Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,17 +10,16 @@ import matplotlib.pyplot as plt
|
|
| 10 |
# === grafanalib: 定義 Dashboard 結構(不負責畫圖) ===
|
| 11 |
# 注意:grafanalib 只產生 Grafana JSON;我們會把 JSON 顯示出來,並用 Matplotlib 實際畫圖
|
| 12 |
from grafanalib.core import (
|
| 13 |
-
Dashboard, Graph, Row, Target, YAxis, YAxes,
|
| 14 |
)
|
| 15 |
|
| 16 |
TAIPEI = tz.gettz("Asia/Taipei")
|
| 17 |
|
| 18 |
|
| 19 |
def make_demo_dataframe():
|
| 20 |
-
"""產生示範資料(
|
| 21 |
t0 = datetime.now(tz=TAIPEI) - timedelta(minutes=60)
|
| 22 |
times = [t0 + timedelta(minutes=i) for i in range(61)]
|
| 23 |
-
# 假資料:振幅、事件數
|
| 24 |
amp = [0.5 + 0.4 * __import__("math").sin(i / 6.0) for i in range(61)]
|
| 25 |
cnt = [max(0, int(5 + 3 * __import__("math").cos(i / 10.0))) for i in range(61)]
|
| 26 |
df = pd.DataFrame({"time": times, "amplitude": amp, "count": cnt})
|
|
@@ -32,15 +31,9 @@ def load_csv(file: gr.File | None) -> pd.DataFrame:
|
|
| 32 |
if file is None:
|
| 33 |
return make_demo_dataframe()
|
| 34 |
|
| 35 |
-
# 讀 CSV,嘗試自動 parse 日期欄
|
| 36 |
df = pd.read_csv(file.name)
|
| 37 |
-
# 嘗試找到時間欄位(常見命名)
|
| 38 |
time_col_candidates = ["time", "timestamp", "datetime", "date"]
|
| 39 |
-
time_col = None
|
| 40 |
-
for c in time_col_candidates:
|
| 41 |
-
if c in df.columns:
|
| 42 |
-
time_col = c
|
| 43 |
-
break
|
| 44 |
if time_col is None:
|
| 45 |
raise ValueError("CSV 檔需包含時間欄位,例如:time / timestamp / datetime / date")
|
| 46 |
|
|
@@ -59,18 +52,15 @@ def build_grafanalib_dashboard(series_columns: list[str]) -> dict:
|
|
| 59 |
- Row 2:Event Count(Graph)展示第二個數值欄(如有)
|
| 60 |
注意:Target 只是示意;實際取數由我們在 Gradio 端處理。
|
| 61 |
"""
|
| 62 |
-
|
| 63 |
-
targets = [
|
| 64 |
-
Target(expr=f"{series_columns[0]}", legendFormat=series_columns[0]),
|
| 65 |
-
]
|
| 66 |
panels = [
|
| 67 |
Graph(
|
| 68 |
title=f"Time Series - {series_columns[0]}",
|
| 69 |
-
dataSource="(example)",
|
| 70 |
targets=targets,
|
| 71 |
yAxes=YAxes(
|
| 72 |
-
left=YAxis(format=
|
| 73 |
-
right=YAxis(format=
|
| 74 |
),
|
| 75 |
)
|
| 76 |
]
|
|
@@ -82,8 +72,8 @@ def build_grafanalib_dashboard(series_columns: list[str]) -> dict:
|
|
| 82 |
dataSource="(example)",
|
| 83 |
targets=[Target(expr=f"{series_columns[1]}", legendFormat=series_columns[1])],
|
| 84 |
yAxes=YAxes(
|
| 85 |
-
left=YAxis(format=
|
| 86 |
-
right=YAxis(format=
|
| 87 |
),
|
| 88 |
)
|
| 89 |
)
|
|
@@ -101,11 +91,10 @@ def build_grafanalib_dashboard(series_columns: list[str]) -> dict:
|
|
| 101 |
def render_matplotlib(df: pd.DataFrame, value_cols: list[str]):
|
| 102 |
"""
|
| 103 |
用 Matplotlib 依據 df 實際畫圖,對應 grafanalib 定義的欄位。
|
| 104 |
-
回傳多個 matplotlib Figure 物件(給 gr.Gallery
|
| 105 |
"""
|
| 106 |
figs = []
|
| 107 |
|
| 108 |
-
# 第一張圖
|
| 109 |
fig1 = plt.figure()
|
| 110 |
