Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,17 +7,20 @@ import gradio as gr
|
|
| 7 |
import pandas as pd
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
|
| 10 |
-
# === grafanalib:
|
| 11 |
-
#
|
| 12 |
from grafanalib.core import (
|
| 13 |
-
Dashboard, Graph, Row, Target, YAxis, YAxes,
|
| 14 |
)
|
| 15 |
|
| 16 |
TAIPEI = tz.gettz("Asia/Taipei")
|
| 17 |
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
t0 = datetime.now(tz=TAIPEI) - timedelta(minutes=60)
|
| 22 |
times = [t0 + timedelta(minutes=i) for i in range(61)]
|
| 23 |
amp = [0.5 + 0.4 * __import__("math").sin(i / 6.0) for i in range(61)]
|
|
@@ -27,7 +30,7 @@ def make_demo_dataframe():
|
|
| 27 |
|
| 28 |
|
| 29 |
def load_csv(file: gr.File | None) -> pd.DataFrame:
|
| 30 |
-
"""
|
| 31 |
if file is None:
|
| 32 |
return make_demo_dataframe()
|
| 33 |
|
|
@@ -39,38 +42,58 @@ def load_csv(file: gr.File | None) -> pd.DataFrame:
|
|
| 39 |
|
| 40 |
df[time_col] = pd.to_datetime(df[time_col])
|
| 41 |
df.rename(columns={time_col: "time"}, inplace=True)
|
| 42 |
-
|
|
|
|
| 43 |
if getattr(df["time"].dt, "tz", None) is None:
|
| 44 |
df["time"] = df["time"].dt.tz_localize(TAIPEI)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
return df
|
| 46 |
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
def build_grafanalib_dashboard(series_columns: list[str]) -> dict:
|
| 49 |
"""
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
"""
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
Graph(
|
| 58 |
title=f"Time Series - {series_columns[0]}",
|
| 59 |
dataSource="(example)",
|
| 60 |
-
targets=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
yAxes=YAxes(
|
| 62 |
-
left=YAxis(format="short"),
|
| 63 |
right=YAxis(format="short"),
|
| 64 |
),
|
| 65 |
)
|
| 66 |
-
|
| 67 |
|
|
|
|
| 68 |
if len(series_columns) > 1:
|
| 69 |
panels.append(
|
| 70 |
Graph(
|
| 71 |
-
title=f"Event Count - {series_columns[1]}",
|
| 72 |
dataSource="(example)",
|
| 73 |
targets=[Target(expr=f"{series_columns[1]}", legendFormat=series_columns[1])],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
yAxes=YAxes(
|
| 75 |
left=YAxis(format="short"),
|
| 76 |
right=YAxis(format="short"),
|
|
@@ -78,22 +101,45 @@ def build_grafanalib_dashboard(series_columns: list[str]) -> dict:
|
|
| 78 |
)
|
| 79 |
)
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
dash = Dashboard(
|
| 82 |
title="Seismology Demo Dashboard (grafanalib + Gradio)",
|
| 83 |
rows=[Row(panels=panels)],
|
| 84 |
timezone="browser",
|
| 85 |
-
time=
|
| 86 |
)
|
| 87 |
return dash.to_json_data()
|
| 88 |
|
| 89 |
|
|
|
|
|
|
|
|
|
|
| 90 |
def render_matplotlib(df: pd.DataFrame, value_cols: list[str]):
|
| 91 |
"""
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
| 94 |
"""
|
| 95 |
figs = []
|
| 96 |
|
|
|
|
| 97 |
fig1 = plt.figure()
|
| 98 |
plt.plot(df["time"], df[value_cols[0]])
|
| 99 |
plt.title(f"Time Series - {value_cols[0]}")
|
|
@@ -103,97 +149,132 @@ def render_matplotlib(df: pd.DataFrame, value_cols: list[str]):
|
|
| 103 |
plt.tight_layout()
|
| 104 |
figs.append(fig1)
|
| 105 |
|
|
|
|
| 106 |
if len(value_cols) > 1:
|
| 107 |
fig2 = plt.figure()
|
| 108 |
-
|
| 109 |
-
plt.
