Spaces:
Running
Running
| # Main file | |
| from PIL import Image | |
| import requests | |
| import matplotlib.pyplot as plt | |
| import torch | |
| # from torch import nn | |
| # from torchvision.models import resnet50 | |
| import torchvision.transforms as T | |
| torch.set_grad_enabled(False); | |
| # COCO classes | |
| CLASSES = [ | |
| 'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | |
| 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', | |
| 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', | |
| 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', | |
| 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', | |
| 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', | |
| 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', | |
| 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', | |
| 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', | |
| 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', | |
| 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', | |
| 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', | |
| 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', | |
| 'toothbrush' | |
| ] | |
| # colors for visualization | |
| COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], | |
| [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]] | |
| # standard PyTorch mean-std input image normalization | |
| transform = T.Compose([ | |
| T.Resize(800), | |
| T.ToTensor(), | |
| T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| # for output bounding box post-processing | |
| # Convert center of bounding box to relative image coordinates | |
| # from (cx, cy, w, h) to (x0, y0, x1, y1) | |
| def box_cxcywh_to_xyxy(x): | |
| x_c, y_c, w, h = x.unbind(1) | |
| b = [(x_c - 0.5 * w), (y_c - 0.5 * h), | |
| (x_c + 0.5 * w), (y_c + 0.5 * h)] | |
| return torch.stack(b, dim=1) | |
| # convert predictions to absolute image coordinates | |
| def rescale_bboxes(out_bbox, size): | |
| img_w, img_h = size | |
| b = box_cxcywh_to_xyxy(out_bbox) | |
| b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) | |
| return b | |
| def plot_results(pil_img, prob, boxes): | |
| plt.figure(figsize=(8,5)) | |
| plt.imshow(pil_img) | |
| ax = plt.gca() | |
| colors = COLORS * 100 | |
| for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors): | |
| ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, | |
| fill=False, color=c, linewidth=3)) | |
| cl = p.argmax() | |
| text = f'{CLASSES[cl]}: {p[cl]:0.2f}' | |
| ax.text(xmin, ymin, text, fontsize=15, | |
| bbox=dict(facecolor='yellow', alpha=0.5)) | |
| plt.axis('off') | |
| plt.show() | |
| def detect(im, model, transform): | |
| # mean-std normalize the input image (batch-size: 1) | |
| img = transform(im).unsqueeze(0) | |
| # demo model only support by default images with aspect ratio between 0.5 and 2 | |
| # if you want to use images with an aspect ratio outside this range | |
| # rescale your image so that the maximum size is at most 1333 for best results | |
| assert img.shape[-2] <= 1600 and img.shape[ | |
| -1] <= 1600, 'demo model only supports images up to 1600 pixels on each side' | |
| # propagate through the model | |
| outputs = model(img) | |
| # keep only predictions with 0.9+ confidence | |
| probas = outputs['pred_logits'].softmax(-1)[0, :, :-1] | |
| keep = probas.max(-1).values > 0.9 | |
| # convert boxes from [0; 1] to image scales | |
| bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size) | |
| return probas[keep], bboxes_scaled | |
| def load_model(): | |
| model = torch.hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=True) | |
| model.eval(); | |
| return model | |
| def main(): | |
| url = 'http://images.cocodataset.org/val2017/000000039769.jpg' | |
| im = Image.open(requests.get(url, stream=True).raw) | |
| model = load_model() | |
| scores, boxes = detect(im, model, transform) | |
| print('len(scores)',len(scores)) | |
| print('scores[0].shape', scores[0].shape) | |
| print('scores', scores) | |
| print('len(boxes)',len(boxes)) | |
| print('boxes',boxes) | |
| plot_results(im, scores, boxes) | |
| if __name__ == "__main__": | |
| main() | |