File size: 17,769 Bytes
ff09573
bd86a2f
ff09573
3fb8480
bd86a2f
 
 
8c6ebfd
 
 
951dff8
795546c
319229a
 
c9f8787
8c6ebfd
bd86a2f
a3a987c
bd86a2f
 
 
 
ff09573
da7c345
ff09573
da7c345
ff09573
 
 
 
 
 
 
da7c345
ff09573
 
 
 
06e8d82
da7c345
ff09573
 
da7c345
ff09573
 
 
 
 
da7c345
ff09573
 
 
 
 
2476270
 
ff09573
a3a987c
 
 
 
ff09573
bd86a2f
 
795546c
 
684cb9a
 
75003b4
684cb9a
 
 
 
 
 
ff09573
75003b4
bd86a2f
da7c345
ff09573
da7c345
795546c
 
ff09573
795546c
 
 
 
 
 
ff09573
75003b4
da7c345
ff09573
da7c345
ff09573
 
da7c345
75003b4
 
 
 
 
 
ff09573
75003b4
da7c345
ff09573
da7c345
ff09573
 
 
75003b4
 
 
 
 
 
ff09573
bd86a2f
da7c345
89669d3
da7c345
795546c
ff09573
da7c345
89669d3
795546c
 
ff09573
795546c
 
 
 
da7c345
a3a987c
 
 
4f0d8cb
a3a987c
 
bd86a2f
951dff8
f487de3
a3a987c
b8299c5
 
bd86a2f
a3a987c
bd86a2f
4f0d8cb
da7c345
4f0d8cb
 
951dff8
 
bd86a2f
 
4f0d8cb
bd86a2f
4f0d8cb
 
b8299c5
bd86a2f
 
a3a987c
 
951dff8
a3a987c
4f0d8cb
 
b8299c5
 
a3a987c
 
951dff8
 
bd86a2f
 
a3a987c
951dff8
bd86a2f
2476270
a3a987c
795546c
a3a987c
951dff8
 
 
 
 
 
 
 
b4d5d45
951dff8
da7c345
3f3c7f0
 
 
 
 
 
da7c345
795546c
3f3c7f0
951dff8
3f3c7f0
951dff8
795546c
 
951dff8
 
b8299c5
bd86a2f
da7c345
795546c
3f3c7f0
b4d5d45
951dff8
795546c
951dff8
 
4f0d8cb
 
3f3c7f0
951dff8
e499029
 
795546c
4f0d8cb
795546c
951dff8
 
 
b8299c5
 
da7c345
795546c
3f3c7f0
b8299c5
 
 
951dff8
3f3c7f0
951dff8
795546c
 
951dff8
 
b8299c5
a3a987c
da7c345
75003b4
 
 
319229a
 
 
 
da7c345
75003b4
 
 
 
 
 
 
319229a
c9f8787
319229a
 
c9f8787
319229a
c9f8787
75003b4
ff09573
c9f8787
 
 
 
319229a
 
75003b4
 
 
 
 
 
 
319229a
 
 
 
 
 
 
c9f8787
75003b4
319229a
 
 
684cb9a
da7c345
75003b4
 
 
 
 
 
 
 
 
 
da7c345
75003b4
 
 
 
 
 
 
 
 
 
 
da7c345
a3a987c
da7c345
a3a987c
c9f8787
89669d3
da7c345
951dff8
bd86a2f
 
319229a
4f0d8cb
a3a987c
3fb8480
 
 
319229a
b8299c5
795546c
 
319229a
c9f8787
 
319229a
75003b4
 
 
 
e499029
 
 
 
319229a
75003b4
ff09573
 
 
 
 
75003b4
 
da7c345
75003b4
ff09573
bd86a2f
da7c345
75003b4
 
c8c480c
06e8d82
 
da7c345
06e8d82
da7c345
 
06e8d82
da7c345
 
06e8d82
da7c345
 
 
 
