cwadayi commited on
Commit
d51f1af
·
verified ·
1 Parent(s): 2b88ac2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +337 -102
app.py CHANGED
@@ -4,7 +4,6 @@ import re
4
  import tempfile
5
  from datetime import datetime, timedelta
6
  from dateutil import tz
7
- import time
8
  import logging
9
 
10
  import gradio as gr
@@ -17,11 +16,15 @@ from matplotlib import cm
17
  import branca.colormap as bcm
18
  import folium.plugins as plugins
19
  from matplotlib.patches import Wedge, Rectangle, FancyArrowPatch
20
- from matplotlib.path import Path as mpath
21
 
22
- from grafanalib.core import (
23
- Dashboard, Graph, Row, Target, YAxis, YAxes, Time, BarGauge
24
- )
 
 
 
 
 
25
 
26
  # 設置日誌
27
  logging.basicConfig(level=logging.DEBUG)
@@ -42,14 +45,19 @@ def normalize_drive_url(url: str) -> str:
42
  if not isinstance(url, str) or not url.strip():
43
  raise ValueError("請提供有效的 Google 連結")
44
  url = url.strip()
 
 
45
  m = re.search(r"https://docs\.google\.com/spreadsheets/d/([a-zA-Z0-9-_]+)", url)
46
  if m:
47
  sheet_id = m.group(1)
48
  return f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv"
 
 
49
  m = re.search(r"https://drive\.google\.com/file/d/([a-zA-Z0-9-_]+)/", url)
50
  if m:
51
  file_id = m.group(1)
52
  return f"https://drive.google.com/uc?export=download&id={file_id}"
 
53
  return url
54
 
55
  # -----------------------------
@@ -60,11 +68,13 @@ def make_demo_dataframe(last_time=None) -> tuple[pd.DataFrame, datetime]:
60
  last_time = datetime.now(tz=TAIPEI) - timedelta(minutes=60)
61
  else:
62
  last_time = last_time + timedelta(minutes=1) # 模擬每分鐘新增數據
 
63
  times = [last_time + timedelta(minutes=i) for i in range(61)]
64
  amp = np.random.rand(len(times))
65
  cnt = np.random.randint(0, 11, size=len(times))
66
  lats = np.random.uniform(21.8, 25.3, size=len(times))
67
  lons = np.random.uniform(120.0, 122.0, size=len(times))
 
68
  df = pd.DataFrame({"time": times, "amplitude": amp, "count": cnt, "lat": lats, "lon": lons})
69
  df["pid"] = np.arange(len(df))
70
  logger.debug(f"Generated new data with last_time: {last_time}")
@@ -74,12 +84,27 @@ def _finalize_time(df: pd.DataFrame) -> pd.DataFrame:
74
  time_col = next((c for c in ["time", "timestamp", "datetime", "date"] if c in df.columns), None)
75
  if time_col is None:
76
  raise ValueError("資料需包含時間欄位(time/timestamp/datetime/date 其一)")
77
- df[time_col] = pd.to_datetime(df[time_col])
 
 
 
 
78
  df = df.rename(columns={time_col: "time"})
79
- if getattr(df["time"].dt, "tz", None) is None:
80
- df["time"] = df["time"].dt.tz_localize(TAIPEI)
81
- else:
82
- df["time"] = df["time"].dt.tz_convert(TAIPEI)
 
 
 
 
 
 
 
 
 
 
 
83
  return df.sort_values("time").reset_index(drop=True)
84
 
85
  def load_csv(file: gr.File | None) -> pd.DataFrame:
@@ -97,7 +122,7 @@ def load_drive_csv(sheet_or_file_url: str) -> pd.DataFrame:
97
  except Exception as e:
98
  raise ValueError(f"Google 連結載入失敗:{str(e)}")
99
 
100
- def load_data(source: str, file: gr.File | None = None, sheet_url: str = "", last_time=None) -> tuple[pd.DataFrame, datetime]:
101
  if source == "drive":
102
  if not sheet_url:
103
  raise ValueError("請選擇 Google 連結")
@@ -110,21 +135,47 @@ def load_data(source: str, file: gr.File | None = None, sheet_url: str = "", las
110
  return make_demo_dataframe(last_time)
111
 
112
  # -----------------------------
113
- # 新功能:資料過濾
114
  # -----------------------------
 
 
 
 
 
 
 
 
115
  def filter_data(df: pd.DataFrame, start_time: str, end_time: str) -> pd.DataFrame:
116
  if start_time:
117
- df = df[df["time"] >= pd.to_datetime(start_time).tz_localize(TAIPEI)]
 
 
118
  if end_time:
119
- df = df[df["time"] <= pd.to_datetime(end_time).tz_localize(TAIPEI)]
 
 
120
  return df
121
 
122
  # -----------------------------
123
- # grafanalib JSON builder
124
  # -----------------------------
125
  def build_grafanalib_dashboard(series_columns: list[str], dual_axis: bool, rolling_window: int) -> dict:
 
 
 
 
 
 
 
 
126
  panels = [
127
- Graph(title=f"{series_columns[0]}", dataSource="(example)", targets=[Target(expr=f"{series_columns[0]}", legendFormat=series_columns[0])], lines=True, bars=False, points=False, yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short"))),
 
 
 
 
 
 
128
  ]
129
  if len(series_columns) > 1:
130
  targets = [Target(expr=f"{series_columns[1]}", legendFormat=series_columns[1])]
@@ -133,12 +184,37 @@ def build_grafanalib_dashboard(series_columns: list[str], dual_axis: bool, rolli
133
  targets.append(Target(expr=f"{series_columns[0]}", legendFormat=f"{series_columns[0]} (line)"))
134
  lines, bars = True, True
135
  title = f"{series_columns[1]} (bar) + {series_columns[0]} (line)"
136
- panels.append(Graph(title=title, dataSource="(example)", targets=targets, lines=lines, bars=bars, points=False, yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short"))))
 
 
 
 
 
 
 
 
 
137
  panels.extend([
138
- Graph(title=f"{series_columns[0]} rolling({rolling_window})", dataSource="(example)", targets=[Target(expr=f"{series_columns[0]}_rolling{rolling_window}", legendFormat=f"{series_columns[0]}_rolling{rolling_window}")], lines=True, bars=False, points=False, yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short"))),
139
- BarGauge(title=f"Latest {series_columns[0]}", dataSource="(example)", targets=[Target(expr=f"last({series_columns[0]})", legendFormat=series_columns[0])]),
 
 
 
 
 
 
 