|
|
|
|
| 110 |
plt.xlabel("Time")
|
| 111 |
plt.ylabel(value_cols[1])
|
| 112 |
plt.xticks(rotation=20)
|
| 113 |
plt.tight_layout()
|
| 114 |
figs.append(fig2)
|
| 115 |
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
def pipeline(file, series_choice):
|
| 120 |
"""
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
"""
|
| 127 |
df = load_csv(file)
|
| 128 |
|
|
|
|
| 129 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 130 |
if not numeric_cols:
|
| 131 |
-
raise ValueError("
|
| 132 |
|
|
|
|
| 133 |
chosen = series_choice or numeric_cols[:2]
|
| 134 |
chosen = [c for c in chosen if c in numeric_cols]
|
| 135 |
if not chosen:
|
| 136 |
chosen = numeric_cols[:2]
|
| 137 |
|
|
|
|
| 138 |
dash_json = build_grafanalib_dashboard(chosen)
|
| 139 |
-
figs = render_matplotlib(df, chosen)
|
| 140 |
|
| 141 |
-
|
|
|
|
| 142 |
|
|
|
|
|
|
|
| 143 |
json_bytes = io.BytesIO(dash_json_str.encode("utf-8"))
|
| 144 |
json_bytes.name = "dashboard.json"
|
| 145 |
|
| 146 |
-
return figs, dash_json_str, json_bytes,
|
| 147 |
|
| 148 |
|
|
|
|
|
|
|
|
|
|
| 149 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 150 |
-
gr.Markdown(
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
with gr.Row():
|
| 155 |
file_in = gr.File(label="上傳 CSV(可空,會用示範資料)", file_types=[".csv"])
|
| 156 |
-
series_multiselect = gr.CheckboxGroup(
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
run_btn = gr.Button("產生 Dashboard 並繪圖")
|
| 159 |
|
| 160 |
with gr.Row():
|
| 161 |
-
gallery = gr.Gallery(label="圖表預覽(
|
|
|
|
| 162 |
with gr.Row():
|
| 163 |
-
json_box = gr.Code(label="grafanalib
|
|
|
|
| 164 |
with gr.Row():
|
| 165 |
json_file = gr.File(label="下載 dashboard.json")
|
| 166 |
|
| 167 |
-
df_view = gr.Dataframe(label="
|
| 168 |
|
|
|
|
| 169 |
def probe_columns(file):
|
| 170 |
-
"""當檔案上傳時,更新欄位選項和資料預覽"""
|
| 171 |
df = load_csv(file)
|
| 172 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 173 |
-
|
|
|
|
|
|
|
| 174 |
|
|
|
|
| 175 |
def initial_load():
|
| 176 |
-
"""在 App 載入時,用示範資料跑一次完整流程"""
|
| 177 |
figs, dash_json, json_file_obj, df = pipeline(file=None, series_choice=[])
|
| 178 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 179 |
-
|
| 180 |
-
return figs, dash_json, json_file_obj, df, gr.CheckboxGroup(choices=numeric_cols, value=
|
| 181 |
|
| 182 |
-
# 頁面載入:直接顯示範例圖與 JSON
|
| 183 |
demo.load(
|
| 184 |
initial_load,
|
| 185 |
inputs=None,
|
| 186 |
outputs=[gallery, json_box, json_file, df_view, series_multiselect]
|
| 187 |
)
|
| 188 |
|
| 189 |
-
# 上傳新檔:更新欄位清單與表格預覽
|
| 190 |
file_in.change(
|
| 191 |
probe_columns,
|
| 192 |
inputs=[file_in],
|
| 193 |
outputs=[series_multiselect, df_view],
|
| 194 |
)
|
| 195 |
|
| 196 |
-
# 產生與繪圖
|
| 197 |
run_btn.click(
|
| 198 |
pipeline,
|
| 199 |
inputs=[file_in, series_multiselect],
|
|
|
|
| 7 |
import pandas as pd
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
|
| 10 |
+
# === grafanalib: 只用來「定義」Grafana Dashboard JSON 結構 ===
|
| 11 |
+
# 注意:實際畫圖在 Space 端用 Matplotlib 完成
|
| 12 |
from grafanalib.core import (