 
06e8d82
 
da7c345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89669d3
da7c345
951dff8
bd86a2f
da7c345
 
 
c8c480c
da7c345
795546c
da7c345
795546c
da7c345
 
 
 
 
 
795546c
8c6ebfd
da7c345
795546c
da7c345
 
 
 
 
 
 
 
795546c
8c6ebfd
795546c
 
75003b4
da7c345
 
 
 
 
 
75003b4
 
da7c345
 
 
 
 
c8c480c
bd86a2f
f487de3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# app.py
import json
import re
import tempfile
from datetime import datetime, timedelta
from dateutil import tz

import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.dates as mdates
import folium
from matplotlib import cm
import branca.colormap as bcm

from grafanalib.core import (
    Dashboard, Graph, Row, Target, YAxis, YAxes, Time
)

TAIPEI = tz.gettz("Asia/Taipei")

# -----------------------------
# Google Drive 連結處理
# -----------------------------
DRIVE_PRESETS = [
    "https://drive.google.com/file/d/15yZ4QicICKZCnX6vjcD9JNXjnJmMFJD4/view?usp=drivesdk",
    "https://drive.google.com/file/d/1dqazYh_YzNNMbkUpgLRKSE9Y3ioPhtFu/view?usp=drivesdk",
    "https://drive.google.com/file/d/1A23f4q8DXHpoRIN5UQsDd6eM8jJ_Ruf8/view?usp=drivesdk",
]

def normalize_drive_url(url: str) -> str:
    """
    接受 Google Drive / Google Sheets 各式分享連結,回傳可直接給 pandas 讀取 CSV 的 URL。
    - Sheets: .../spreadsheets/d/<ID>/edit → .../export?format=csv
    - Drive File: .../file/d/<ID>/view → https://drive.google.com/uc?export=download&id=<ID>
    """
    if not isinstance(url, str) or not url.strip():
        raise ValueError("請提供有效的 Google 連結")

    url = url.strip()

    # Sheets
    m = re.search(r"https://docs\.google\.com/spreadsheets/d/([a-zA-Z0-9-_]+)", url)
    if m:
        sheet_id = m.group(1)
        return f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv"

    # Drive file
    m = re.search(r"https://drive\.google\.com/file/d/([a-zA-Z0-9-_]+)/", url)
    if m:
        file_id = m.group(1)
        return f"https://drive.google.com/uc?export=download&id={file_id}"

    return url


# -----------------------------
# Demo / Data loading
# -----------------------------
def make_demo_dataframe() -> pd.DataFrame:
    """隨機示範資料:含經緯度 + pid"""
    t0 = datetime.now(tz=TAIPEI) - timedelta(minutes=60)
    times = [t0 + timedelta(minutes=i) for i in range(61)]
    amp = np.random.rand(len(times))
    cnt = np.random.randint(0, 11, size=len(times))
    lats = np.random.uniform(21.8, 25.3, size=len(times))
    lons = np.random.uniform(120.0, 122.0, size=len(times))
    df = pd.DataFrame({
        "time": times,
        "amplitude": amp,
        "count": cnt,
        "lat": lats,
        "lon": lons
    })
    df["pid"] = np.arange(len(df))
    return df


def _finalize_time(df: pd.DataFrame) -> pd.DataFrame:
    """確保 time 欄位有時區、排序"""
    time_col = next((c for c in ["time", "timestamp", "datetime", "date"] if c in df.columns), None)
    if time_col is None:
        raise ValueError("資料需包含時間欄位(time/timestamp/datetime/date 其一)")
    df[time_col] = pd.to_datetime(df[time_col])
    df = df.rename(columns={time_col: "time"})
    if getattr(df["time"].dt, "tz", None) is None:
        df["time"] = df["time"].dt.tz_localize(TAIPEI)
    else:
        df["time"] = df["time"].dt.tz_convert(TAIPEI)
    return df.sort_values("time").reset_index(drop=True)