 
 
 
 
140
  ])
141
- return Dashboard(title="Grafana-like Demo (grafanalib + Gradio)", rows=[Row(panels=panels)], timezone="browser", time=Time("now-1h", "now")).to_json_data()
 
 
 
 
 
142
 
143
  # -----------------------------
144
  # Matplotlib helpers
@@ -155,8 +231,12 @@ def _style_time_axis(ax):
155
 
156
  def _normalize_times(series: pd.Series) -> pd.Series:
157
  s = series.copy()
158
- if getattr(s.dt, "tz", None) is not None:
159
- s = s.dt.tz_convert("UTC").dt.tz_localize(None)
 
 
 
 
160
  return s
161
 
162
  def render_line(df, col):
@@ -172,11 +252,21 @@ def render_line(df, col):
172
 
173
  def render_bar_or_dual(df, second_col, first_col, dual_axis):
174
  times = _normalize_times(df["time"])
 
 
 
 
 
 
 
 
 
 
175
  x = mdates.date2num(times.dt.to_pydatetime().tolist())
176
  fig, ax = plt.subplots(figsize=(6, 3))
177
- width = max(10, (times.astype("int64").diff().median() or 60) / 1e9 * 0.8) / 86400
178
- ax.bar(x, df[second_col], width=width, align="center", label=second_col)
179
  title = f"{second_col} (bar)"
 
180
  if dual_axis:
181
  ax2 = ax.twinx()
182
  ax2.plot(times, df[first_col], linewidth=1.6, label=f"{first_col} (line)")
@@ -186,6 +276,7 @@ def render_bar_or_dual(df, second_col, first_col, dual_axis):
186
  ax.legend(h1 + h2, l1 + l2, loc="upper left")
187
  else:
188
  ax.legend(loc="upper left")
 
189
  ax.set_title(title, fontsize=12, pad=8)
190
  _style_time_axis(ax)
191
  fig.tight_layout()
@@ -206,7 +297,7 @@ def render_rolling(df, col, window=5):
206
  return fig, df
207
 
208
  # -----------------------------
209
- # 新增 Gauge 渲染
210
  # -----------------------------
211
  def degree_range(n):
212
  start = np.linspace(0, 180, n + 1, endpoint=True)[0:-1]
@@ -219,28 +310,43 @@ def rot_text(ang):
219
  return rotation
220
 
221
  def render_gauge(df, col):
222
- value = df[col].iloc[-1] if not df.empty else 0
223
- min_val, max_val = df[col].min(), df[col].max()
224
- normalized = (value - min_val) / (max_val - min_val + 1e-9) if max_val > min_val else 0
 
 
 
 
 
225
  labels = ['LOW', 'MEDIUM', 'HIGH']
226
  N = len(labels)
227
  colors = ['#007A00', '#FFCC00', '#ED1C24']
228
  arrow = 1 if normalized < 0.33 else 2 if normalized < 0.66 else 3
 
229
  fig, ax = plt.subplots(figsize=(5, 3.5))
230
  ang_range, mid_points = degree_range(N)
231
  labels = labels[::-1]
232
- patches = [Wedge((0., 0.), .4, *ang, facecolor='w', lw=2) for ang in ang_range] + [Wedge((0., 0.), .4, *ang, width=0.10, facecolor=c, lw=2, alpha=0.5) for ang, c in zip(ang_range, colors)]
233
- [ax.add_patch(p) for p in patches]
 
 
 
 
234
  for mid, lab in zip(mid_points, labels):
235
- ax.text(0.35 * np.cos(np.radians(mid)), 0.35 * np.sin(np.radians(mid)), lab, horizontalalignment='center', verticalalignment='center', fontsize=12, fontweight='bold', rotation=rot_text(mid))
 
 
236
  ax.add_patch(Rectangle((-0.4, -0.1), 0.8, 0.1, facecolor='w', lw=2))
237
- ax.text(0, -0.05, f"Latest {col}: {value:.2f}", horizontalalignment='center', verticalalignment='center', fontsize=12, fontweight='bold')
 
238
  pos = mid_points[abs(arrow - N)]
239
- ax.arrow(0, 0, 0.225 * np.cos(np.radians(pos)), 0.225 * np.sin(np.radians(pos)), width=0.04, head_width=0.09, head_length=0.1, fc='k', ec='k')
240
- ax.add_patch(FancyArrowPatch((0, 0), (0.01 * np.cos(np.radians(pos)), 0.01 * np.sin(np.radians(pos))), mutation_scale=10, fc='k', ec='k'))
 
 
241
  ax.set_frame_on(False)
242
- ax.axes.set_xticks([])
243
- ax.axes.set_yticks([])
244
  ax.axis('equal')
245
  plt.tight_layout()
246
  return fig
@@ -252,31 +358,56 @@ def _to_hex_color(value: float, cmap=cm.viridis) -> str:
252
  rgba = cmap(value)
253
  return "#{:02x}{:02x}{:02x}".format(int(rgba[0]*255), int(rgba[1]*255), int(rgba[2]*255))
254
 
255
- def render_map_folium(df: pd.DataFrame, value_col: str = "amplitude", size_col: str = "count", cmap_name: str = "viridis", tiles: str = "OpenStreetMap", show_heatmap: bool = False) -> str:
 
256
  if df.empty:
257
  return "<p>無資料可顯示地圖</p>"
 
258
  center_lat, center_lon = df["lat"].mean(), df["lon"].mean()
259
  m = folium.Map(location=[center_lat, center_lon], zoom_start=7, tiles=tiles)
260
- vmin, vmax = df[value_col].min(), df[value_col].max()
 
261
  cmap = getattr(cm, cmap_name)
262
- colormap = bcm.LinearColormap([_to_hex_color(i, cmap) for i in np.linspace(0, 1, 256)], vmin=vmin, vmax=vmax)
 
 
263
  colormap.caption = f"{value_col} (color scale)"
264
  colormap.add_to(m)
 
265
  if show_heatmap:
266
  heat_data = [[row["lat"], row["lon"], row[value_col]] for _, row in df.iterrows()]
267
  plugins.HeatMap(heat_data, radius=15, blur=10).add_to(m)
268
  else:
269
  for _, row in df.iterrows():
270
- norm_val = (row[value_col] - vmin) / (vmax - vmin + 1e-9)
271
- popup_html = f"<b>#ID:</b> {int(row['pid'])}<br><b>time:</b> {pd.to_datetime(row['time']).strftime('%Y-%m-%d %H:%M:%S')}<br><b>{value_col}:</b> {row[value_col]:.4f}<br><b>{size_col}:</b> {row[size_col]}<br><b>lat/lon:</b> {row['lat']:.5f}, {row['lon']:.5f}"
272
- folium.CircleMarker(location=[row["lat"], row["lon"]], radius=row[size_col] + 3, color="black", weight=1, fill=True, fill_opacity=0.7, fill_color=_to_hex_color(norm_val, cmap), popup=folium.Popup(popup_html, max_width=300)).add_to(m)
 
