Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,181 +4,189 @@ import matplotlib.pyplot as plt
|
|
| 4 |
|
| 5 |
# --- 輔助函數:產生 Ricker 震波 ---
|
| 6 |
def ricker_wavelet(t, f=25.0):
|
| 7 |
-
|
| 8 |
-
t = t - 2.0 / f # 將震波峰值對齊時間點
|
| 9 |
p = (np.pi * f * t) ** 2
|
| 10 |
return (1 - 2 * p) * np.exp(-p)
|
| 11 |
|
| 12 |
# --- 核心計算與繪圖函數 ---
|
| 13 |
-
def plot_seismic_exploration(v1, v2,
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
if v2 <= v1:
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
x_continuous = np.linspace(0, x_max, 500)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
t_first_arrival_continuous = np.minimum(t_direct, t_refracted)
|
| 39 |
|
| 40 |
fig1, ax1 = plt.subplots(figsize=(10, 6))
|
| 41 |
-
ax1.plot(x_continuous,
|
| 42 |
-
ax1.plot(x_continuous,
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
if
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
ax1.legend()
|
| 51 |
ax1.grid(True)
|
| 52 |
ax1.set_xlim(0, x_max)
|
| 53 |
-
y_max =
|
| 54 |
-
ax1.set_ylim(0, y_max
|
| 55 |
|
| 56 |
-
# === PART
|
| 57 |
fig2, ax2 = plt.subplots(figsize=(10, 5))
|
| 58 |
receiver_x = np.linspace(0, x_max, int(num_receivers))
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
t_first_arrival_rx = np.minimum(receiver_x / v1, (receiver_x / v2) + ti)
|
| 63 |
|
| 64 |
-
|
| 65 |
-
wavelet_duration = 0.08
|
| 66 |
wavelet_t = np.linspace(0, wavelet_duration, 100)
|
| 67 |
|
| 68 |
for i in range(int(num_receivers)):
|
| 69 |
-
#
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
ax2.plot(
|
| 74 |
-
ax2.fill_betweenx(
|
| 75 |
-
|
| 76 |
-
#
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
ax2.plot(
|
| 81 |
-
ax2.fill_betweenx(
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
ax2.
|
| 85 |
-
ax2.plot(0, 0, 'r*', markersize=20, label='Source')
|
| 86 |
-
ax2.plot(receiver_x, np.zeros_like(receiver_x), 'kv', markersize=8, label='Receivers')
|
| 87 |
-
|
| 88 |
-
ax2.set_title(f"2. Visualized Seismic Profile ({int(num_receivers)} Traces)", fontsize=14, loc='left')
|
| 89 |
-
ax2.set_xlabel("Distance (m)")
|
| 90 |
-
ax2.set_ylabel("Two-Way Time (s)")
|
| 91 |
ax2.set_xlim(-x_max * 0.05, x_max * 1.05)
|
| 92 |
-
|
| 93 |
|
| 94 |
-
#
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# === PART 4: 準備輸出的說明文字 ===
|
| 103 |
-
results_md = f"""
|
| 104 |
-
### 🔬 分析結果
|
| 105 |
-
|
| 106 |
-
根據您設計的地層模型,我們計算出以下關鍵物理量:
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
"""
|
| 117 |
-
return fig1, fig2, results_md
|
| 118 |
|
| 119 |
-
# --- Gradio 介面設定 ---
|
| 120 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 121 |
-
gr.
|
| 122 |
-
|
| 123 |
-
# 地心震波奇幻之旅:地球物理遊樂場 🌍
|
| 124 |
-
> 創意的發揮是一種學習,過程中,每個人同時是學生也是老師。
|
| 125 |
-
|
| 126 |
-
這個實驗室就是你的遊樂場。透過親手設計地層模型、佈放虛擬測站,你將不只是學習,更是在**創造和發現**地底下的物理法則。
|
| 127 |
-
"""
|
| 128 |
-
)
|
| 129 |
|
| 130 |
with gr.Row():
|
| 131 |
with gr.Column(scale=1):
|
| 132 |
-
gr.Markdown("###
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
gr.Markdown("###
|
| 138 |
-
xmax_slider = gr.Slider(label="最大觀測距離 (m)", minimum=100, maximum=
|
| 139 |
-
receivers_slider = gr.Slider(label="測站數量", minimum=
|
| 140 |
-
|
| 141 |
-
gain_slider = gr.Slider(label="剖面增益 (Display Gain)", minimum=1, maximum=20, value=4, step=1)
|
| 142 |
|
| 143 |
-
submit_btn = gr.Button("🚀
|
| 144 |
|
| 145 |
with gr.Column(scale=2):
|
| 146 |
-
gr.Markdown("###
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
| 149 |
|
| 150 |
with gr.Row():
|
| 151 |
-
|
| 152 |
|
| 153 |
# --- 事件監聽 ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
submit_btn.click(
|
| 155 |
fn=plot_seismic_exploration,
|
| 156 |
-
inputs=[v1_slider, v2_slider,
|
| 157 |
-
outputs=[plot_output1, plot_output2,
|
| 158 |
)
|
| 159 |
|
| 160 |
gr.Markdown(
|
| 161 |
"""
|
| 162 |
---
|
| 163 |
-
###
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
- **黑色震波** 代表 **反射波 (Reflected Wave)**,它們來自地下介面的反射。
|
| 168 |
-
|
| 169 |
-
地球物理學家最重要的工作,就是在成千上萬條震波線中,**尋找並追蹤這些連續排列的震波(稱為「同相軸」)**。例如,圖中那條優美的黑色雙曲線同相軸,就清楚地標示出了地下第一層介面的位置!
