Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -110,14 +110,11 @@ def _style_time_axis(ax):
|
|
| 110 |
ax.tick_params(axis="x", labelrotation=20, labelsize=9)
|
| 111 |
ax.tick_params(axis="y", labelsize=9)
|
| 112 |
ax.grid(True, which="major", alpha=0.25)
|
| 113 |
-
plt.margins(x=0.02, y=0.05)
|
| 114 |
|
| 115 |
|
| 116 |
def _normalize_times(series: pd.Series) -> pd.Series:
|
| 117 |
-
"""
|
| 118 |
-
把可能帶時區的時間序列,轉成「UTC 再去時區」的 naive datetime,
|
| 119 |
-
以避免 Matplotlib 在處理 tz-aware 時間造成不一致。
|
| 120 |
-
"""
|
| 121 |
s = series.copy()
|
| 122 |
if getattr(s.dt, "tz", None) is not None:
|
| 123 |
s = s.dt.tz_convert("UTC").dt.tz_localize(None)
|
|
@@ -125,13 +122,13 @@ def _normalize_times(series: pd.Series) -> pd.Series:
|
|
| 125 |
|
| 126 |
|
| 127 |
def _infer_bar_width_days(times: pd.Series) -> float:
|
| 128 |
-
"""
|
| 129 |
t = pd.Series(times)
|
| 130 |
if len(t) < 2:
|
| 131 |
return 60 / 86400 # 60秒
|
| 132 |
diffs = t.astype("datetime64[ns]").diff().dt.total_seconds().dropna()
|
| 133 |
med = diffs.median() if not diffs.empty else 60.0
|
| 134 |
-
return max(10.0, med * 0.8) / 86400.0
|
| 135 |
|
| 136 |
|
| 137 |
def render_line(df: pd.DataFrame, col: str):
|
|
@@ -147,9 +144,9 @@ def render_line(df: pd.DataFrame, col: str):
|
|
| 147 |
|
| 148 |
|
| 149 |
def render_bar_or_dual(df: pd.DataFrame, second_col: str, first_col: str, dual_axis: bool):
|
| 150 |
-
# --- 修正點:正確轉換 Series 為原生 datetime(處理時區 + .dt.to_pydatetime()) ---
|
| 151 |
times = _normalize_times(df["time"])
|
| 152 |
-
|
|
|
|
| 153 |
|
| 154 |
fig, ax = plt.subplots(figsize=(6.5, 3.6))
|
| 155 |
width = _infer_bar_width_days(times)
|
|
@@ -202,34 +199,25 @@ def _placeholder_fig():
|
|
| 202 |
# Main pipeline
|
| 203 |
# -----------------------------
|
| 204 |
def pipeline(file, series_choice, dual_axis, rolling_window):
|
| 205 |
-
"""
|
| 206 |
-
1) 讀 CSV(或示範)
|
| 207 |
-
2) 第一欄→折線與 rolling;第二欄→柱狀/雙軸
|
| 208 |
-
3) 產出 grafanalib Dashboard JSON
|
| 209 |
-
4) 回傳三張圖、dashboard.json 路徑、資料表(含 rolling)、demo.csv 路徑
|
| 210 |
-
"""
|
| 211 |
df = load_csv(file)
|
| 212 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 213 |
if not numeric_cols:
|
| 214 |
-
raise ValueError("
|
| 215 |
|
| 216 |
chosen = [c for c in (series_choice or numeric_cols[:2]) if c in numeric_cols]
|
| 217 |
if not chosen:
|
| 218 |
chosen = numeric_cols[:2]
|
| 219 |
|
| 220 |
-
# Dashboard JSON
|
| 221 |
dash_json = build_grafanalib_dashboard(chosen, bool(dual_axis), int(rolling_window))
|
| 222 |
dash_json_str = json.dumps(dash_json, ensure_ascii=False, indent=2, default=str)
|
| 223 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w", encoding="utf-8") as f:
|
| 224 |
f.write(dash_json_str)
|
| 225 |
json_path = f.name
|
| 226 |
|
| 227 |
-
# Figures
|
| 228 |
fig1 = render_line(df, chosen[0])
|
| 229 |