def load_csv(file: gr.File | None) -> pd.DataFrame:
    """讀上傳 CSV"""
    df = pd.read_csv(file.name)
    df = _finalize_time(df)
    # 若無 lat/lon,補隨機(避免地圖空白)
    if "lat" not in df.columns or "lon" not in df.columns:
        n = len(df)
        df["lat"] = np.random.uniform(21.8, 25.3, size=n)
        df["lon"] = np.random.uniform(120.0, 122.0, size=n)
    if "pid" not in df.columns:
        df["pid"] = np.arange(len(df))
    return df


def load_drive_csv(sheet_or_file_url: str) -> pd.DataFrame:
    """從 Google Sheets 或 Google Drive File 讀 CSV"""
    url = normalize_drive_url(sheet_or_file_url)
    df = pd.read_csv(url)
    df = _finalize_time(df)
    if "lat" not in df.columns or "lon" not in df.columns:
        n = len(df)
        df["lat"] = np.random.uniform(21.8, 25.3, size=n)
        df["lon"] = np.random.uniform(120.0, 122.0, size=n)
    if "pid" not in df.columns:
        df["pid"] = np.arange(len(df))
    return df


def load_data(source: str, file: gr.File | None = None, sheet_url: str = "") -> pd.DataFrame:
    """依來源載入資料:demo / upload / drive"""
    if source == "drive":
        if not sheet_url:
            raise ValueError("請選擇 Google 連結")
        return load_drive_csv(sheet_url)
    elif source == "upload":
        if file is None:
            raise ValueError("請上傳 CSV 檔")
        return load_csv(file)
    else:
        return make_demo_dataframe()


# -----------------------------
# grafanalib JSON builder
# -----------------------------
def build_grafanalib_dashboard(series_columns: list[str], dual_axis: bool, rolling_window: int) -> dict:
    panels = []
    panels.append(
        Graph(
            title=f"{series_columns[0]}",
            dataSource="(example)",
            targets=[Target(expr=f"{series_columns[0]}", legendFormat=series_columns[0])],
            lines=True, bars=False, points=False,
            yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short")),
        )
    )
    if len(series_columns) > 1:
        targets = [Target(expr=f"{series_columns[1]}", legendFormat=series_columns[1])]
        lines, bars, title = False, True, f"{series_columns[1]} (bar)"
        if dual_axis:
            targets.append(Target(expr=f"{series_columns[0]}", legendFormat=f"{series_columns[0]} (line)"))
            lines, bars = True, True
            title = f"{series_columns[1]} (bar) + {series_columns[0]} (line)"
        panels.append(
            Graph(
                title=title,
                dataSource="(example)",
                targets=targets,
                lines=lines, bars=bars, points=False,
                yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short")),
            )
        )
    panels.append(
        Graph(
            title=f"{series_columns[0]} rolling({rolling_window})",
            dataSource="(example)",
            targets=[Target(expr=f"{series_columns[0]}_rolling{rolling_window}",
                            legendFormat=f"{series_columns[0]}_rolling{rolling_window}")],
            lines=True, bars=False, points=False,
            yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short")),
        )
    )
    return Dashboard(
        title="Grafana-like Demo (grafanalib + Gradio)",
        rows=[Row(panels=panels)],
        timezone="browser",
        time=Time("now-1h", "now"),
    ).to_json_data()


# -----------------------------
# Matplotlib helpers
# -----------------------------
def _style_time_axis(ax):
    locator = mdates.AutoDateLocator(minticks=3, maxticks=6)
    formatter = mdates.ConciseDateFormatter(locator)
    ax.xaxis.set_major_locator(locator)
    ax.xaxis.set_major_formatter(formatter)
    ax.tick_params(axis="x", labelrotation=20, labelsize=9)
    ax.tick_params(axis="y", labelsize=9)
    ax.grid(True, which="major", alpha=0.25)
    plt.margins(x=0.02, y=0.05)