 
 
 
 
 
 
 
 
 
 
 
273
  return m._repr_html_()
274
 
275
  # -----------------------------
276
  # Detail helpers
277
  # -----------------------------
278
  def make_point_choices(df: pd.DataFrame) -> list[str]:
279
- return [f"#{int(r['pid'])} | {pd.to_datetime(r['time']).strftime('%H:%M:%S')} | amp={r.get('amplitude', 0):.3f} cnt={int(r.get('count', 0))}" for _, r in df.iterrows()]
 
 
 
 
 
 
 
280
 
281
  def pick_detail(df: pd.DataFrame, choice: str) -> pd.DataFrame:
282
  if not choice:
@@ -290,48 +421,94 @@ def pick_detail(df: pd.DataFrame, choice: str) -> pd.DataFrame:
290
  # -----------------------------
291
  # Main pipeline with dynamic update
292
  # -----------------------------
293
- def pipeline(source, file, sheet_url, series_choice, dual_axis, rolling_window, cmap_choice, tiles_choice, start_time, end_time, show_heatmap, last_time=None):
 
 
294
  try:
295
  df, new_last_time = load_data(source, file, sheet_url, last_time)
296
  df = filter_data(df, start_time, end_time)
297
- numeric_cols = [c for c in df.columns if c not in ["time", "lat", "lon", "pid"] and pd.api.types.is_numeric_dtype(df[c])]
 
 
 
 
298
  chosen = [c for c in (series_choice or numeric_cols[:2]) if c in numeric_cols] or numeric_cols[:2] or []
299
  if not chosen:
300
  raise ValueError("無有效數值欄位可視覺化")
 
 
301
  dash_json = build_grafanalib_dashboard(chosen, bool(dual_axis), int(rolling_window))
302
  dash_json_str = json.dumps(dash_json, ensure_ascii=False, indent=2, default=str)
303
  with tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w", encoding="utf-8") as f:
304
  f.write(dash_json_str)
305
  json_path = f.name
 
 
306
  fig1 = render_line(df, chosen[0])
307
  fig2 = render_bar_or_dual(df, chosen[1], chosen[0], bool(dual_axis)) if len(chosen) > 1 else plt.figure()
308
  fig3, df_with_roll = render_rolling(df.copy(), chosen[0], int(rolling_window))
309
  fig4 = render_gauge(df, chosen[0])
310
- map_html = render_map_folium(df, value_col=chosen[0], size_col=chosen[1] if len(chosen) > 1 else "count", cmap_name=cmap_choice, tiles=tiles_choice, show_heatmap=bool(show_heatmap))
 
 
 
 
 
 
311
  point_choices = [] if show_heatmap else make_point_choices(df)
312
- default_choice = point_choices[0] if point_choices else ""
313
- detail_df = pick_detail(df, default_choice)
 
 
314
  demo_df = make_demo_dataframe()[0]
315
  with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as f:
316
  demo_df.to_csv(f, index=False)
317
  demo_csv_path = f.name
 
318
  logger.debug(f"Pipeline executed with new_last_time: {new_last_time}")
319
- return fig1, fig2, fig3, fig4, map_html, dash_json_str, json_path, df_with_roll, demo_csv_path, gr.Dropdown(choices=point_choices, value=default_choice), detail_df, "", new_last_time
 
 
 
 
 
 
 
 
 
 
 
320
  except Exception as e:
321
  logger.error(f"Pipeline error: {str(e)}")
322
- return None, None, None, None, "<p>錯誤:無資料顯示</p>", "", None, pd.DataFrame(), None, gr.Dropdown(choices=[], value=None), pd.DataFrame(), str(e), last_time
323
-
324
- def regenerate_demo(series_choice, dual_axis, rolling_window, cmap_choice, tiles_choice, current_choice, start_time, end_time, show_heatmap, last_time):
325
- return pipeline("demo", None, "", series_choice, dual_axis, rolling_window, cmap_choice, tiles_choice, start_time, end_time, show_heatmap, last_time)
 
 
 
 
 
 
 
 
 
 
 
 
326
 
327
  def update_detail(df: pd.DataFrame, choice: str):
328
  return pick_detail(df, choice)
329
 
330
  # -----------------------------
331
- # UI 優化
332
  # -----------------------------
333
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
334
  gr.Markdown("## 動態時間序列 - Grafana-like Demo + Folium Map")
 
 
 
 
335
  with gr.Row():
336
  with gr.Column(scale=1):
337
  source_radio = gr.Radio(["upload", "drive", "demo"], label="資料來源", value="demo")
@@ -340,6 +517,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
340
  with gr.Row():
341
  start_time_in = gr.Textbox(label="開始時間", placeholder="2023-01-01 00:00:00")
342
  end_time_in = gr.Textbox(label="結束時間", placeholder="2023-12-31 23:59:59")
 
343
  with gr.Column(scale=1):
344
  series_multiselect = gr.CheckboxGroup(label="數值欄位", choices=[])
345
  dual_axis_chk = gr.Checkbox(label="第二面板雙軸", value=False)
@@ -347,11 +525,14 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
347
  cmap_dd = gr.Dropdown(label="地圖配色", choices=["viridis", "plasma", "inferno", "magma", "cividis", "coolwarm"], value="viridis")
348
  tiles_dd = gr.Dropdown(label="地圖底圖", choices=["OpenStreetMap", "Stamen Terrain", "Stamen Toner", "CartoDB positron", "CartoDB dark_matter"], value="OpenStreetMap")
349
  heatmap_chk = gr.Checkbox(label="顯示熱圖", value=False)
 
350
  with gr.Row():
351
  run_btn = gr.Button("產生 Dashboard", scale=1)
352
- update_btn = gr.Button("手動更新數據", scale=1)
353
- interval = gr.Slider(5, 60, value=10, step=5, label="自動更新間隔 (秒)")
 
354
  error_msg = gr.Markdown(value="", label="錯誤訊息", visible=True)
 