|
| 13 |
+
Dashboard, Graph, Row, Target, YAxis, YAxes, Time
|
| 14 |
)
|
| 15 |
|
| 16 |
TAIPEI = tz.gettz("Asia/Taipei")
|
| 17 |
|
| 18 |
|
| 19 |
+
# -----------------------------
|
| 20 |
+
# Demo / Data loading
|
| 21 |
+
# -----------------------------
|
| 22 |
+
def make_demo_dataframe() -> pd.DataFrame:
|
| 23 |
+
"""產生示範資料(1 小時、每分鐘 1 點)"""
|
| 24 |
t0 = datetime.now(tz=TAIPEI) - timedelta(minutes=60)
|
| 25 |
times = [t0 + timedelta(minutes=i) for i in range(61)]
|
| 26 |
amp = [0.5 + 0.4 * __import__("math").sin(i / 6.0) for i in range(61)]
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
def load_csv(file: gr.File | None) -> pd.DataFrame:
|
| 33 |
+
"""支援上傳 CSV(需含時間欄:time/timestamp/datetime/date),自動轉 tz=Asia/Taipei。"""
|
| 34 |
if file is None:
|
| 35 |
return make_demo_dataframe()
|
| 36 |
|
|
|
|
| 42 |
|
| 43 |
df[time_col] = pd.to_datetime(df[time_col])
|
| 44 |
df.rename(columns={time_col: "time"}, inplace=True)
|
| 45 |
+
|
| 46 |
+
# 轉換 / 補上時區
|
| 47 |
if getattr(df["time"].dt, "tz", None) is None:
|
| 48 |
df["time"] = df["time"].dt.tz_localize(TAIPEI)
|
| 49 |
+
else:
|
| 50 |
+
df["time"] = df["time"].dt.tz_convert(TAIPEI)
|
| 51 |
+
|
| 52 |
+
# 依時間排序,避免畫圖時軸亂序
|
| 53 |
+
df = df.sort_values("time").reset_index(drop=True)
|
| 54 |
return df
|
| 55 |
|
| 56 |
|
| 57 |
+
# -----------------------------
|
| 58 |
+
# grafanalib JSON builder
|
| 59 |
+
# -----------------------------
|
| 60 |
def build_grafanalib_dashboard(series_columns: list[str]) -> dict:
|
| 61 |
"""
|
| 62 |
+
產生 Grafana Dashboard JSON:
|
| 63 |
+
- Panel 1:Line(第一個數值欄位)
|
| 64 |
+
- Panel 2:Bar(第二個數值欄位;若不存在則忽略)
|
| 65 |
+
- Panel 3:Line(第一個數值欄位的 5 點 rolling mean)
|
| 66 |
"""
|
| 67 |
+
panels = []
|
| 68 |
+
|
| 69 |
+
# Panel 1: 第一個欄位(折線)
|
| 70 |
+
panels.append(
|
| 71 |
Graph(
|
| 72 |
title=f"Time Series - {series_columns[0]}",
|
| 73 |
dataSource="(example)",
|
| 74 |
+
targets=[Target(expr=f"{series_columns[0]}", legendFormat=series_columns[0])],
|
| 75 |
+
# 折線圖
|
| 76 |
+
lines=True,
|
| 77 |
+
bars=False,
|
| 78 |
+
points=False,
|
| 79 |
yAxes=YAxes(
|
| 80 |
+
left=YAxis(format="short"),
|
| 81 |
right=YAxis(format="short"),
|
| 82 |
),
|
| 83 |
)
|
| 84 |
+
)
|
| 85 |
|
| 86 |
+
# Panel 2: 第二個欄位(柱狀)- 若有第二個欄位
|
| 87 |
if len(series_columns) > 1:
|
| 88 |
panels.append(
|
| 89 |
Graph(
|
| 90 |
+
title=f"Event Count (Bar) - {series_columns[1]}",
|
| 91 |
dataSource="(example)",
|
| 92 |
targets=[Target(expr=f"{series_columns[1]}", legendFormat=series_columns[1])],
|
| 93 |
+
# 柱狀圖
|
| 94 |
+
lines=False,
|
| 95 |
+
bars=True,
|
| 96 |
+
points=False,
|
| 97 |
yAxes=YAxes(
|
| 98 |
left=YAxis(format="short"),
|
| 99 |
right=YAxis(format="short"),
|
|
|
|
| 101 |
)
|
| 102 |
)
|
| 103 |
|
| 104 |
+
# Panel 3: 第一個欄位 Rolling Mean(折線)
|
| 105 |
+
panels.append(
|
| 106 |
+
Graph(
|
| 107 |
+
title=f"Rolling Mean (5) - {series_columns[0]}",
|
| 108 |
+
dataSource="(example)",
|
| 109 |
+
targets=[Target(expr=f"{series_columns[0]}_rolling5", legendFormat=f"{series_columns[0]}_rolling5")],
