Spaces:
Paused
Paused
File size: 13,215 Bytes
cc479ca 7deb5c5 1f143e8 7deb5c5 1f143e8 7deb5c5 1f143e8 7deb5c5 47c8e15 7deb5c5 47c8e15 7deb5c5 bde5c1b 7deb5c5 47c8e15 7deb5c5 cc479ca 7deb5c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import gradio as gr
from fastapi import FastAPI, UploadFile, File, Request
from fastapi.responses import FileResponse, HTMLResponse
import uuid
import os
import json
from datetime import datetime
from typing import Dict, List
import shutil
import asyncio
from contextlib import asynccontextmanager
# Initialize data storage
peers: Dict[str, Dict] = {}
jobs: List[Dict] = []
# Create directories
os.makedirs("results", exist_ok=True)
os.makedirs("client", exist_ok=True)
# Client code
CLIENT_CODE = '''import requests
import subprocess
import time
import os
import sys
from datetime import datetime
# Configuration
PEER_ID = f"peer-{os.getenv('COMPUTERNAME', 'unknown')}-{datetime.now().strftime('%Y%m%d%H%M%S')}"
SERVER_URL = "https://your-username-your-space.hf.space" # Replace with actual Space URL
def check_gpu():
"""Check GPU availability"""
try:
result = subprocess.run(['nvidia-smi', '--query-gpu=utilization.gpu', '--format=csv,noheader,nounits'],
capture_output=True, text=True)
if result.returncode == 0:
gpu_usage = int(result.stdout.strip())
return gpu_usage < 20 # GPU is idle if usage < 20%
except:
print("GPU not found. Running in CPU mode.")
return False
def register_peer():
"""Register peer with server"""
try:
response = requests.post(f"{SERVER_URL}/api/peers/register", params={"peer_id": PEER_ID})
if response.status_code == 200:
print(f"โ
Peer registered: {PEER_ID}")
return True
except Exception as e:
print(f"โ Server connection failed: {e}")
return False
def generate_image_cpu(prompt, output_path):
"""Generate test image using CPU"""
from PIL import Image, ImageDraw, ImageFont
img = Image.new('RGB', (512, 512), color='white')
draw = ImageDraw.Draw(img)
# Draw prompt text
text = f"Prompt: {prompt[:50]}..."
draw.text((10, 10), text, fill='black')
draw.text((10, 40), f"Generated by: {PEER_ID}", fill='gray')
draw.text((10, 70), f"Time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", fill='gray')
img.save(output_path)
print(f"๐ Test image generated: {output_path}")
def main():
print("๐ Starting P2P GPU Client...")
if not register_peer():
print("Server registration failed. Exiting.")
return
while True:
try:
# Heartbeat
requests.post(f"{SERVER_URL}/api/peers/heartbeat", params={"peer_id": PEER_ID})
# Request job
response = requests.get(f"{SERVER_URL}/api/jobs/request", params={"peer_id": PEER_ID})
if response.status_code == 200:
job_data = response.json()
if job_data.get("job"):
job = job_data["job"]
job_id = job["id"]
prompt = job["prompt"]
print(f"\\n๐ New job received: {prompt}")
# Generate image
output_path = f"{job_id}.png"
if check_gpu():
print("๐ฎ Generating with GPU...")
# Actual GPU generation code would go here
generate_image_cpu(prompt, output_path)
else:
print("๐ป Generating with CPU...")
generate_image_cpu(prompt, output_path)
# Upload result
with open(output_path, 'rb') as f:
files = {'file': (output_path, f, 'image/png')}
response = requests.post(
f"{SERVER_URL}/api/jobs/result",
params={"job_id": job_id},
files=files
)
if response.status_code == 200:
print("โ
Result uploaded successfully")
# Clean up
os.remove(output_path)
time.sleep(10) # Check every 10 seconds
except KeyboardInterrupt:
print("\\n๐ Shutting down")
break
except Exception as e:
print(f"โ ๏ธ Error: {e}")
time.sleep(30)
if __name__ == "__main__":
# Check required packages
try:
import PIL
except ImportError:
print("Installing required packages...")
subprocess.run([sys.executable, "-m", "pip", "install", "pillow", "requests"])
main()
'''
# Create client files
with open("client/peer_agent.py", "w", encoding="utf-8") as f:
f.write(CLIENT_CODE)
with open("client/requirements.txt", "w") as f:
f.write("requests\npillow\n")
with open("client/README.md", "w", encoding="utf-8") as f:
f.write("""# P2P GPU Client for Windows
## Installation
1. Install Python 3.8+
2. Run `pip install -r requirements.txt`
3. Update SERVER_URL in `peer_agent.py` with actual Hugging Face Space URL
4. Run `python peer_agent.py`
## GPU Support
- Automatically detects NVIDIA GPU if available
- Falls back to CPU mode for testing
""")
# FastAPI app with lifespan
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup
print("Starting P2P GPU Hub...")
yield
# Shutdown
print("Shutting down P2P GPU Hub...")