355
  with gr.Tabs():
356
  with gr.Tab("圖表"):
357
  with gr.Row():
@@ -364,86 +545,140 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
364
  plot3 = gr.Plot(label="3:Rolling Mean")
365
  with gr.Column(scale=1):
366
  plot4 = gr.Plot(label="4:Gauge")
 
367
  with gr.Tab("地圖"):
368
  map_out = gr.HTML(label="5:Geo Map")
 
369
  with gr.Tab("JSON & 檔案"):
370
  json_box = gr.Code(label="grafanalib Dashboard JSON", language="json")
371
  json_file = gr.File(label="下載 dashboard.json")
372
  demo_csv_file = gr.File(label="下載示範資料 demo.csv")
 
373
  with gr.Tab("資料預覽"):
374
- df_view = gr.Dataframe(label="資料預覽", wrap=True)
 
375
  with gr.Tab("點位詳情"):
376
  gr.Markdown("### 點位詳情")
377
  point_selector = gr.Dropdown(label="選擇點位", choices=[], value=None)
378
- detail_view = gr.Dataframe(label="選取點詳細資料", wrap=True)
379
 
 
380
  def probe_columns(source, file, preset_url, start_time, end_time):
381
  sheet_url = preset_url if source == "drive" else ""
382
  try:
383
  df, _ = load_data(source, file, sheet_url)
384
  df = filter_data(df, start_time, end_time)
385
- numeric_cols = [c for c in df.columns if c not in ["time", "lat", "lon", "pid"] and pd.api.types.is_numeric_dtype(df[c])]
386
- return gr.CheckboxGroup(choices=numeric_cols, value=numeric_cols[:2]), df, ""
 
387
  except Exception as e:
388
- return gr.CheckboxGroup(choices=[]), pd.DataFrame(), str(e)
389
 
390
- source_radio.change(probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in], [series_multiselect, df_view, error_msg])
391
- file_in.change(probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in], [series_multiselect, df_view, error_msg])
392
- preset_dd.change(probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in], [series_multiselect, df_view, error_msg])
393
- start_time_in.change(probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in], [series_multiselect, df_view, error_msg])
394
- end_time_in.change(probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in], [series_multiselect, df_view, error_msg])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395
 
 
396
  demo.load(
397
- fn=lambda: pipeline("drive", None, DRIVE_PRESETS[0], [], False, "5", "viridis", "OpenStreetMap", "", "", False),
398
- outputs=[plot1, plot2, plot3, plot4, map_out, json_box, json_file, df_view, demo_csv_file, point_selector, detail_view, error_msg, gr.State(value=None)]
 
 
 
 
 
 
 
 
 
399
  )
400
 
 
401
  run_btn.click(
402
  fn=pipeline,
403
- inputs=[source_radio, file_in, preset_dd, series_multiselect, dual_axis_chk, rolling_dd, cmap_dd, tiles_dd, start_time_in, end_time_in, heatmap_chk, gr.State(value=None)],
404
- outputs=[plot1, plot2, plot3, plot4, map_out, json_box, json_file, df_view, demo_csv_file, point_selector, detail_view, error_msg, gr.State()]
 
 
 
 
 
 
405
  )
406
 
407
  update_btn.click(
408
  fn=pipeline,
409
- inputs=[source_radio, file_in, preset_dd, series_multiselect, dual_axis_chk, rolling_dd, cmap_dd, tiles_dd, start_time_in, end_time_in, heatmap_chk, gr.State()],
410
- outputs=[plot1, plot2, plot3, plot4, map_out, json_box, json_file, df_view, demo_csv_file, point_selector, detail_view, error_msg, gr.State()]
 
 
 
 
 
 
411
  )
412
 
413
- def start_auto_update(interval):
414
- logger.debug(f"Setting auto update interval to {interval} seconds")
415
- return gr.update(value=interval)
416
-
417
- interval.change(
418
- fn=start_auto_update,
419
- inputs=[interval],
420
- outputs=[interval]
421
- )
422
-
423
- demo.js = """
424
- function startAutoUpdate() {
425
- let intervalValue = parseInt(document.querySelector('input[type="range"]').value) * 1000;
426
- function update() {
427
- setTimeout(() => {
428
- document.querySelector('button[aria-label="手動更新數據"]').click();
429
- update();
430
- }, intervalValue);
431
- }
432
- update();
433
- document.querySelector('input[type="range"]').addEventListener('input', function() {
434
- intervalValue = parseInt(this.value) * 1000;
435
- clearTimeout(window.updateTimeout);
436
- update();
437
- });
438
- }
439
- startAutoUpdate();
440
- """
441
-
442
  point_selector.change(
443
  fn=update_detail,
444
  inputs=[df_view, point_selector],
445
  outputs=[detail_view]
446
  )
447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448
  if __name__ == "__main__":
449
- demo.launch(server_name="0.0.0.0", server_port=7860)
 
 
4
  import tempfile
5
  from datetime import datetime, timedelta
6
  from dateutil import tz
 
7
  import logging
8
 
9
  import gradio as gr
 
16
  import branca.colormap as bcm
17
  import folium.plugins as plugins
18
  from matplotlib.patches import Wedge, Rectangle, FancyArrowPatch
 
19
 
20
+ # -------- grafanalib(可選;若未安裝則降級) --------
21
+ try:
22
+ from grafanalib.core import (
23
+ Dashboard, Graph, Row, Target, YAxis, YAxes, Time, BarGauge
24
+ )
25
+ GRAFANA_AVAILABLE = True
26
+ except Exception:
27
+ GRAFANA_AVAILABLE = False
28
 
29
  # 設置日誌
30
  logging.basicConfig(level=logging.DEBUG)
 
45
  if not isinstance(url, str) or not url.strip():
46
  raise ValueError("請提供有效的 Google 連結")
47
  url = url.strip()
48
+
49
+ # Google Sheets
50
  m = re.search(r"https://docs\.google\.com/spreadsheets/d/([a-zA-Z0-9-_]+)", url)
51
  if m:
52
  sheet_id = m.group(1)
53
  return f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv"
54
+
55
+ # Google Drive File
56
  m = re.search(r"https://drive\.google\.com/file/d/([a-zA-Z0-9-_]+)/", url)
57
  if m:
58
  file_id = m.group(1)
59
  return f"https://drive.google.com/uc?export=download&id={file_id}"
60
+
61
  return url
62
 