plt.plot(df["time"], df[value_cols[0]])
|
| 111 |
plt.title(f"Time Series - {value_cols[0]}")
|
|
@@ -115,7 +104,6 @@ def render_matplotlib(df: pd.DataFrame, value_cols: list[str]):
|
|
| 115 |
plt.tight_layout()
|
| 116 |
figs.append(fig1)
|
| 117 |
|
| 118 |
-
# 第二張圖(選配)
|
| 119 |
if len(value_cols) > 1:
|
| 120 |
fig2 = plt.figure()
|
| 121 |
plt.plot(df["time"], df[value_cols[1]])
|
|
@@ -139,12 +127,10 @@ def pipeline(file, series_choice):
|
|
| 139 |
"""
|
| 140 |
df = load_csv(file)
|
| 141 |
|
| 142 |
-
# 自動找出數值欄位(排除 time)
|
| 143 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 144 |
if not numeric_cols:
|
| 145 |
raise ValueError("未找到可繪圖的數值欄位。請在 CSV 中提供至少一個數值欄位(除了 time 以外)。")
|
| 146 |
|
| 147 |
-
# 若使用者有選擇,以選擇優先;否則用前兩個
|
| 148 |
chosen = series_choice or numeric_cols[:2]
|
| 149 |
chosen = [c for c in chosen if c in numeric_cols]
|
| 150 |
if not chosen:
|
|
@@ -153,10 +139,8 @@ def pipeline(file, series_choice):
|
|
| 153 |
dash_json = build_grafanalib_dashboard(chosen)
|
| 154 |
figs = render_matplotlib(df, chosen)
|
| 155 |
|
| 156 |
-
# 輸出 JSON(pretty)
|
| 157 |
dash_json_str = json.dumps(dash_json, ensure_ascii=False, indent=2, default=str)
|
| 158 |
|
| 159 |
-
# 讓使用者可以下載 JSON
|
| 160 |
json_bytes = io.BytesIO(dash_json_str.encode("utf-8"))
|
| 161 |
json_bytes.name = "dashboard.json"
|
| 162 |
|
|
@@ -166,7 +150,7 @@ def pipeline(file, series_choice):
|
|
| 166 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 167 |
gr.Markdown("# grafanalib 生成 Dashboard + Gradio 呈現\n"
|
| 168 |
"上傳 CSV(需含 `time` 欄)或用示範資料,選擇要畫的數值欄位。\n\n"
|
| 169 |
-
"**說明**:grafanalib
|
| 170 |
|
| 171 |
with gr.Row():
|
| 172 |
file_in = gr.File(label="上傳 CSV(可空,會用示範資料)", file_types=[".csv"])
|
|
@@ -181,7 +165,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 181 |
with gr.Row():
|
| 182 |
json_file = gr.File(label="下載 dashboard.json")
|
| 183 |
|
| 184 |
-
# 顯示 DataFrame(互動檢視)
|
| 185 |
df_view = gr.Dataframe(label="資料預覽(自動偵測 time + 數值欄位)", wrap=True)
|
| 186 |
|
| 187 |
def probe_columns(file):
|
|
@@ -191,32 +174,27 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 191 |
return gr.CheckboxGroup(choices=numeric_cols), df
|
| 192 |
|
| 193 |
def initial_load():
|
| 194 |
-
"""在 App
|
| 195 |
figs, dash_json, json_file_obj, df = pipeline(file=None, series_choice=[])
|
| 196 |
-
|
| 197 |
-
# 更新欄位選項,並設定預設勾選項目
|
| 198 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 199 |
chosen = numeric_cols[:2]
|
| 200 |
-
|
| 201 |
return figs, dash_json, json_file_obj, df, gr.CheckboxGroup(choices=numeric_cols, value=chosen)
|
| 202 |
|
| 203 |
-
#
|
| 204 |
-
|
| 205 |
-
# 1. 頁面載入時:直接用範例資料顯示圖表
|
| 206 |
demo.load(
|
| 207 |
initial_load,
|
| 208 |
inputs=None,
|
| 209 |
outputs=[gallery, json_box, json_file, df_view, series_multiselect]