def _normalize_times(series: pd.Series) -> pd.Series:
    s = series.copy()
    if getattr(s.dt, "tz", None) is not None:
        s = s.dt.tz_convert("UTC").dt.tz_localize(None)
    return s


def render_line(df, col):
    times = _normalize_times(df["time"])
    fig, ax = plt.subplots(figsize=(6.5, 3.6))
    ax.plot(times, df[col], linewidth=1.6)
    ax.set_title(col, fontsize=12, pad=8)
    ax.set_xlabel("Time")
    ax.set_ylabel(col)
    _style_time_axis(ax)
    fig.tight_layout()
    return fig


def render_bar_or_dual(df, second_col, first_col, dual_axis):
    times = _normalize_times(df["time"])
    x = mdates.date2num(times.dt.to_pydatetime().tolist())
    fig, ax = plt.subplots(figsize=(6.5, 3.6))
    width = max(10, (times.astype("int64").diff().median() or 60) / 1e9 * 0.8) / 86400
    ax.bar(x, df[second_col], width=width, align="center", label=second_col)
    title = f"{second_col} (bar)"
    if dual_axis:
        ax2 = ax.twinx()
        ax2.plot(times, df[first_col], linewidth=1.6, label=f"{first_col} (line)")
        title = f"{second_col} (bar) + {first_col} (line)"
        h1, l1 = ax.get_legend_handles_labels()
        h2, l2 = ax2.get_legend_handles_labels()
        ax.legend(h1 + h2, l1 + l2, loc="upper left")
    else:
        ax.legend(loc="upper left")
    ax.set_title(title, fontsize=12, pad=8)
    _style_time_axis(ax)
    fig.tight_layout()
    return fig


def render_rolling(df, col, window=5):
    times = _normalize_times(df["time"])
    roll_col = f"{col}_rolling{window}"
    if roll_col not in df.columns:
        df[roll_col] = df[col].rolling(window=window, min_periods=1).mean()
    fig, ax = plt.subplots(figsize=(6.5, 3.6))
    ax.plot(times, df[roll_col], linewidth=1.6)
    ax.set_title(f"{col} rolling({window})", fontsize=12, pad=8)
    ax.set_xlabel("Time")
    ax.set_ylabel(roll_col)
    _style_time_axis(ax)
    fig.tight_layout()
    return fig, df


# -----------------------------
# Folium helpers (map + legend)
# -----------------------------
def _to_hex_color(value: float, cmap=cm.viridis) -> str:
    rgba = cmap(value)
    return "#{:02x}{:02x}{:02x}".format(int(rgba[0]*255), int(rgba[1]*255), int(rgba[2]*255))


def render_map_folium(
    df: pd.DataFrame,
    value_col: str = "amplitude",
    size_col: str = "count",
    cmap_name: str = "viridis",
    tiles: str = "OpenStreetMap",
) -> str:
    center_lat, center_lon = df["lat"].mean(), df["lon"].mean()
    m = folium.Map(location=[center_lat, center_lon], zoom_start=7, tiles=tiles)

    vmin, vmax = df[value_col].min(), df[value_col].max()
    cmap = getattr(cm, cmap_name)

    colormap = bcm.LinearColormap(
        [_to_hex_color(i, cmap) for i in np.linspace(0, 1, 256)],
        vmin=vmin, vmax=vmax
    )
    colormap.caption = f"{value_col} (color scale)"
    colormap.add_to(m)

    for _, row in df.iterrows():
        norm_val = (row[value_col] - vmin) / (vmax - vmin + 1e-9)
        popup_html = (
            f"<b>#ID:</b> {int(row['pid'])}<br>"
            f"<b>time:</b> {pd.to_datetime(row['time']).strftime('%Y-%m-%d %H:%M:%S')}<br>"
            f"<b>{value_col}:</b> {row[value_col]:.4f}<br>"
            f"<b>{size_col}:</b> {row[size_col]}<br>"
            f"<b>lat/lon:</b> {row['lat']:.5f}, {row['lon']:.5f}"
        )
        folium.CircleMarker(
            location=[row["lat"], row["lon"]],
            radius=row[size_col] + 3,
            color="black",
            weight=1,
            fill=True,
            fill_opacity=0.7,
            fill_color=_to_hex_color(norm_val, cmap),
            popup=folium.Popup(popup_html, max_width=300),
        ).add_to(m)

    return m._repr_html_()