63
  # -----------------------------
 
68
  last_time = datetime.now(tz=TAIPEI) - timedelta(minutes=60)
69
  else:
70
  last_time = last_time + timedelta(minutes=1) # 模擬每分鐘新增數據
71
+
72
  times = [last_time + timedelta(minutes=i) for i in range(61)]
73
  amp = np.random.rand(len(times))
74
  cnt = np.random.randint(0, 11, size=len(times))
75
  lats = np.random.uniform(21.8, 25.3, size=len(times))
76
  lons = np.random.uniform(120.0, 122.0, size=len(times))
77
+
78
  df = pd.DataFrame({"time": times, "amplitude": amp, "count": cnt, "lat": lats, "lon": lons})
79
  df["pid"] = np.arange(len(df))
80
  logger.debug(f"Generated new data with last_time: {last_time}")
 
84
  time_col = next((c for c in ["time", "timestamp", "datetime", "date"] if c in df.columns), None)
85
  if time_col is None:
86
  raise ValueError("資料需包含時間欄位(time/timestamp/datetime/date 其一)")
87
+
88
+ df[time_col] = pd.to_datetime(df[time_col], errors="coerce")
89
+ if df[time_col].isna().all():
90
+ raise ValueError("時間欄位解析失敗,請確認格式")
91
+
92
  df = df.rename(columns={time_col: "time"})
93
+
94
+ # 若為 naive → 設定為台北時區;若已有時區 → 轉為台北
95
+ try:
96
+ if df["time"].dt.tz is None:
97
+ df["time"] = df["time"].dt.tz_localize(TAIPEI)
98
+ else:
99
+ df["time"] = df["time"].dt.tz_convert(TAIPEI)
100
+ except Exception:
101
+ # 逐列處理(防止混合型資料)
102
+ def _to_tpe(t):
103
+ if t.tzinfo is None:
104
+ return t.tz_localize(TAIPEI)
105
+ return t.tz_convert(TAIPEI)
106
+ df["time"] = df["time"].apply(_to_tpe)
107
+
108
  return df.sort_values("time").reset_index(drop=True)
109
 
110
  def load_csv(file: gr.File | None) -> pd.DataFrame:
 
122
  except Exception as e:
123
  raise ValueError(f"Google 連結載入失敗:{str(e)}")
124
 
125
+ def load_data(source: str, file: gr.File | None = None, sheet_url: str = "", last_time=None) -> tuple[pd.DataFrame, datetime | None]:
126
  if source == "drive":
127
  if not sheet_url:
128
  raise ValueError("請選擇 Google 連結")
 
135
  return make_demo_dataframe(last_time)
136
 
137
  # -----------------------------
138
+ # 資料過濾(時區安全)
139
  # -----------------------------
140
+ def _to_taipei(dt_like):
141
+ ts = pd.to_datetime(dt_like, errors="coerce")
142
+ if pd.isna(ts):
143
+ return None
144
+ if ts.tzinfo is None:
145
+ return ts.tz_localize(TAIPEI)
146
+ return ts.tz_convert(TAIPEI)
147
+
148
  def filter_data(df: pd.DataFrame, start_time: str, end_time: str) -> pd.DataFrame:
149
  if start_time:
150
+ st = _to_taipei(start_time)
151
+ if st is not None:
152
+ df = df[df["time"] >= st]
153
  if end_time:
154
+ et = _to_taipei(end_time)
155
+ if et is not None:
156
+ df = df[df["time"] <= et]
157
  return df
158
 
159
  # -----------------------------
160
+ # grafanalib JSON builder(可降級)
161
  # -----------------------------
162
  def build_grafanalib_dashboard(series_columns: list[str], dual_axis: bool, rolling_window: int) -> dict:
163
+ if not GRAFANA_AVAILABLE:
164
+ return {
165
+ "error": "grafanalib 未安裝。如需啟用,請在 requirements.txt 加入:grafanalib",
166
+ "series": series_columns,
167
+ "dual_axis": bool(dual_axis),
168
+ "rolling_window": int(rolling_window),
169
+ }
170
+
171
  panels = [
172
+ Graph(
173
+ title=f"{series_columns[0]}",
174
+ dataSource="(example)",
175
+ targets=[Target(expr=f"{series_columns[0]}", legendFormat=series_columns[0])],
176
+ lines=True, bars=False, points=False,
177
+ yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short"))
178
+ ),
179
  ]
180
  if len(series_columns) > 1:
181
  targets = [Target(expr=f"{series_columns[1]}", legendFormat=series_columns[1])]
 
184
  targets.append(Target(expr=f"{series_columns[0]}", legendFormat=f"{series_columns[0]} (line)"))
185
  lines, bars = True, True
186
  title = f"{series_columns[1]} (bar) + {series_columns[0]} (line)"
187
+ panels.append(
188
+ Graph(
189
+ title=title,
190
+ dataSource="(example)",
191
+ targets=targets,
192
+ lines=lines, bars=bars, points=False,
193
+ yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short"))
194
+ )
195
+ )
196
+
197
  panels.extend([
198
+ Graph(
199
+ title=f"{series_columns[0]} rolling({rolling_window})",
200
+ dataSource="(example)",
201
+ targets=[Target(expr=f"{series_columns[0]}_rolling{rolling_window}",
202
+ legendFormat=f"{series_columns[0]}_rolling{rolling_window}")],
203
+ lines=True, bars=False, points=False,
204
+ yAxes=YAxes(left=YAxis(format="short"), right=YAxis(format="short"))
205
+ ),
206
+ BarGauge(
207
+ title=f"Latest {series_columns[0]}",
208
+ dataSource="(example)",
209
+ targets=[Target(expr=f"last({series_columns[0]})", legendFormat=series_columns[0])]
210
+ ),
211
  ])
212
+ return Dashboard(
213
+ title="Grafana-like Demo (grafanalib + Gradio)",
214
+ rows=[Row(panels=panels)],
215
+ timezone="browser",
216
+ time=Time("now-1h", "now")
217
+ ).to_json_data()
218
 
219
  # -----------------------------
220
  # Matplotlib helpers
 
231
 
232
  def _normalize_times(series: pd.Series) -> pd.Series:
233
  s = series.copy()
234
+ try:
235
+ if s.dt.tz is not None:
236
+ s = s.dt.tz_convert("UTC").dt.tz_localize(None)
237
+ except Exception:
238
+ # 若混合/特殊情形,轉為 datetime 再去除 tz
239
+ s = pd.to_datetime(s, errors="coerce").dt.tz_convert("UTC").dt.tz_localize(None)
240
  return s
241
 
242
  def render_line(df, col):
 