app = FastAPI(lifespan=lifespan)
# API endpoints
@app.get("/api/status")
async def get_status():
"""Get system status"""
active_peers = sum(1 for p in peers.values()
if (datetime.now() - p['last_seen']).seconds < 60)
pending_jobs = sum(1 for j in jobs if j['status'] == 'pending')
completed_jobs = sum(1 for j in jobs if j['status'] == 'completed')
recent_results = [
{"filename": j['filename'], "prompt": j['prompt']}
for j in jobs[-10:] if j['status'] == 'completed' and 'filename' in j
]
return {
"active_peers": active_peers,
"pending_jobs": pending_jobs,
"completed_jobs": completed_jobs,
"recent_results": recent_results
}
@app.post("/api/peers/register")
async def register_peer(peer_id: str):
"""Register a peer"""
peers[peer_id] = {
"status": "idle",
"last_seen": datetime.now(),
"jobs_completed": 0
}
return {"status": "registered", "peer_id": peer_id}
@app.post("/api/peers/heartbeat")
async def heartbeat(peer_id: str):
"""Update peer status"""
if peer_id in peers:
peers[peer_id]["last_seen"] = datetime.now()
return {"status": "alive"}
return {"status": "unregistered"}
@app.post("/api/jobs/submit")
async def submit_job(request: Request):
"""Submit a job"""
data = await request.json()
job_id = str(uuid.uuid4())
job = {
"id": job_id,
"prompt": data.get("prompt", ""),
"status": "pending",
"created_at": datetime.now()
}
jobs.append(job)
return {"job_id": job_id, "status": "submitted"}
@app.get("/api/jobs/request")
async def request_job(peer_id: str):
"""Request a job for processing"""
for job in jobs:
if job["status"] == "pending":
job["status"] = "assigned"
job["peer_id"] = peer_id
job["assigned_at"] = datetime.now()
return {"job": job}
return {"job": None}
@app.post("/api/jobs/result")
async def submit_result(job_id: str, file: UploadFile = File(...)):
"""Submit job result"""
filename = f"{job_id}.png"
file_path = f"results/{filename}"
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
for job in jobs:
if job["id"] == job_id:
job["status"] = "completed"
job["filename"] = filename
job["completed_at"] = datetime.now()
if "peer_id" in job and job["peer_id"] in peers:
peers[job["peer_id"]]["jobs_completed"] += 1
break
return {"status": "success", "filename": filename}
@app.get("/api/results/{filename}")
async def get_result(filename: str):
"""Get generated image"""
file_path = f"results/{filename}"
if os.path.exists(file_path):
return FileResponse(file_path)
return {"error": "File not found"}
@app.get("/api/client/{filename}")
async def get_client_file(filename: str):
"""Download client file"""
file_path = f"client/{filename}"
if os.path.exists(file_path):
return FileResponse(file_path, filename=filename)
return {"error": "File not found"}
# Gradio interface functions
def gradio_submit_job(prompt):
"""Submit job through Gradio"""
if not prompt:
return "Please enter a prompt"
job_id = str(uuid.uuid4())
job = {
"id": job_id,
"prompt": prompt,
"status": "pending",
"created_at": datetime.now()
}
jobs.append(job)
return f"Job submitted successfully! Job ID: {job_id}"
def gradio_get_status():
"""Get status through Gradio"""
active_peers = sum(1 for p in peers.values()
if (datetime.now() - p['last_seen']).seconds < 60)
pending = sum(1 for j in jobs if j['status'] == 'pending')
completed = sum(1 for j in jobs if j['status'] == 'completed')
status_text = f"""### System Status
- Active Peers: {active_peers}
- Pending Jobs: {pending}
- Completed Jobs: {completed}
### Recent Jobs
"""
# Add recent jobs
recent_jobs = jobs[-5:][::-1] # Last 5 jobs, reversed
for job in recent_jobs:
status_text += f"\n- **{job['id'][:8]}...**: {job['prompt'][:50]}... ({job['status']})"
return status_text
def gradio_get_gallery():
"""Get completed images for gallery"""
image_files = []
for job in jobs[-20:]: # Last 20 jobs
if job['status'] == 'completed' and 'filename' in job:
file_path = f"results/{job['filename']}"
if os.path.exists(file_path):
image_files.append((file_path, job['prompt']))
return image_files
# Create Gradio interface
with gr.Blocks(title="P2P GPU Image Generation Hub") as demo:
gr.Markdown("# ๐ค P2P GPU Image Generation Hub")
gr.Markdown("Distributed image generation using idle GPUs from peer nodes")
with gr.Tabs():
with gr.Tab("Submit Job"):
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Image Prompt",
placeholder="Describe the image you want to generate...",
lines=3
)
submit_btn = gr.Button("Submit Job", variant="primary")
result_text = gr.Textbox(label="Result", interactive=False)
submit_btn.click(
fn=gradio_submit_job,
inputs=prompt_input,
outputs=result_text
)
with gr.Tab("System Status"):
status_display = gr.Markdown()
refresh_btn = gr.Button("Refresh Status")
refresh_btn.click(
fn=gradio_get_status,
outputs=status_display
)
# Auto-refresh status on load
demo.load(fn=gradio_get_status, outputs=status_display)
with gr.Tab("Gallery"):
gallery = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gallery",
columns=3,
rows=2,
height="auto"
)
refresh_gallery_btn = gr.Button("Refresh Gallery")
refresh_gallery_btn.click(
fn=gradio_get_gallery,
outputs=gallery
)
# Auto-load gallery on tab load
demo.load(fn=gradio_get_gallery, outputs=gallery)
with gr.Tab("Download Client"):
gr.Markdown("""
## Windows Client Setup
1. Download the client files:
- [peer_agent.py](/api/client/peer_agent.py)
- [requirements.txt](/api/client/requirements.txt)
- [README.md](/api/client/README.md)
2. Install Python 3.8 or higher
3. Install requirements:
```bash
pip install -r requirements.txt
```
4. Update the SERVER_URL in peer_agent.py with this Space's URL
5. Run the client:
```bash
python peer_agent.py
```
The client will automatically detect GPU availability and start processing jobs.
""")
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
# For Hugging Face Spaces
if __name__ == "__main__":
demo.launch() |