|
| 110 |
+
lines=True,
|
| 111 |
+
bars=False,
|
| 112 |
+
points=False,
|
| 113 |
+
yAxes=YAxes(
|
| 114 |
+
left=YAxis(format="short"),
|
| 115 |
+
right=YAxis(format="short"),
|
| 116 |
+
),
|
| 117 |
+
)
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
dash = Dashboard(
|
| 121 |
title="Seismology Demo Dashboard (grafanalib + Gradio)",
|
| 122 |
rows=[Row(panels=panels)],
|
| 123 |
timezone="browser",
|
| 124 |
+
time=Time("now-1h", "now"),
|
| 125 |
)
|
| 126 |
return dash.to_json_data()
|
| 127 |
|
| 128 |
|
| 129 |
+
# -----------------------------
|
| 130 |
+
# Matplotlib rendering
|
| 131 |
+
# -----------------------------
|
| 132 |
def render_matplotlib(df: pd.DataFrame, value_cols: list[str]):
|
| 133 |
"""
|
| 134 |
+
依據 df 實際畫圖:
|
| 135 |
+
- 圖1:第一個欄位(折線)
|
| 136 |
+
- 圖2:第二個欄位(柱狀;若不存在則略過)
|
| 137 |
+
- 圖3:第一個欄位的 5 點 rolling mean(折線)
|
| 138 |
+
回傳 List[Figure],給 gr.Gallery 顯示。
|
| 139 |
"""
|
| 140 |
figs = []
|
| 141 |
|
| 142 |
+
# 圖1:折線(第一欄)
|
| 143 |
fig1 = plt.figure()
|
| 144 |
plt.plot(df["time"], df[value_cols[0]])
|
| 145 |
plt.title(f"Time Series - {value_cols[0]}")
|
|
|
|
| 149 |
plt.tight_layout()
|
| 150 |
figs.append(fig1)
|
| 151 |
|
| 152 |
+
# 圖2:柱狀(第二欄,若存在)
|
| 153 |
if len(value_cols) > 1:
|
| 154 |
fig2 = plt.figure()
|
| 155 |
+
# 使用條狀圖
|
| 156 |
+
plt.bar(df["time"], df[value_cols[1]])
|
| 157 |
+
plt.title(f"Event Count (Bar) - {value_cols[1]}")
|
| 158 |
plt.xlabel("Time")
|
| 159 |
plt.ylabel(value_cols[1])
|
| 160 |
plt.xticks(rotation=20)
|
| 161 |
plt.tight_layout()
|
| 162 |
figs.append(fig2)
|
| 163 |
|
| 164 |
+
# 圖3:Rolling Mean(對第一欄做 5 點移動平均)
|
| 165 |
+
rolling_col = f"{value_cols[0]}_rolling5"
|
| 166 |
+
if rolling_col not in df.columns:
|
| 167 |
+
df[rolling_col] = df[value_cols[0]].rolling(window=5, min_periods=1, center=False).mean()
|
| 168 |
|
| 169 |
+
fig3 = plt.figure()
|
| 170 |
+
plt.plot(df["time"], df[rolling_col])
|
| 171 |
+
plt.title(f"Rolling Mean (5) - {value_cols[0]}")
|
| 172 |
+
plt.xlabel("Time")
|
| 173 |
+
plt.ylabel(rolling_col)
|
| 174 |
+
plt.xticks(rotation=20)
|
| 175 |
+
plt.tight_layout()
|
| 176 |
+
figs.append(fig3)
|
| 177 |
|
| 178 |
+
return figs, df # 回傳 df 讓上游可帶出 rolling 欄位
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
# -----------------------------
|
| 182 |
+
# Main pipeline
|
| 183 |
+
# -----------------------------
|
| 184 |
def pipeline(file, series_choice):
|
| 185 |
"""
|
| 186 |
+
主要流程:
|
| 187 |
+
1) 讀 CSV(或示範資料)
|
| 188 |
+
2) 選擇要展示的欄位(第一欄必定存在;第二欄選配)
|
| 189 |
+
3) 建立 grafanalib Dashboard JSON(含第三個 rolling 面板)
|
| 190 |
+
4) Matplotlib 繪圖(第2圖為柱狀;第3圖為 rolling mean)
|
| 191 |
"""
|
| 192 |
df = load_csv(file)
|
| 193 |
|
| 194 |
+
# 取得數值欄位(排除 time)
|
| 195 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 196 |
if not numeric_cols:
|
| 197 |
+
raise ValueError("未找到可繪圖的數值欄位。請提供至少一個數值欄位(除了 time 以外)。")
|
| 198 |
|
| 199 |
+
# 使用者選擇優先;否則預設取前兩個
|
| 200 |
chosen = series_choice or numeric_cols[:2]
|
| 201 |
chosen = [c for c in chosen if c in numeric_cols]
