Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import math | |
| from .prior_arch import PixelNorm, EqualLinear | |
| class BasicBlock(nn.Module): | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(BasicBlock, self).__init__() | |
| self.conv1 = conv1x1(inplanes, planes) | |
| self.gn1 = GroupNorm(planes) | |
| self.relu = nn.LeakyReLU(0.2, inplace=True) | |
| self.conv2 = conv3x3(planes, planes, stride) | |
| self.gn2 = GroupNorm(planes) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.gn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.gn2(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class WEncoder(nn.Module): | |
| def __init__(self, block=BasicBlock, layers=[3, 4, 6, 6, 3], strides=[2,1,2,1,2]): | |
| self.inplanes = 32 | |
| super(WEncoder, self).__init__() | |
| self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, | |
| bias=False) | |
| self.relu = nn.LeakyReLU(0.2, inplace=True) | |
| feature_out_dim = 512 | |
| self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0]) | |
| self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1]) | |
| self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2]) | |
| self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3]) | |
| self.layer5 = self._make_layer(block, feature_out_dim, layers[4], stride=strides[4]) | |
| self.down_h = 1 | |
| for stride in strides: | |
| self.down_h *= stride | |
| self.size_h = 32 // self.down_h | |
| self.feature2w = nn.Sequential( | |
| PixelNorm(), | |
| EqualLinear(self.size_h*self.size_h*feature_out_dim, 512, bias=True, bias_init_val=0, lr_mul=1, | |
| activation='fused_lrelu'), | |
| EqualLinear(512, 512, bias=True, bias_init_val=0, lr_mul=1, | |
| activation='fused_lrelu') | |
| # EqualLinear(self.size_h*self.size_h*feature_out_dim, 512, bias=True), | |
| # EqualLinear(512, 512, bias=True) | |
| ) | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
| m.weight.data.normal_(0, math.sqrt(2. / n)) | |
| def _make_layer(self, block, planes, blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes: | |
| downsample = nn.Sequential( | |
| nn.Conv2d(self.inplanes, planes, | |
| kernel_size=1, stride=stride, bias=False), | |
| ) | |
| # GroupNorm(planes), | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample)) | |
| self.inplanes = planes | |
| for i in range(1, blocks): | |
| layers.append(block(self.inplanes, planes)) | |
| return nn.Sequential(*layers) | |
| def _check_outliers(self, crop_feature, target_width): | |
| _, _, H, W = crop_feature.size() | |
| if W != target_width: | |
| return F.interpolate(crop_feature, size=(H, target_width), mode='bilinear', align_corners=True) | |
| else: | |
| return crop_feature | |
| def forward(self, x, locs): | |
| # lr = x.clone() | |
| x = self.conv1(x) | |
| x = self.relu(x) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.layer4(x) | |
| x = self.layer5(x) # B, 512, 4, 64, 17M parameters | |
| B, C, H, W = x.size() | |
| # lr = F.interpolate(lr, (x.size(2), x.size(3))) | |
| w_b = [] | |
| for b in range(locs.size(0)): #locs: 0~2048 | |
| w_c = [] | |
| for c in range(locs.size(1)): | |
| if locs[b][c] < 2048: | |
| center_loc = (locs[b][c]/4/self.down_h).int() # from 32*512 to 4*64 | |
| start_x = max(0, center_loc-self.size_h//2) | |
| end_x = min(center_loc+self.size_h//2, 512//self.down_h) | |
| # crop_feature = x[b:b+1, :, :, start_x:end_x].clone() | |
| # crop_feature = self._check_outliers(crop_feature, self.size_h) # 1, 512, 4, 4 or 1, 512, 8, 8 | |
| if end_x - start_x != self.size_h: | |
| bgfill = torch.zeros((B, C, H, self.size_h), dtype=x.dtype, layout=x.layout, device=x.device) | |
| bgfill[:, :, :, self.size_h//2 - (center_loc - start_x):self.size_h//2 - (center_loc - start_x) + end_x - start_x] += x[b:b+1, :, :, start_x:end_x].clone() | |
| crop_feature = bgfill.clone() | |
| else: | |
| crop_feature = x[b:b+1, :, :, start_x:end_x].clone() | |
| w = self.feature2w(crop_feature.view(1, -1)) # 1*512 | |
| w_c.append(w.squeeze(0)) | |
| else: | |
| w_c.append(w.squeeze(0).detach()*0) | |
| w_c = torch.stack(w_c, dim=0) | |
| w_b.append(w_c) | |
| w_b = torch.stack(w_b, dim=0) | |
| return w_b #, lr | |
| def GroupNorm(in_channels): | |
| return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=False) | |
| def conv1x1(in_planes, out_planes, stride=1): | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
| def conv3x3(in_planes, out_planes, stride=1): | |
| "3x3 convolution with padding" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
| padding=1, bias=False) | |
| def _upsample_add(x, y): | |
| '''Upsample and add two feature maps. | |
| Args: | |
| x: (Variable) top feature map to be upsampled. | |
| y: (Variable) lateral feature map. | |
| Returns: | |
| (Variable) added feature map. | |
| Note in PyTorch, when input size is odd, the upsampled feature map | |
| with `F.upsample(..., scale_factor=2, mode='nearest')` | |
| maybe not equal to the lateral feature map size. | |
| e.g. | |
| original input size: [N,_,15,15] -> | |
| conv2d feature map size: [N,_,8,8] -> | |
| upsampled feature map size: [N,_,16,16] | |
| So we choose bilinear upsample which supports arbitrary output sizes. | |
| ''' | |
| _, _, H, W = y.size() | |
| return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y | |
| if __name__ == '__main__': | |
| from .helper_arch import network_param | |
| device = 'cuda' | |
| input = torch.randn(2, 3, 32, 512).to(device) # | |
| test_list = [64] | |
| for i in range(1, 8): | |
| test_list.append(64+128*i) | |
| for i in range(8, 16): | |
| test_list.append(2048) | |
| locs = torch.Tensor(test_list).unsqueeze(0) | |
| locs = locs.repeat(2, 1).to(device) | |
| net = WEncoder().to(device) | |
| ''' | |
| strides=[2,1,2,1,1] output h is 8 | |
| Encoder is 12.97M | |
| F2W+Encoder is 17.04 M | |
| strides=[2,1,2,1,2] output h is 4 | |
| Encoder is 12.97M | |
| F2W is 4.46 M | |
| ''' | |
| output = net(input, locs) | |
| print([input.size(), output.size(), locs.size(), network_param(net)]) | |
| #[torch.Size([2, 3, 32, 512]), torch.Size([2, 16, 512]), torch.Size([2, 16]), 17.43344] | |
| # import numpy as np | |
| # import cv2 | |
| # sr_results = lr[0].permute(1, 2, 0) | |
| # sr_results = sr_results.float().cpu().numpy() | |
| # cv2.imwrite('./tmp.png', sr_results) | |