fig2 = render_bar_or_dual(df, chosen[1], chosen[0], bool(dual_axis)) if len(chosen) > 1 else _placeholder_fig()
|
| 230 |
fig3, df_with_roll = render_rolling(df.copy(), chosen[0], window=int(rolling_window))
|
| 231 |
|
| 232 |
-
# demo.csv(每次都用全新隨機)
|
| 233 |
demo_df = make_demo_dataframe()
|
| 234 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as f:
|
| 235 |
demo_df.to_csv(f, index=False)
|
|
@@ -242,7 +230,6 @@ def pipeline(file, series_choice, dual_axis, rolling_window):
|
|
| 242 |
# Regenerate demo helper
|
| 243 |
# -----------------------------
|
| 244 |
def regenerate_demo(series_choice, dual_axis, rolling_window):
|
| 245 |
-
"""忽略上傳檔案,使用全新隨機示範資料。"""
|
| 246 |
return pipeline(file=None, series_choice=series_choice, dual_axis=dual_axis, rolling_window=rolling_window)
|
| 247 |
|
| 248 |
|
|
@@ -250,24 +237,18 @@ def regenerate_demo(series_choice, dual_axis, rolling_window):
|
|
| 250 |
# UI
|
| 251 |
# -----------------------------
|
| 252 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 253 |
-
gr.Markdown(
|
| 254 |
-
"## Grafana-like 隨機示範\n"
|
| 255 |
-
"為手機優化:精簡時間軸、控制刻度、加上網格與間距。"
|
| 256 |
-
)
|
| 257 |
|
| 258 |
with gr.Row():
|
| 259 |
file_in = gr.File(label="上傳 CSV(可空,會用隨機示範資料)", file_types=[".csv"])
|
| 260 |
-
series_multiselect = gr.CheckboxGroup(
|
| 261 |
-
label="數值欄位(第一欄→折線/rolling;第二欄→柱狀/雙軸)",
|
| 262 |
-
choices=[]
|
| 263 |
-
)
|
| 264 |
|
| 265 |
with gr.Row():
|
| 266 |
dual_axis_chk = gr.Checkbox(label="第二面板啟用雙軸", value=False)
|
| 267 |
rolling_dd = gr.Dropdown(label="Rolling window", choices=["3", "5", "10", "20"], value="5")
|
| 268 |
|
| 269 |
with gr.Row():
|
| 270 |
-
run_btn = gr.Button("
|
| 271 |
regen_btn = gr.Button("🔁 重新產生示範資料(隨機)")
|
| 272 |
|
| 273 |
with gr.Row():
|
|
@@ -282,7 +263,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 282 |
demo_csv_file = gr.File(label="下載示範資料 demo.csv")
|
| 283 |
df_view = gr.Dataframe(label="資料預覽(含 rolling 欄位)", wrap=True)
|
| 284 |
|
| 285 |
-
# 檔案上傳時,更新可選欄位與預覽
|
| 286 |
def probe_columns(file):
|
| 287 |
df = load_csv(file)
|
| 288 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
|
@@ -290,7 +270,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 290 |
|
| 291 |
file_in.change(probe_columns, inputs=[file_in], outputs=[series_multiselect, df_view])
|
| 292 |
|
| 293 |
-
# 初次載入:以隨機示範資料跑一次並更新欄位清單
|
| 294 |
def initial_load():
|
| 295 |
f1, f2, f3, dash_json, json_path, df, demo_csv_path = pipeline(
|
| 296 |
file=None, series_choice=[], dual_axis=False, rolling_window="5"
|
|
@@ -302,26 +281,18 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 302 |
False, "5"
|
| 303 |
)
|
| 304 |
|
| 305 |
-
demo.load(
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
series_multiselect, dual_axis_chk, rolling_dd],
|
| 310 |
-
)
|
| 311 |
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