# -----------------------------
# Detail helpers
# -----------------------------
def make_point_choices(df: pd.DataFrame) -> list[str]:
    labels = []
    for _, r in df.iterrows():
        t = pd.to_datetime(r["time"]).strftime("%H:%M:%S")
        labels.append(f"#{int(r['pid'])} | {t} | amp={r['amplitude']:.3f} cnt={int(r['count'])}")
    return labels


def pick_detail(df: pd.DataFrame, choice: str) -> pd.DataFrame:
    if not choice:
        return pd.DataFrame()
    try:
        pid_str = choice.split("|")[0].strip().lstrip("#")
        pid = int(pid_str)
        row = df[df["pid"] == pid]
        return row.reset_index(drop=True)
    except Exception:
        return pd.DataFrame()


# -----------------------------
# Main pipeline
# -----------------------------
def pipeline(source, file, sheet_url, series_choice, dual_axis, rolling_window, cmap_choice, tiles_choice):
    df = load_data(source, file, sheet_url)
    numeric_cols = [c for c in df.columns if c not in ["time", "lat", "lon", "pid"] and pd.api.types.is_numeric_dtype(df[c])]
    chosen = [c for c in (series_choice or numeric_cols[:2]) if c in numeric_cols]
    if not chosen:
        chosen = numeric_cols[:2]

    dash_json = build_grafanalib_dashboard(chosen, bool(dual_axis), int(rolling_window))
    dash_json_str = json.dumps(dash_json, ensure_ascii=False, indent=2, default=str)
    with tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w", encoding="utf-8") as f:
        f.write(dash_json_str)
        json_path = f.name

    fig1 = render_line(df, chosen[0])
    fig2 = render_bar_or_dual(df, chosen[1], chosen[0], bool(dual_axis)) if len(chosen) > 1 else plt.figure()
    fig3, df_with_roll = render_rolling(df.copy(), chosen[0], int(rolling_window))

    map_html = render_map_folium(df, value_col=chosen[0], size_col="count",
                                 cmap_name=cmap_choice, tiles=tiles_choice)

    point_choices = make_point_choices(df)
    default_choice = point_choices[0] if point_choices else ""
    detail_df = pick_detail(df, default_choice)

    demo_df = make_demo_dataframe()
    with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as f:
        demo_df.to_csv(f, index=False)
        demo_csv_path = f.name

    return (
        fig1, fig2, fig3, map_html,
        dash_json_str, json_path, df_with_roll,
        demo_csv_path,
        gr.Dropdown(choices=point_choices, value=default_choice),
        detail_df,
    )


def regenerate_demo(series_choice, dual_axis, rolling_window, cmap_choice, tiles_choice, current_choice):
    return pipeline("demo", None, "", series_choice, dual_axis, rolling_window, cmap_choice, tiles_choice)


def update_detail(df: pd.DataFrame, choice: str):
    return pick_detail(df, choice)


# -----------------------------
# UI(將 Google 來源改成只有下拉選單)
# -----------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("## Grafana-like Demo + Folium Map(支援 Google Drive / Sheets,下拉選單選擇來源)")

    source_radio = gr.Radio(["upload", "drive", "demo"], label="資料來源", value="demo")
    file_in = gr.File(label="上傳 CSV(選 upload 時使用)", file_types=[".csv"])