252
 
253
  def render_bar_or_dual(df, second_col, first_col, dual_axis):
254
  times = _normalize_times(df["time"])
255
+
256
+ # 計算推薦的柱寬(用中位時間差;安全 fallback)
257
+ if len(times) >= 2:
258
+ delta_sec = pd.to_timedelta(times.diff(), errors="coerce").dt.total_seconds().median()
259
+ if pd.isna(delta_sec) or delta_sec <= 0:
260
+ delta_sec = 60.0
261
+ else:
262
+ delta_sec = 60.0
263
+ width_days = max(10.0, float(delta_sec) * 0.8) / 86400.0 # Matplotlib 的日期單位 = 天
264
+
265
  x = mdates.date2num(times.dt.to_pydatetime().tolist())
266
  fig, ax = plt.subplots(figsize=(6, 3))
267
+ ax.bar(x, df[second_col], width=width_days, align="center", label=second_col)
 
268
  title = f"{second_col} (bar)"
269
+
270
  if dual_axis:
271
  ax2 = ax.twinx()
272
  ax2.plot(times, df[first_col], linewidth=1.6, label=f"{first_col} (line)")
 
276
  ax.legend(h1 + h2, l1 + l2, loc="upper left")
277
  else:
278
  ax.legend(loc="upper left")
279
+
280
  ax.set_title(title, fontsize=12, pad=8)
281
  _style_time_axis(ax)
282
  fig.tight_layout()
 
297
  return fig, df
298
 
299
  # -----------------------------
300
+ # Gauge 渲染
301
  # -----------------------------
302
  def degree_range(n):
303
  start = np.linspace(0, 180, n + 1, endpoint=True)[0:-1]
 
310
  return rotation
311
 
312
  def render_gauge(df, col):
313
+ if df.empty:
314
+ value = 0.0
315
+ min_val, max_val = 0.0, 1.0
316
+ else:
317
+ value = float(df[col].iloc[-1])
318
+ min_val, max_val = float(df[col].min()), float(df[col].max())
319
+
320
+ normalized = (value - min_val) / (max_val - min_val + 1e-9) if max_val > min_val else 0.0
321
  labels = ['LOW', 'MEDIUM', 'HIGH']
322
  N = len(labels)
323
  colors = ['#007A00', '#FFCC00', '#ED1C24']
324
  arrow = 1 if normalized < 0.33 else 2 if normalized < 0.66 else 3
325
+
326
  fig, ax = plt.subplots(figsize=(5, 3.5))
327
  ang_range, mid_points = degree_range(N)
328
  labels = labels[::-1]
329
+
330
+ patches = [Wedge((0., 0.), .4, *ang, facecolor='w', lw=2) for ang in ang_range] + \
331
+ [Wedge((0., 0.), .4, *ang, width=0.10, facecolor=c, lw=2, alpha=0.5) for ang, c in zip(ang_range, colors)]
332
+ for p in patches:
333
+ ax.add_patch(p)
334
+
335
  for mid, lab in zip(mid_points, labels):
336
+ ax.text(0.35 * np.cos(np.radians(mid)), 0.35 * np.sin(np.radians(mid)),
337
+ lab, ha='center', va='center', fontsize=12, fontweight='bold', rotation=rot_text(mid))
338
+
339
  ax.add_patch(Rectangle((-0.4, -0.1), 0.8, 0.1, facecolor='w', lw=2))
340
+ ax.text(0, -0.05, f"Latest {col}: {value:.2f}", ha='center', va='center', fontsize=12, fontweight='bold')
341
+
342
  pos = mid_points[abs(arrow - N)]
343
+ ax.arrow(0, 0, 0.225 * np.cos(np.radians(pos)), 0.225 * np.sin(np.radians(pos)),
344
+ width=0.04, head_width=0.09, head_length=0.1, fc='k', ec='k')
345
+ ax.add_patch(FancyArrowPatch((0, 0), (0.01 * np.cos(np.radians(pos)), 0.01 * np.sin(np.radians(pos))),
346
+ mutation_scale=10, fc='k', ec='k'))
347
  ax.set_frame_on(False)
348
+ ax.set_xticks([])
349
+ ax.set_yticks([])
350
  ax.axis('equal')
351
  plt.tight_layout()
352
  return fig
 
358
  rgba = cmap(value)
359
  return "#{:02x}{:02x}{:02x}".format(int(rgba[0]*255), int(rgba[1]*255), int(rgba[2]*255))
360
 
361
+ def render_map_folium(df: pd.DataFrame, value_col: str = "amplitude", size_col: str = "count",
362
+ cmap_name: str = "viridis", tiles: str = "OpenStreetMap", show_heatmap: bool = False) -> str:
363
  if df.empty:
364
  return "<p>無資料可顯示地圖</p>"
365
+
366
  center_lat, center_lon = df["lat"].mean(), df["lon"].mean()
367
  m = folium.Map(location=[center_lat, center_lon], zoom_start=7, tiles=tiles)
368
+
369
+ vmin, vmax = float(df[value_col].min()), float(df[value_col].max())
370
  cmap = getattr(cm, cmap_name)
371
+ colormap = bcm.LinearColormap(
372
+ [_to_hex_color(i, cmap) for i in np.linspace(0, 1, 128)], vmin=vmin, vmax=vmax
373
+ )
374
  colormap.caption = f"{value_col} (color scale)"
375
  colormap.add_to(m)
376
+
377
  if show_heatmap:
378
  heat_data = [[row["lat"], row["lon"], row[value_col]] for _, row in df.iterrows()]
379
  plugins.HeatMap(heat_data, radius=15, blur=10).add_to(m)
380
  else:
381
  for _, row in df.iterrows():
382
+ norm_val = (row[value_col] - vmin) / (vmax - vmin + 1e-9) if vmax > vmin else 0.0
383
+ popup_html = (
384
+ f"<b>#ID:</b> {int(row['pid'])}"
385
+ f"<br><b>time:</b> {pd.to_datetime(row['time']).strftime('%Y-%m-%d %H:%M:%S')}"
386
+ f"<br><b>{value_col}:</b> {row[value_col]:.4f}"
387
+ f"<br><b>{size_col}:</b> {int(row[size_col]) if size_col in row else ''}"
388
+ f"<br><b>lat/lon:</b> {row['lat']:.5f}, {row['lon']:.5f}"
389
+ )
390
+ folium.CircleMarker(
391
+ location=[row["lat"], row["lon"]],
392
+ radius=(int(row[size_col]) if size_col in row else 3) + 3,
393
+ color="black", weight=1, fill=True, fill_opacity=0.7,
394
+ fill_color=_to_hex_color(norm_val, cmap),
395
+ popup=folium.Popup(popup_html, max_width=300)
396
+ ).add_to(m)
397
  return m._repr_html_()
398
 