inputs=[file_in, series_multiselect, dual_axis_chk, rolling_dd],
|
| 316 |
-
outputs=[plot1, plot2, plot3, json_box, json_file, df_view, demo_csv_file],
|
| 317 |
-
)
|
| 318 |
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
inputs=[series_multiselect, dual_axis_chk, rolling_dd],
|
| 323 |
-
outputs=[plot1, plot2, plot3, json_box, json_file, df_view, demo_csv_file],
|
| 324 |
-
)
|
| 325 |
|
| 326 |
if __name__ == "__main__":
|
| 327 |
demo.launch()
|
|
|
|
| 110 |
ax.tick_params(axis="x", labelrotation=20, labelsize=9)
|
| 111 |
ax.tick_params(axis="y", labelsize=9)
|
| 112 |
ax.grid(True, which="major", alpha=0.25)
|
| 113 |
+
plt.margins(x=0.02, y=0.05)
|
| 114 |
|
| 115 |
|
| 116 |
def _normalize_times(series: pd.Series) -> pd.Series:
|
| 117 |
+
"""把可能帶時區的時間序列轉成 naive datetime"""
|
|
|
|
|
|
|
|
|
|
| 118 |
s = series.copy()
|
| 119 |
if getattr(s.dt, "tz", None) is not None:
|
| 120 |
s = s.dt.tz_convert("UTC").dt.tz_localize(None)
|
|
|
|
| 122 |
|
| 123 |
|
| 124 |
def _infer_bar_width_days(times: pd.Series) -> float:
|
| 125 |
+
"""依時間間距估算柱寬(單位:天)"""
|
| 126 |
t = pd.Series(times)
|
| 127 |
if len(t) < 2:
|
| 128 |
return 60 / 86400 # 60秒
|
| 129 |
diffs = t.astype("datetime64[ns]").diff().dt.total_seconds().dropna()
|
| 130 |
med = diffs.median() if not diffs.empty else 60.0
|
| 131 |
+
return max(10.0, med * 0.8) / 86400.0
|
| 132 |
|
| 133 |
|
| 134 |
def render_line(df: pd.DataFrame, col: str):
|
|
|
|
| 144 |
|
| 145 |
|
| 146 |
def render_bar_or_dual(df: pd.DataFrame, second_col: str, first_col: str, dual_axis: bool):
|
|
|
|
| 147 |
times = _normalize_times(df["time"])
|
| 148 |
+
# ✅ 修正:to_pydatetime → to_list() 避免 FutureWarning
|
| 149 |
+
x = mdates.date2num(times.dt.to_pydatetime().tolist())
|
| 150 |
|
| 151 |
fig, ax = plt.subplots(figsize=(6.5, 3.6))
|
| 152 |
width = _infer_bar_width_days(times)
|
|
|
|
| 199 |
# Main pipeline
|
| 200 |
# -----------------------------
|
| 201 |
def pipeline(file, series_choice, dual_axis, rolling_window):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
df = load_csv(file)
|
| 203 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 204 |
if not numeric_cols:
|
| 205 |
+
raise ValueError("未找到可繪圖的數值欄位。")
|
| 206 |
|
| 207 |
chosen = [c for c in (series_choice or numeric_cols[:2]) if c in numeric_cols]
|
| 208 |
if not chosen:
|
| 209 |
chosen = numeric_cols[:2]
|
| 210 |
|
|
|
|
| 211 |
dash_json = build_grafanalib_dashboard(chosen, bool(dual_axis), int(rolling_window))
|
| 212 |
dash_json_str = json.dumps(dash_json, ensure_ascii=False, indent=2, default=str)
|
| 213 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w", encoding="utf-8") as f:
|
| 214 |
f.write(dash_json_str)
|
| 215 |
json_path = f.name
|
| 216 |
|
|
|
|
| 217 |
fig1 = render_line(df, chosen[0])
|
| 218 |
fig2 = render_bar_or_dual(df, chosen[1], chosen[0], bool(dual_axis)) if len(chosen) > 1 else _placeholder_fig()