|
| 210 |
)
|
| 211 |
|
| 212 |
-
#
|
| 213 |
file_in.change(
|
| 214 |
probe_columns,
|
| 215 |
inputs=[file_in],
|
| 216 |
outputs=[series_multiselect, df_view],
|
| 217 |
)
|
| 218 |
|
| 219 |
-
#
|
| 220 |
run_btn.click(
|
| 221 |
pipeline,
|
| 222 |
inputs=[file_in, series_multiselect],
|
|
@@ -224,4 +202,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 224 |
)
|
| 225 |
|
| 226 |
if __name__ == "__main__":
|
| 227 |
-
demo.launch()
|
|
|
|
| 10 |
# === grafanalib: 定義 Dashboard 結構(不負責畫圖) ===
|
| 11 |
# 注意:grafanalib 只產生 Grafana JSON;我們會把 JSON 顯示出來,並用 Matplotlib 實際畫圖
|
| 12 |
from grafanalib.core import (
|
| 13 |
+
Dashboard, Graph, Row, Target, YAxis, YAxes, # 移除 OPS_FORMAT
|
| 14 |
)
|
| 15 |
|
| 16 |
TAIPEI = tz.gettz("Asia/Taipei")
|
| 17 |
|
| 18 |
|
| 19 |
def make_demo_dataframe():
|
| 20 |
+
"""產生示範資料(1 小時,1 分鐘 1 點),欄位:time, amplitude, count"""
|
| 21 |
t0 = datetime.now(tz=TAIPEI) - timedelta(minutes=60)
|
| 22 |
times = [t0 + timedelta(minutes=i) for i in range(61)]
|
|
|
|
| 23 |
amp = [0.5 + 0.4 * __import__("math").sin(i / 6.0) for i in range(61)]
|
| 24 |
cnt = [max(0, int(5 + 3 * __import__("math").cos(i / 10.0))) for i in range(61)]
|
| 25 |
df = pd.DataFrame({"time": times, "amplitude": amp, "count": cnt})
|
|
|
|
| 31 |
if file is None:
|
| 32 |
return make_demo_dataframe()
|
| 33 |
|
|
|
|
| 34 |
df = pd.read_csv(file.name)
|
|
|
|
| 35 |
time_col_candidates = ["time", "timestamp", "datetime", "date"]
|
| 36 |
+
time_col = next((c for c in time_col_candidates if c in df.columns), None)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
if time_col is None:
|
| 38 |
raise ValueError("CSV 檔需包含時間欄位,例如:time / timestamp / datetime / date")
|
| 39 |
|
|
|
|
| 52 |
- Row 2:Event Count(Graph)展示第二個數值欄(如有)
|
| 53 |
注意:Target 只是示意;實際取數由我們在 Gradio 端處理。
|
| 54 |
"""
|
| 55 |
+
targets = [Target(expr=f"{series_columns[0]}", legendFormat=series_columns[0])]
|
|
|
|
|
|
|
|
|
|
| 56 |
panels = [
|
| 57 |
Graph(
|
| 58 |
title=f"Time Series - {series_columns[0]}",
|
| 59 |
+
dataSource="(example)",
|
| 60 |
targets=targets,
|
| 61 |
yAxes=YAxes(
|
| 62 |
+
left=YAxis(format="none"),
|
| 63 |
+
right=YAxis(format="none"),
|
| 64 |
),
|
| 65 |
)
|
| 66 |
]
|
|
|
|
| 72 |
dataSource="(example)",
|
| 73 |
targets=[Target(expr=f"{series_columns[1]}", legendFormat=series_columns[1])],
|
| 74 |
yAxes=YAxes(
|
| 75 |
+
left=YAxis(format="none"),
|
| 76 |
+
right=YAxis(format="none"),
|
| 77 |
),
|
| 78 |
)
|
| 79 |
)
|
|
|
|
| 91 |
def render_matplotlib(df: pd.DataFrame, value_cols: list[str]):
|
| 92 |
"""
|
| 93 |
用 Matplotlib 依據 df 實際畫圖,對應 grafanalib 定義的欄位。
|
| 94 |
+
回傳多個 matplotlib Figure 物件(給 gr.Gallery 使用)
|
| 95 |
"""
|
| 96 |
figs = []
|
| 97 |
|
|
|
|
| 98 |