|
| 170 |
-
|
| 171 |
-
### 🚀 探索與發現
|
| 172 |
-
1. **增益的效果**: 試著調整「剖面增益」,看看震波的振幅如何變化。在真實資料中,深層的反射信號很微弱,就需要提高增益才能看清楚。
|
| 173 |
-
2. **看見雙曲線**: 專注觀察剖面圖中的黑色震波。當你增加「測站數量」時,是不是能更清楚地「描繪」出那條對應到上方 T-X 圖的紫色雙曲線?
|
| 174 |
-
3. **初達波的威力**: 紅色的初達波在剖面圖中形成了一條明顯的分界線。觀察它的轉折點,思考一下這個轉折點(交越距離)告訴了我們關於地下速度結構的什麼資訊?
|
| 175 |
"""
|
| 176 |
)
|
| 177 |
|
| 178 |
gr.HTML("""
|
| 179 |
<footer style="text-align:center; margin-top: 30px; color:grey;">
|
| 180 |
<p>「創意的發揮是一種學習,過程中,每個人同時是學生也是老師。」</p>
|
| 181 |
-
<p
|
| 182 |
</footer>
|
| 183 |
""")
|
| 184 |
|
|
|
|
| 4 |
|
| 5 |
# --- 輔助函數:產生 Ricker 震波 ---
|
| 6 |
def ricker_wavelet(t, f=25.0):
|
| 7 |
+
t = t - 2.0 / f
|
|
|
|
| 8 |
p = (np.pi * f * t) ** 2
|
| 9 |
return (1 - 2 * p) * np.exp(-p)
|
| 10 |
|
| 11 |
# --- 核心計算與繪圖函數 ---
|
| 12 |
+
def plot_seismic_exploration(v1, v2, v3, h1, h2, x_max, num_receivers, gain):
|
| 13 |
+
# === PART 1: 物理計算 (升級至三層模型) ===
|
| 14 |
+
# 物理條件檢查
|
| 15 |
+
valid_model = True
|
| 16 |
+
error_msg = ""
|
| 17 |
+
if v2 <= v1 or v3 <= v2:
|
| 18 |
+
valid_model = False
|
| 19 |
+
error_msg = "### 模型錯誤\n速度必須隨深度增加 (V3 > V2 > V1)。"
|
| 20 |
+
|
| 21 |
+
# 計算關鍵物理量 (第一層介面)
|
| 22 |
+
t0_1 = (2 * h1) / v1
|
| 23 |
+
# 計算關鍵物理量 (第二層介面)
|
| 24 |
+
t0_2 = (2 * h1 / v1) + (2 * h2 / v2)
|
| 25 |
+
|
| 26 |
+
# === PART 2: 繪製地質模型圖 (新圖表) ===
|
| 27 |
+
fig0, ax0 = plt.subplots(figsize=(10, 2))
|
| 28 |
+
ax0.set_xlim(0, x_max)
|
| 29 |
+
ax0.set_ylim(-(h1 + h2) * 1.5, 5)
|
| 30 |
+
ax0.axhline(0, color='brown', linewidth=3)
|
| 31 |
+
ax0.axhline(-h1, color='gray', linestyle='--')
|
| 32 |
+
ax0.axhline(-(h1+h2), color='darkgray', linestyle='--')
|
| 33 |
+
ax0.fill_between([0, x_max], 0, -h1, color='sandybrown', alpha=0.6)
|
| 34 |
+
ax0.fill_between([0, x_max], -h1, -(h1+h2), color='darkkhaki', alpha=0.6)
|
| 35 |
+
ax0.fill_between([0, x_max], -(h1+h2), -(h1 + h2) * 1.5, color='dimgray', alpha=0.6)
|
| 36 |
+
ax0.text(x_max/2, -h1/2, f'Layer 1\nV1 = {v1:.0f} m/s\nh1 = {h1:.0f} m', ha='center', va='center', fontsize=10, color='black')
|
| 37 |
+
ax0.text(x_max/2, -h1-h2/2, f'Layer 2\nV2 = {v2:.0f} m/s\nh2 = {h2:.0f} m', ha='center', va='center', fontsize=10, color='black')
|
| 38 |
+
ax0.text(x_max/2, -(h1+h2)*1.25, f'Layer 3 (Basement)\nV3 = {v3:.0f} m/s', ha='center', va='center', fontsize=10, color='white')
|
| 39 |
+
ax0.set_title("Geological Model Cross-section")
|
| 40 |
+
ax0.set_ylabel("Depth (m)")
|
| 41 |
+
ax0.set_yticks([0, -h1, -(h1+h2)])
|
| 42 |
+
ax0.set_xticks([])
|
| 43 |
