import torch.nn.utils.spectral_norm as SpectralNorm
import random
from .helper_arch import ResTextBlockV2, adaptive_instance_normalization

class SRNet(nn.Module):
    def __init__(self, in_channel=3, dim_channel=256):
        super().__init__()
        self.conv_first_32 = nn.Sequential(
            SpectralNorm(nn.Conv2d(in_channel, dim_channel//4, 3, 1, 1)),
            nn.LeakyReLU(0.2),
        )
        self.conv_first_16 = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel//4, dim_channel//2, 3, 2, 1)),
            nn.LeakyReLU(0.2),
        )
        self.conv_first_8 = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel//2, dim_channel, 3, 2, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_body_16 = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel+dim_channel//2, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_body_32 = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel+dim_channel//4, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )

        self.conv_up = nn.Sequential(
            nn.Upsample(scale_factor=2, mode='bilinear'), #64*64*256
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            ResTextBlockV2(dim_channel, dim_channel),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )

        self.conv_final = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel//2, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            nn.Upsample(scale_factor=2, mode='bilinear'), #128*128*256
            SpectralNorm(nn.Conv2d(dim_channel//2, dim_channel//4, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            ResTextBlockV2(dim_channel//4, dim_channel//4),
            SpectralNorm(nn.Conv2d(dim_channel//4, 3, 3, 1, 1)),
            nn.Tanh()
        )


        self.conv_32_scale = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_32_shift = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_32_fuse = nn.Sequential(
            ResTextBlockV2(2*dim_channel, dim_channel)
        )

        self.conv_32_to256 = nn.Sequential(
            SpectralNorm(nn.Conv2d(512, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )

        self.conv_64_scale = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_64_shift = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim_channel, dim_channel, 3, 1, 1)),
        )
        self.conv_64_fuse = nn.Sequential(
            ResTextBlockV2(2*dim_channel, dim_channel)
        )

    def forward(self, lq, priors64, priors32, locs): #

        lq_f_32 = self.conv_first_32(lq)
        lq_f_16 = self.conv_first_16(lq_f_32)
        lq_f_8 = self.conv_first_8(lq_f_16)

        sq_f_16 = self.conv_body_16(torch.cat([F.interpolate(lq_f_8, scale_factor=2, mode='bilinear'), lq_f_16], dim=1))
        sq_f_32 = self.conv_body_32(torch.cat([F.interpolate(sq_f_16, scale_factor=2, mode='bilinear'), lq_f_32], dim=1)) # 

        
        if priors32 is not None:
            sq_f_32_ori = sq_f_32.clone()
            sq_f_32_res = sq_f_32.clone().detach()*0
            for b, p_32 in enumerate(priors32): #
                p_32_256 = self.conv_32_to256(p_32.clone().detach()) 
                for c in range(p_32_256.size(0)): #
                    center = int(locs[b][c].item()/4.0) #+ random.randint(-2,2)### no backward 
                    width = 16

                    if center < width:
                        x1 = 0 #lq feature left
                        y1 = max(16 - center, 0)
                    else:
                        x1 = center - width
                        y1 = max(16 - width, 0)
                        # y1 = 16 - width
                    if center + width > sq_f_32.size(-1):
                        x2 = sq_f_32.size(-1) #lq feature right
                    else:
                        x2 = center + width
                    y2 = y1 + (x2 - x1)

                    '''
                    center align
                    '''
                    y1 = 16 - torch.div(x2-x1, 2, rounding_mode='trunc')
                    y2 = y1 + x2 - x1

                    char_prior_f = p_32_256[c:c+1, :, :, y1:y2].clone() #prior
                    char_lq_f = sq_f_32[b:b+1, :, :, x1:x2].clone()
                    adain_prior_f = adaptive_instance_normalization(char_prior_f, char_lq_f)
                    fuse_32_prior = self.conv_32_fuse(torch.cat((adain_prior_f, char_lq_f), dim=1))
                    scale = self.conv_32_scale(fuse_32_prior)
                    shift = self.conv_32_shift(fuse_32_prior)

                    sq_f_32_res[b, :, :, x1:x2] = sq_f_32_res[b, :, :, x1:x2] + sq_f_32[b, :, :, x1:x2].clone() * scale[0,...] + shift[0,...]

            sq_pf_32_out = sq_f_32_ori + sq_f_32_res
            
        else:
            sq_pf_32_out = sq_f_32.clone()


        sq_f_64 = self.conv_up(sq_pf_32_out) #64*1024
        

        sq_f_64_ori = sq_f_64.clone()
        sq_f_64_res = sq_f_64.clone().detach() * 0
        
        # prior_full_64 = sq_f_64.clone().detach() * 0
        if priors64 is not None:
            for b, p_64_prior in enumerate(priors64): #
                p_64 = p_64_prior.clone().detach() #no backward to prior
                for c in range(p_64.size(0)): # for each character
                    center = int(locs[b][c].item()/2.0) #+ random.randint(-4,4)### no backward 
                    width = 32

                    if center < width:
                        x1 = 0
                        y1 = max(32 - center, 0)
                    else:
                        x1 = center -width
                        y1 = max(32 - width, 0)
                    if center + width > sq_f_64.size(-1):
                        x2 = sq_f_64.size(-1)
                    else:
                        x2 = center + width

                    '''
                    center align
                    '''
                    y1 = 32 - torch.div(x2-x1, 2, rounding_mode='trunc')
                    y2 = y1 + x2 - x1
                    
                    char_prior_f = p_64[c:c+1, :, :, y1:y2].clone()
                    char_lq_f = sq_f_64[b:b+1, :, :, x1:x2].clone()
                    adain_prior_f = adaptive_instance_normalization(char_prior_f, char_lq_f)

                    fuse_64_prior = self.conv_64_fuse(torch.cat((adain_prior_f, char_lq_f), dim=1))
                    scale = self.conv_64_scale(fuse_64_prior)
                    shift = self.conv_64_shift(fuse_64_prior)
                    sq_f_64_res[b, :, :, x1:x2] = sq_f_64_res[b, :, :, x1:x2] + sq_f_64[b, :, :, x1:x2].clone() * scale[0,...] + shift[0,...]

                    # prior_full_64[b, :, :, x1:x2] = prior_full_64[b, :, :, x1:x2] + char_prior_f.clone()
            sq_pf_64 = sq_f_64_ori + sq_f_64_res
        else:
            sq_pf_64 = sq_f_64_ori.clone()
        
        f256 = self.conv_final(sq_pf_64)


        # adain_lr2prior = adaptive_instance_normalization(prior_full_64, F.interpolate(sq_f_32_ori, scale_factor=2, mode='bilinear'))
        # prior_out = self.conv_priorout(adain_lr2prior)

        return f256 #prior_out