|
| 202 |
if not chosen:
|
| 203 |
chosen = numeric_cols[:2]
|
| 204 |
|
| 205 |
+
# 建 JSON(第三面板會參照 f"{chosen[0]}_rolling5")
|
| 206 |
dash_json = build_grafanalib_dashboard(chosen)
|
|
|
|
| 207 |
|
| 208 |
+
# 畫圖(第2圖為柱狀;第3圖為 rolling)
|
| 209 |
+
figs, df_with_rolling = render_matplotlib(df.copy(), chosen)
|
| 210 |
|
| 211 |
+
# JSON 輸出與下載檔
|
| 212 |
+
dash_json_str = json.dumps(dash_json, ensure_ascii=False, indent=2, default=str)
|
| 213 |
json_bytes = io.BytesIO(dash_json_str.encode("utf-8"))
|
| 214 |
json_bytes.name = "dashboard.json"
|
| 215 |
|
| 216 |
+
return figs, dash_json_str, json_bytes, df_with_rolling
|
| 217 |
|
| 218 |
|
| 219 |
+
# -----------------------------
|
| 220 |
+
# UI
|
| 221 |
+
# -----------------------------
|
| 222 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 223 |
+
gr.Markdown(
|
| 224 |
+
"# grafanalib 生成 Dashboard + Gradio 呈現\n"
|
| 225 |
+
"- 第一個面板:折線(第一個數值欄)\n"
|
| 226 |
+
"- 第二個面板:柱狀(第二個數值欄,若有)\n"
|
| 227 |
+
"- 第三個面板:第一個欄位的 5 點移動平均(折線)\n\n"
|
| 228 |
+
"**說明**:grafanalib 產生可匯入 Grafana 的 Dashboard JSON;下方 Matplotlib 圖為 Space 端即時呈現。"
|
| 229 |
+
)
|
| 230 |
|
| 231 |
with gr.Row():
|
| 232 |
file_in = gr.File(label="上傳 CSV(可空,會用示範資料)", file_types=[".csv"])
|
| 233 |
+
series_multiselect = gr.CheckboxGroup(
|
| 234 |
+
label="選擇要呈現的數值欄位(第一個欄位用於折線&rolling;第二個欄位用於柱狀,選配)",
|
| 235 |
+
choices=[]
|
| 236 |
+
)
|
| 237 |
|
| 238 |
run_btn = gr.Button("產生 Dashboard 並繪圖")
|
| 239 |
|
| 240 |
with gr.Row():
|
| 241 |
+
gallery = gr.Gallery(label="圖表預覽(1:Line, 2:Bar, 3:Rolling Line)", height=420)
|
| 242 |
+
|
| 243 |
with gr.Row():
|
| 244 |
+
json_box = gr.Code(label="grafanalib Dashboard JSON(可匯入真正的 Grafana)", language="json")
|
| 245 |
+
|
| 246 |
with gr.Row():
|
| 247 |
json_file = gr.File(label="下載 dashboard.json")
|
| 248 |
|
| 249 |
+
df_view = gr.Dataframe(label="資料預覽(包含 rolling 欄位)", wrap=True)
|
| 250 |
|
| 251 |
+
# 依檔案動態更新欄位選單與表格
|
| 252 |
def probe_columns(file):
|
|
|
|
| 253 |
df = load_csv(file)
|
| 254 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 255 |
+
# 預設勾選前兩個(若只有一個,就只勾一個)
|
| 256 |
+
default_select = numeric_cols[:2]
|
| 257 |
+
return gr.CheckboxGroup(choices=numeric_cols, value=default_select), df
|
| 258 |
|
| 259 |
+
# 初次載入:以 Demo 資料跑一次
|
| 260 |
def initial_load():
|
|
|
|
| 261 |
figs, dash_json, json_file_obj, df = pipeline(file=None, series_choice=[])
|
| 262 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 263 |
+
default_select = numeric_cols[:2]
|
| 264 |
+
return figs, dash_json, json_file_obj, df, gr.CheckboxGroup(choices=numeric_cols, value=default_select)
|
| 265 |
|
|
|
|
| 266 |
demo.load(
|
| 267 |
initial_load,
|
| 268 |
inputs=None,
|
| 269 |
outputs=[gallery, json_box, json_file, df_view, series_multiselect]
|
| 270 |
)
|
| 271 |
|
|
|
|
| 272 |
file_in.change(
|
| 273 |
probe_columns,
|
| 274 |
inputs=[file_in],
|
| 275 |
outputs=[series_multiselect, df_view],
|
| 276 |
)
|
| 277 |
|
|
|
|
| 278 |
run_btn.click(
|
| 279 |
pipeline,
|
| 280 |
inputs=[file_in, series_multiselect],
|