+
|
| 44 |
+
# === PART 3: 繪製 T-X 走時曲線圖 ===
|
| 45 |
x_continuous = np.linspace(0, x_max, 500)
|
| 46 |
+
# 反射波
|
| 47 |
+
t_refl_1 = np.sqrt(t0_1**2 + (x_continuous / v1)**2)
|
| 48 |
+
t_refl_2 = np.sqrt(t0_2**2 + (x_continuous / ((v1*h1 + v2*h2)/(h1+h2)) )**2) # RMS velocity approximation
|
|
|
|
| 49 |
|
| 50 |
fig1, ax1 = plt.subplots(figsize=(10, 6))
|
| 51 |
+
ax1.plot(x_continuous, t_refl_1, 'm:', linewidth=2, label='Reflection 1 (from Layer 2)')
|
| 52 |
+
ax1.plot(x_continuous, t_refl_2, 'c:', linewidth=2, label='Reflection 2 (from Layer 3)')
|
| 53 |
+
|
| 54 |
+
# 折射波 (僅在速度增加時繪製)
|
| 55 |
+
if valid_model:
|
| 56 |
+
theta_c12 = np.arcsin(v1 / v2)
|
| 57 |
+
ti_12 = (2 * h1 * np.cos(theta_c12)) / v1
|
| 58 |
+
t_refr_12 = (x_continuous / v2) + ti_12
|
| 59 |
+
ax1.plot(x_continuous, t_refr_12, 'g--', label='Refraction (from Layer 2)')
|
| 60 |
+
|
| 61 |
+
theta_c23 = np.arcsin(v2 / v3)
|
| 62 |
+
ti_23 = 2 * h1 * np.cos(np.arcsin(v1/v3))/v1 + 2 * h2 * np.cos(theta_c23)/v2
|
| 63 |
+
t_refr_23 = (x_continuous / v3) + ti_23
|
| 64 |
+
ax1.plot(x_continuous, t_refr_23, 'y--', label='Refraction (from Layer 3)')
|
| 65 |
+
|
| 66 |
+
ax1.set_title("1. Travel-Time (T-X) Curve")
|
| 67 |
ax1.legend()
|
| 68 |
ax1.grid(True)
|
| 69 |
ax1.set_xlim(0, x_max)
|
| 70 |
+
y_max = np.max(t_refl_2) * 1.1
|
| 71 |
+
ax1.set_ylim(0, y_max)
|
| 72 |
|
| 73 |
+
# === PART 4: 繪製視覺化震測剖面圖 ===
|
| 74 |
fig2, ax2 = plt.subplots(figsize=(10, 5))
|
| 75 |
receiver_x = np.linspace(0, x_max, int(num_receivers))
|
| 76 |
+
# 反射波到時
|
| 77 |
+
t_refl_1_rx = np.sqrt(t0_1**2 + (receiver_x / v1)**2)
|
| 78 |
+
t_refl_2_rx = np.sqrt(t0_2**2 + (receiver_x / ((v1*h1 + v2*h2)/(h1+h2)) )**2)
|
|
|
|
| 79 |
|
| 80 |
+
wavelet_duration = y_max / 10
|
|
|
|
| 81 |
wavelet_t = np.linspace(0, wavelet_duration, 100)
|
| 82 |
|
| 83 |
for i in range(int(num_receivers)):
|
| 84 |
+
# 繪製第一層反射
|
| 85 |
+
wavelet_amp_1 = ricker_wavelet(wavelet_t, f=40) * gain
|
| 86 |
+
x_trace_1 = receiver_x[i] + wavelet_amp_1
|
| 87 |
+
y_trace_1 = t_refl_1_rx[i] - wavelet_duration/2 + wavelet_t
|
| 88 |
+
ax2.plot(x_trace_1, y_trace_1, 'k-', linewidth=0.8)
|
| 89 |
+
ax2.fill_betweenx(y_trace_1, receiver_x[i], x_trace_1, where=(x_trace_1 > receiver_x[i]), color='black')
|
| 90 |
+
|
| 91 |
+
# 繪製第二層反射
|
| 92 |
+
wavelet_amp_2 = ricker_wavelet(wavelet_t, f=30) * gain * 0.8 # Deeper reflections are weaker
|
| 93 |
+
x_trace_2 = receiver_x[i] + wavelet_amp_2
|
| 94 |
+