    # 只保留下拉選單,不再顯示可編輯的文字框
    preset_dd = gr.Dropdown(
        label="Google 預設來源(3 個連結)",
        choices=DRIVE_PRESETS,
        value=DRIVE_PRESETS[0]
    )

    series_multiselect = gr.CheckboxGroup(label="數值欄位", choices=[])
    dual_axis_chk = gr.Checkbox(label="第二面板啟用雙軸", value=False)
    rolling_dd = gr.Dropdown(label="Rolling window", choices=["3", "5", "10", "20"], value="5")
    cmap_dd = gr.Dropdown(label="地圖配色 (colormap)",
                          choices=["viridis", "plasma", "inferno", "magma", "cividis", "coolwarm"],
                          value="viridis")
    tiles_dd = gr.Dropdown(label="地圖底圖 (tiles)",
                           choices=["OpenStreetMap", "Stamen Terrain", "Stamen Toner",
                                    "CartoDB positron", "CartoDB dark_matter"],
                           value="OpenStreetMap")

    with gr.Row():
        run_btn = gr.Button("產生 Dashboard", scale=1)
        regen_btn = gr.Button("🔁 重新產生示範資料", scale=1)

    plot1 = gr.Plot(label="1:Line")
    plot2 = gr.Plot(label="2:Bar / Dual Axis")
    plot3 = gr.Plot(label="3:Rolling Mean")
    map_out = gr.HTML(label="4:Geo Map (Interactive + Legend)")

    json_box = gr.Code(label="grafanalib Dashboard JSON", language="json")
    json_file = gr.File(label="下載 dashboard.json")
    demo_csv_file = gr.File(label="下載示範資料 demo.csv")
    df_view = gr.Dataframe(label="資料預覽(含 rolling)", wrap=True)

    gr.Markdown("### 🔎 點位詳情(對應地圖彈窗中的 #ID)")
    point_selector = gr.Dropdown(label="選擇點位(#ID | 時間 | 值)", choices=[], value=None)
    detail_view = gr.Dataframe(label="選取點詳細資料", wrap=True)

    # 根據來源探勘欄位(drive 時讀取下拉的 URL)
    def probe_columns(source, file, preset_url):
        sheet_url = preset_url if source == "drive" else ""
        df = load_data(source, file, sheet_url)
        numeric_cols = [c for c in df.columns if c not in ["time", "lat", "lon", "pid"] and pd.api.types.is_numeric_dtype(df[c])]
        return gr.CheckboxGroup(choices=numeric_cols, value=numeric_cols[:2]), df

    source_radio.change(probe_columns, inputs=[source_radio, file_in, preset_dd], outputs=[series_multiselect, df_view])
    file_in.change(probe_columns, inputs=[source_radio, file_in, preset_dd], outputs=[series_multiselect, df_view])
    preset_dd.change(probe_columns, inputs=[source_radio, file_in, preset_dd], outputs=[series_multiselect, df_view])

    # 初次載入:預設用第一個 Google 連結
    demo.load(
        lambda: pipeline("drive", None, DRIVE_PRESETS[0], [], False, "5", "viridis", "OpenStreetMap"),
        inputs=None,
        outputs=[
            plot1, plot2, plot3, map_out,
            json_box, json_file, df_view,
            demo_csv_file,
            point_selector, detail_view
        ]
    )

    # 產生 / 重新產生
    run_btn.click(
        pipeline,
        inputs=[source_radio, file_in, preset_dd, series_multiselect, dual_axis_chk, rolling_dd, cmap_dd, tiles_dd],
        outputs=[
            plot1, plot2, plot3, map_out,
            json_box, json_file, df_view,
            demo_csv_file,
            point_selector, detail_view
        ]
    )

    regen_btn.click(
        regenerate_demo,
        inputs=[series_multiselect, dual_axis_chk, rolling_dd, cmap_dd, tiles_dd, point_selector],
        outputs=[
            plot1, plot2, plot3, map_out,
            json_box, json_file, df_view,
            demo_csv_file,
            point_selector, detail_view
        ]
    )

    point_selector.change(
        update_detail,
        inputs=[df_view, point_selector],
        outputs=[detail_view]
    )

if __name__ == "__main__":
    demo.launch()