399
  # -----------------------------
400
  # Detail helpers
401
  # -----------------------------
402
  def make_point_choices(df: pd.DataFrame) -> list[str]:
403
+ choices = []
404
+ for _, r in df.iterrows():
405
+ amp = r.get('amplitude', np.nan)
406
+ cnt = r.get('count', np.nan)
407
+ amp_str = f"{amp:.3f}" if pd.notna(amp) else "NA"
408
+ cnt_str = f"{int(cnt)}" if pd.notna(cnt) else "NA"
409
+ choices.append(f"#{int(r['pid'])} | {pd.to_datetime(r['time']).strftime('%H:%M:%S')} | amp={amp_str} cnt={cnt_str}")
410
+ return choices
411
 
412
  def pick_detail(df: pd.DataFrame, choice: str) -> pd.DataFrame:
413
  if not choice:
 
421
  # -----------------------------
422
  # Main pipeline with dynamic update
423
  # -----------------------------
424
+ def pipeline(source, file, sheet_url, series_choice, dual_axis, rolling_window,
425
+ cmap_choice, tiles_choice, start_time, end_time, show_heatmap, last_time=None):
426
+
427
  try:
428
  df, new_last_time = load_data(source, file, sheet_url, last_time)
429
  df = filter_data(df, start_time, end_time)
430
+
431
+ # 數值欄位辨識
432
+ numeric_cols = [c for c in df.columns
433
+ if c not in ["time", "lat", "lon", "pid"] and pd.api.types.is_numeric_dtype(df[c])]
434
+
435
  chosen = [c for c in (series_choice or numeric_cols[:2]) if c in numeric_cols] or numeric_cols[:2] or []
436
  if not chosen:
437
  raise ValueError("無有效數值欄位可視覺化")
438
+
439
+ # grafanalib JSON
440
  dash_json = build_grafanalib_dashboard(chosen, bool(dual_axis), int(rolling_window))
441
  dash_json_str = json.dumps(dash_json, ensure_ascii=False, indent=2, default=str)
442
  with tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w", encoding="utf-8") as f:
443
  f.write(dash_json_str)
444
  json_path = f.name
445
+
446
+ # 視覺化
447
  fig1 = render_line(df, chosen[0])
448
  fig2 = render_bar_or_dual(df, chosen[1], chosen[0], bool(dual_axis)) if len(chosen) > 1 else plt.figure()
449
  fig3, df_with_roll = render_rolling(df.copy(), chosen[0], int(rolling_window))
450
  fig4 = render_gauge(df, chosen[0])
451
+
452
+ # 地圖
453
+ size_col = chosen[1] if len(chosen) > 1 else ("count" if "count" in df.columns else chosen[0])
454
+ map_html = render_map_folium(df, value_col=chosen[0], size_col=size_col,
455
+ cmap_name=cmap_choice, tiles=tiles_choice, show_heatmap=bool(show_heatmap))
456
+
457
+ # 點位詳情
458
  point_choices = [] if show_heatmap else make_point_choices(df)
459
+ default_choice = point_choices[0] if point_choices else None
460
+ detail_df = pick_detail(df, default_choice) if default_choice else pd.DataFrame()
461
+
462
+ # 產一份 demo csv 供下載
463
  demo_df = make_demo_dataframe()[0]
464
  with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as f:
465
  demo_df.to_csv(f, index=False)
466
  demo_csv_path = f.name
467
+
468
  logger.debug(f"Pipeline executed with new_last_time: {new_last_time}")
469
+
470
+ return (
471
+ fig1, fig2, fig3, fig4, # 4 plots
472
+ map_html, # map (HTML)
473
+ dash_json_str, json_path, # JSON string & file
474
+ df_with_roll, demo_csv_path, # dataframe & demo csv
475
+ gr.update(choices=point_choices, value=default_choice), # point selector
476
+ detail_df, # detail view
477
+ "", # error message
478
+ new_last_time # state
479
+ )
480
+
481
  except Exception as e:
482
  logger.error(f"Pipeline error: {str(e)}")
483
+ # 發生錯誤時回傳空/預設
484
+ return (
485
+ None, None, None, None,
486
+ "<p>錯誤:無資料顯示</p>",
487
+ "", None,
488
+ pd.DataFrame(), None,
489
+ gr.update(choices=[], value=None),
490
+ pd.DataFrame(),
491
+ str(e),
492
+ last_time
493
+ )
494
+
495
+ def regenerate_demo(series_choice, dual_axis, rolling_window, cmap_choice, tiles_choice,
496
+ current_choice, start_time, end_time, show_heatmap, last_time):
497
+ return pipeline("demo", None, "", series_choice, dual_axis, rolling_window,
498
+ cmap_choice, tiles_choice, start_time, end_time, show_heatmap, last_time)
499
 
500
  def update_detail(df: pd.DataFrame, choice: str):
501
  return pick_detail(df, choice)
502
 
503
  # -----------------------------
504
+ # UI
505
  # -----------------------------
506
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
507
  gr.Markdown("## 動態時間序列 - Grafana-like Demo + Folium Map")
508
+
509
+ # Persistent state for streaming demo time
510
+ last_time_state = gr.State(value=None)
511
+
512
  with gr.Row():
513
  with gr.Column(scale=1):
514
  source_radio = gr.Radio(["upload", "drive", "demo"], label="資料來源", value="demo")
 
517
  with gr.Row():
518
  start_time_in = gr.Textbox(label="開始時間", placeholder="2023-01-01 00:00:00")
519
  end_time_in = gr.Textbox(label="結束時間", placeholder="2023-12-31 23:59:59")
520
+
521
  with gr.Column(scale=1):
522
  series_multiselect = gr.CheckboxGroup(label="數值欄位", choices=[])
523
  dual_axis_chk = gr.Checkbox(label="第二面板雙軸", value=False)
 