|
| 219 |
fig3, df_with_roll = render_rolling(df.copy(), chosen[0], window=int(rolling_window))
|
| 220 |
|
|
|
|
| 221 |
demo_df = make_demo_dataframe()
|
| 222 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as f:
|
| 223 |
demo_df.to_csv(f, index=False)
|
|
|
|
| 230 |
# Regenerate demo helper
|
| 231 |
# -----------------------------
|
| 232 |
def regenerate_demo(series_choice, dual_axis, rolling_window):
|
|
|
|
| 233 |
return pipeline(file=None, series_choice=series_choice, dual_axis=dual_axis, rolling_window=rolling_window)
|
| 234 |
|
| 235 |
|
|
|
|
| 237 |
# UI
|
| 238 |
# -----------------------------
|
| 239 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 240 |
+
gr.Markdown("## Grafana-like 隨機示範\n手機優化:精簡時間軸、網格、隨機資料")
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
with gr.Row():
|
| 243 |
file_in = gr.File(label="上傳 CSV(可空,會用隨機示範資料)", file_types=[".csv"])
|
| 244 |
+
series_multiselect = gr.CheckboxGroup(label="數值欄位", choices=[])
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
with gr.Row():
|
| 247 |
dual_axis_chk = gr.Checkbox(label="第二面板啟用雙軸", value=False)
|
| 248 |
rolling_dd = gr.Dropdown(label="Rolling window", choices=["3", "5", "10", "20"], value="5")
|
| 249 |
|
| 250 |
with gr.Row():
|
| 251 |
+
run_btn = gr.Button("產生 Dashboard")
|
| 252 |
regen_btn = gr.Button("🔁 重新產生示範資料(隨機)")
|
| 253 |
|
| 254 |
with gr.Row():
|
|
|
|
| 263 |
demo_csv_file = gr.File(label="下載示範資料 demo.csv")
|
| 264 |
df_view = gr.Dataframe(label="資料預覽(含 rolling 欄位)", wrap=True)
|
| 265 |
|
|
|
|
| 266 |
def probe_columns(file):
|
| 267 |
df = load_csv(file)
|
| 268 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
|
|
|
| 270 |
|
| 271 |
file_in.change(probe_columns, inputs=[file_in], outputs=[series_multiselect, df_view])
|
| 272 |
|
|
|
|
| 273 |
def initial_load():
|
| 274 |
f1, f2, f3, dash_json, json_path, df, demo_csv_path = pipeline(
|
| 275 |
file=None, series_choice=[], dual_axis=False, rolling_window="5"
|
|
|
|
| 281 |
False, "5"
|
| 282 |
)
|
| 283 |
|
| 284 |
+
demo.load(initial_load,
|
| 285 |
+
inputs=None,
|
| 286 |
+
outputs=[plot1, plot2, plot3, json_box, json_file, df_view, demo_csv_file,
|
| 287 |
+
series_multiselect, dual_axis_chk, rolling_dd])
|
|
|
|
|
|
|
| 288 |
|
| 289 |
+
run_btn.click(pipeline,
|
| 290 |
+
inputs=[file_in, series_multiselect, dual_axis_chk, rolling_dd],
|
| 291 |
+
outputs=[plot1, plot2, plot3, json_box, json_file, df_view, demo_csv_file])
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
+
regen_btn.click(regenerate_demo,
|
| 294 |
+
inputs=[series_multiselect, dual_axis_chk, rolling_dd],
|
| 295 |
+
outputs=[plot1, plot2, plot3, json_box, json_file, df_view, demo_csv_file])
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
if __name__ == "__main__":
|
| 298 |
demo.launch()
|