y_trace_2 = t_refl_2_rx[i] - wavelet_duration/2 + wavelet_t
|
| 95 |
+
ax2.plot(x_trace_2, y_trace_2, 'b-', linewidth=0.8)
|
| 96 |
+
ax2.fill_betweenx(y_trace_2, receiver_x[i], x_trace_2, where=(x_trace_2 > receiver_x[i]), color='blue')
|
| 97 |
+
|
| 98 |
+
ax2.set_title(f"2. Visualized Seismic Profile ({int(num_receivers)} Traces)")
|
| 99 |
+
ax2.set_ylim(y_max, -y_max*0.05)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
ax2.set_xlim(-x_max * 0.05, x_max * 1.05)
|
| 101 |
+
fig2.subplots_adjust(left=0.1, right=0.98, top=0.9, bottom=0.15)
|
| 102 |
|
| 103 |
+
# === PART 5: 準備探勘日誌 ===
|
| 104 |
+
log_md = f"""
|
| 105 |
+
### 📝 現場探勘日誌
|
| 106 |
+
**任務目標**: {scenario_name.get() if 'scenario_name' in globals() else '自訂模式'}
|
| 107 |
+
**儀器設定**: {int(num_receivers)} 個測站, 測線長度 {x_max} 公尺。
|
| 108 |
+
|
| 109 |
+
**初步分析**:
|
| 110 |
+
- **第一介面反射 (黑色震波)**: 雙程走時 (TWT) 約 **{t0_1*1000:.1f} ms**。
|
| 111 |
+
- **第二介面反射 (藍色震波)**: 雙程走時 (TWT) 約 **{t0_2*1000:.1f} ms**。
|
| 112 |
|
| 113 |
+
{'' if valid_model else '**警告**: 模型速度設定有誤 (V 未隨深度增加),折射波分析可能無效。'}
|
| 114 |
+
"""
|
| 115 |
+
return fig0, fig1, fig2, log_md
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
# --- Gradio 介面與任務設定 ---
|
| 118 |
+
scenarios = {
|
| 119 |
+
"自訂模式 (Custom Mode)": {"v1": 800, "v2": 2500, "v3": 4500, "h1": 20, "h2": 50},
|
| 120 |
+
"尋找淺層地下水 (Find Groundwater)": {"v1": 500, "v2": 2200, "v3": 3500, "h1": 15, "h2": 40},
|
| 121 |
+
"桃園台地工程鑽探 (Taoyuan Engineering)": {"v1": 600, "v2": 1800, "v3": 3000, "h1": 10, "h2": 30},
|
| 122 |
+
"油氣田探勘 (Oil & Gas Prospecting)": {"v1": 1500, "v2": 2800, "v3": 4200, "h1": 100, "h2": 250},
|
| 123 |
+
}
|
| 124 |
|
| 125 |
+
def update_sliders(scenario_key):
|
| 126 |
+
params = scenarios[scenario_key]
|
| 127 |
+
return params['v1'], params['v2'], params['v3'], params['h1'], params['h2']
|
|
|
|
|
|
|
| 128 |
|
|
|
|
| 129 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 130 |
+
scenario_name = gr.State("自訂模式 (Custom Mode)")
|
| 131 |
+
gr.Markdown("# 地球物理探勘總部 🛰️")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
with gr.Row():
|
| 134 |
with gr.Column(scale=1):
|
| 135 |
+
gr.Markdown("### 🎯 1. 選擇探勘任務")
|
| 136 |
+
scenario_dropdown = gr.Dropdown(list(scenarios.keys()), label="Select Mission", value="自訂模式 (Custom Mode)")
|
| 137 |
+
|
| 138 |
+
gr.Markdown("### ⚙️ 2. 微調地層參數")
|
| 139 |
+
v1_slider = gr.Slider(label="V1 (m/s)", minimum=300, maximum=5000, value=800, step=50)
|
| 140 |
+
h1_slider = gr.Slider(label="h1 (m)", minimum=5, maximum=500, value=20, step=5)