525
  cmap_dd = gr.Dropdown(label="地圖配色", choices=["viridis", "plasma", "inferno", "magma", "cividis", "coolwarm"], value="viridis")
526
  tiles_dd = gr.Dropdown(label="地圖底圖", choices=["OpenStreetMap", "Stamen Terrain", "Stamen Toner", "CartoDB positron", "CartoDB dark_matter"], value="OpenStreetMap")
527
  heatmap_chk = gr.Checkbox(label="顯示熱圖", value=False)
528
+
529
  with gr.Row():
530
  run_btn = gr.Button("產生 Dashboard", scale=1)
531
+ update_btn = gr.Button("手動更新數據", scale=1, elem_id="update_btn")
532
+ interval = gr.Slider(5, 60, value=10, step=5, label="自動更新間隔 (秒)", elem_id="interval_slider")
533
+
534
  error_msg = gr.Markdown(value="", label="錯誤訊息", visible=True)
535
+
536
  with gr.Tabs():
537
  with gr.Tab("圖表"):
538
  with gr.Row():
 
545
  plot3 = gr.Plot(label="3:Rolling Mean")
546
  with gr.Column(scale=1):
547
  plot4 = gr.Plot(label="4:Gauge")
548
+
549
  with gr.Tab("地圖"):
550
  map_out = gr.HTML(label="5:Geo Map")
551
+
552
  with gr.Tab("JSON & 檔案"):
553
  json_box = gr.Code(label="grafanalib Dashboard JSON", language="json")
554
  json_file = gr.File(label="下載 dashboard.json")
555
  demo_csv_file = gr.File(label="下載示範資料 demo.csv")
556
+
557
  with gr.Tab("資料預覽"):
558
+ df_view = gr.Dataframe(label="資料預覽")
559
+
560
  with gr.Tab("點位詳情"):
561
  gr.Markdown("### 點位詳情")
562
  point_selector = gr.Dropdown(label="選擇點位", choices=[], value=None)
563
+ detail_view = gr.Dataframe(label="選取點詳細資料")
564
 
565
+ # 探測欄位(不回傳新元件,而是更新其 choices/value)
566
  def probe_columns(source, file, preset_url, start_time, end_time):
567
  sheet_url = preset_url if source == "drive" else ""
568
  try:
569
  df, _ = load_data(source, file, sheet_url)
570
  df = filter_data(df, start_time, end_time)
571
+ numeric_cols = [c for c in df.columns
572
+ if c not in ["time", "lat", "lon", "pid"] and pd.api.types.is_numeric_dtype(df[c])]
573
+ return gr.update(choices=numeric_cols, value=numeric_cols[:2]), df, ""
574
  except Exception as e:
575
+ return gr.update(choices=[], value=[]), pd.DataFrame(), str(e)
576
 
577
+ source_radio.change(
578
+ probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in],
579
+ [series_multiselect, df_view, error_msg]
580
+ )
581
+ file_in.change(
582
+ probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in],
583
+ [series_multiselect, df_view, error_msg]
584
+ )
585
+ preset_dd.change(
586
+ probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in],
587
+ [series_multiselect, df_view, error_msg]
588
+ )
589
+ start_time_in.change(
590
+ probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in],
591
+ [series_multiselect, df_view, error_msg]
592
+ )
593
+ end_time_in.change(
594
+ probe_columns, [source_radio, file_in, preset_dd, start_time_in, end_time_in],
595
+ [series_multiselect, df_view, error_msg]
596
+ )
597
 
598
+ # 初次載入:用 drive 範例
599
  demo.load(
600
+ fn=lambda: pipeline("drive", None, DRIVE_PRESETS[0], [], False, "5",
601
+ "viridis", "OpenStreetMap", "", "", False, None),
602
+ outputs=[
603
+ plot1, plot2, plot3, plot4,
604
+ map_out,
605
+ json_box, json_file,
606
+ df_view, demo_csv_file,
607
+ point_selector, detail_view,
608
+ error_msg,
609
+ last_time_state
610
+ ]
611
  )
612
 
613
+ # 執行 / 更新(使用同一個 last_time_state)
614
  run_btn.click(
615
  fn=pipeline,
616
+ inputs=[source_radio, file_in, preset_dd, series_multiselect, dual_axis_chk, rolling_dd,
617
+ cmap_dd, tiles_dd, start_time_in, end_time_in, heatmap_chk, last_time_state],
618
+ outputs=[plot1, plot2, plot3, plot4,
619
+ map_out, json_box, json_file,
620
+ df_view, demo_csv_file,
621
+ point_selector, detail_view,
622
+ error_msg,
623
+ last_time_state]
624
  )
625
 
626
  update_btn.click(
627
  fn=pipeline,
628
+ inputs=[source_radio, file_in, preset_dd, series_multiselect, dual_axis_chk, rolling_dd,
629
+ cmap_dd, tiles_dd, start_time_in, end_time_in, heatmap_chk, last_time_state],
630
+ outputs=[plot1, plot2, plot3, plot4,
631
+ map_out, json_box, json_file,
632
+ df_view, demo_csv_file,
633
+ point_selector, detail_view,
634
+ error_msg,
635
+ last_time_state]
636
  )
637
 
638
+ # 點位詳情
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
639
  point_selector.change(
640
  fn=update_detail,
641
  inputs=[df_view, point_selector],
642
  outputs=[detail_view]
643
  )
644
 
645
+ # 自動更新(JS 以 elem_id 鎖定,避免 aria-label 變動)
646
+ gr.HTML("""
647
+ <script>
648
+ (function () {
649
+ function getSliderEl() {
650
+ const container = document.getElementById("interval_slider");
651
+ if (!container) return null;
652
+ return container.querySelector('input[type="range"]');
653
+ }
654
+ function getUpdateBtn() {
655
+ const container = document.getElementById("update_btn");
656
+ if (!container) return null;
657
+ // Gradio v4 內 Button 外層會包一層 div
658
+ return container.querySelector("button") || container;
659
+ }
660
+ let timer = null;
661
+ function schedule() {
662
+ const slider = getSliderEl();
663
+ const btn = getUpdateBtn();
664
+ if (!slider || !btn) {
665
+ setTimeout(schedule, 1000);
666
+ return;
667
+ }
668
+ const ms = parseInt(slider.value) * 1000;
669
+ if (timer) clearInterval(timer);
670
+ timer = setInterval(() => { btn.click(); }, ms);
671
+ slider.addEventListener("input", () => {
672
+ if (timer) clearInterval(timer);
673
+ const ms2 = parseInt(slider.value) * 1000;
674
+ timer = setInterval(() => { btn.click(); }, ms2);
675
+ });
676
+ }
677
+ schedule();
678
+ })();
679
+ </script>
680
+ """)
681
+
682
  if __name__ == "__main__":
683
+ # 在 Hugging Face Spaces 上可省略 server_name/server_port,平台會自動注入
684
+ demo.launch()