fig1 = plt.figure()
|
| 99 |
plt.plot(df["time"], df[value_cols[0]])
|
| 100 |
plt.title(f"Time Series - {value_cols[0]}")
|
|
|
|
| 104 |
plt.tight_layout()
|
| 105 |
figs.append(fig1)
|
| 106 |
|
|
|
|
| 107 |
if len(value_cols) > 1:
|
| 108 |
fig2 = plt.figure()
|
| 109 |
plt.plot(df["time"], df[value_cols[1]])
|
|
|
|
| 127 |
"""
|
| 128 |
df = load_csv(file)
|
| 129 |
|
|
|
|
| 130 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 131 |
if not numeric_cols:
|
| 132 |
raise ValueError("未找到可繪圖的數值欄位。請在 CSV 中提供至少一個數值欄位(除了 time 以外)。")
|
| 133 |
|
|
|
|
| 134 |
chosen = series_choice or numeric_cols[:2]
|
| 135 |
chosen = [c for c in chosen if c in numeric_cols]
|
| 136 |
if not chosen:
|
|
|
|
| 139 |
dash_json = build_grafanalib_dashboard(chosen)
|
| 140 |
figs = render_matplotlib(df, chosen)
|
| 141 |
|
|
|
|
| 142 |
dash_json_str = json.dumps(dash_json, ensure_ascii=False, indent=2, default=str)
|
| 143 |
|
|
|
|
| 144 |
json_bytes = io.BytesIO(dash_json_str.encode("utf-8"))
|
| 145 |
json_bytes.name = "dashboard.json"
|
| 146 |
|
|
|
|
| 150 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 151 |
gr.Markdown("# grafanalib 生成 Dashboard + Gradio 呈現\n"
|
| 152 |
"上傳 CSV(需含 `time` 欄)或用示範資料,選擇要畫的數值欄位。\n\n"
|
| 153 |
+
"**說明**:grafanalib 產生 Grafana 的 Dashboard JSON;下方 Matplotlib 圖是 Space 端實際呈現。")
|
| 154 |
|
| 155 |
with gr.Row():
|
| 156 |
file_in = gr.File(label="上傳 CSV(可空,會用示範資料)", file_types=[".csv"])
|
|
|
|
| 165 |
with gr.Row():
|
| 166 |
json_file = gr.File(label="下載 dashboard.json")
|
| 167 |
|
|
|
|
| 168 |
df_view = gr.Dataframe(label="資料預覽(自動偵測 time + 數值欄位)", wrap=True)
|
| 169 |
|
| 170 |
def probe_columns(file):
|
|
|
|
| 174 |
return gr.CheckboxGroup(choices=numeric_cols), df
|
| 175 |
|
| 176 |
def initial_load():
|
| 177 |
+
"""在 App 載入時,用示範資料跑一次完整流程"""
|
| 178 |
figs, dash_json, json_file_obj, df = pipeline(file=None, series_choice=[])
|
|
|
|
|
|
|
| 179 |
numeric_cols = [c for c in df.columns if c != "time" and pd.api.types.is_numeric_dtype(df[c])]
|
| 180 |
chosen = numeric_cols[:2]
|
|
|
|
| 181 |
return figs, dash_json, json_file_obj, df, gr.CheckboxGroup(choices=numeric_cols, value=chosen)
|
| 182 |
|
| 183 |
+
# 頁面載入:直接顯示範例圖與 JSON
|
|
|
|
|
|
|
| 184 |
demo.load(
|
| 185 |
initial_load,
|
| 186 |
inputs=None,
|
| 187 |
outputs=[gallery, json_box, json_file, df_view, series_multiselect]
|
| 188 |
)
|
| 189 |
|
| 190 |
+
# 上傳新檔:更新欄位清單與表格預覽
|
| 191 |
file_in.change(
|
| 192 |
probe_columns,
|
| 193 |
inputs=[file_in],
|
| 194 |
outputs=[series_multiselect, df_view],
|
| 195 |
)
|
| 196 |
|
| 197 |
+
# 產生與繪圖
|
| 198 |
run_btn.click(
|
| 199 |
pipeline,
|
| 200 |
inputs=[file_in, series_multiselect],
|
|
|
|
| 202 |
)
|
| 203 |
|
| 204 |
if __name__ == "__main__":
|
| 205 |
+
demo.launch()
|