|
| 141 |
+
v2_slider = gr.Slider(label="V2 (m/s)", minimum=500, maximum=6000, value=2500, step=50)
|
| 142 |
+
h2_slider = gr.Slider(label="h2 (m)", minimum=10, maximum=1000, value=50, step=10)
|
| 143 |
+
v3_slider = gr.Slider(label="V3 (m/s)", minimum=1000, maximum=8000, value=4500, step=50)
|
| 144 |
|
| 145 |
+
gr.Markdown("### 📡 3. 設定儀器")
|
| 146 |
+
xmax_slider = gr.Slider(label="最大觀測距離 (m)", minimum=100, maximum=2000, value=500, step=50)
|
| 147 |
+
receivers_slider = gr.Slider(label="測站數量", minimum=10, maximum=200, value=50, step=5)
|
| 148 |
+
gain_slider = gr.Slider(label="剖面增益", minimum=1, maximum=20, value=4, step=1)
|
|
|
|
| 149 |
|
| 150 |
+
submit_btn = gr.Button("🚀 發射震波!", variant="primary")
|
| 151 |
|
| 152 |
with gr.Column(scale=2):
|
| 153 |
+
gr.Markdown("### 🗺️ 地質模型")
|
| 154 |
+
plot_output0 = gr.Plot(label="Geological Model")
|
| 155 |
+
gr.Markdown("### 📊 探勘數據")
|
| 156 |
+
plot_output1 = gr.Plot(label="走時-距離圖")
|
| 157 |
+
plot_output2 = gr.Plot(label="視覺化震測剖面圖")
|
| 158 |
|
| 159 |
with gr.Row():
|
| 160 |
+
log_output = gr.Markdown("### 📝 現場探勘日誌\n請選擇任務或調整參數,然後點擊「發射震波!」")
|
| 161 |
|
| 162 |
# --- 事件監聽 ---
|
| 163 |
+
scenario_dropdown.change(
|
| 164 |
+
fn=update_sliders,
|
| 165 |
+
inputs=scenario_dropdown,
|
| 166 |
+
outputs=[v1_slider, v2_slider, v3_slider, h1_slider, h2_slider]
|
| 167 |
+
)
|
| 168 |
+
scenario_dropdown.change(lambda x: x, inputs=scenario_dropdown, outputs=scenario_name)
|
| 169 |
+
|
| 170 |
submit_btn.click(
|
| 171 |
fn=plot_seismic_exploration,
|
| 172 |
+
inputs=[v1_slider, v2_slider, v3_slider, h1_slider, h2_slider, xmax_slider, receivers_slider, gain_slider],
|
| 173 |
+
outputs=[plot_output0, plot_output1, plot_output2, log_output]
|
| 174 |
)
|
| 175 |
|
| 176 |
gr.Markdown(
|
| 177 |
"""
|
| 178 |
---
|
| 179 |
+
### 🧠 總工程師的挑戰
|
| 180 |
+
1. **看見儲油構造**: 在「油氣田探勘」任務中,來自第二介面(藍色震波)的反射同相軸呈現一個向上彎曲的「背斜」形狀,這正是油氣最喜歡聚集的地方!你能透過微調 `h1` 和 `h2` 讓這個構造更明顯嗎?
|
| 181 |
+
2. **折射的極限**: 試著在自訂模式中,將 `V2` 調得比 `V1` 慢,看看走時圖和日誌會出現什麼警告?這在真實地質中稱為「低速帶」,是折射法的一大挑戰。
|
| 182 |
+
3. **解析度問題**: 將「測站數量」調到最低,再慢慢增加。你需要多少個測站,才能清楚地分辨出剖面圖中來自兩個不同介面的反射波?這就是探勘的「解析度」概念。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
"""
|
| 184 |
)
|
| 185 |
|
| 186 |
gr.HTML("""
|
| 187 |
<footer style="text-align:center; margin-top: 30px; color:grey;">
|
| 188 |
<p>「創意的發揮是一種學習,過程中,每個人同時是學生也是老師。」</p>
|
| 189 |
+
<p>地球物理探勘總部 © 2025 - 由 Gemini 根據課程文件與靈感生成</p>
|
| 190 |
</footer>
|
| 191 |
""")
|
| 192 |
|