Spaces:
Runtime error
Runtime error
| """ from https://github.com/keithito/tacotron """ | |
| ''' | |
| Cleaners are transformations that run over the input text at both training and eval time. | |
| Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" | |
| hyperparameter. Some cleaners are English-specific. You'll typically want to use: | |
| 1. "english_cleaners" for English text | |
| 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using | |
| the Unidecode library (https://pypi.python.org/pypi/Unidecode) | |
| 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update | |
| the symbols in symbols.py to match your data). | |
| ''' | |
| import re | |
| from unidecode import unidecode | |
| import pyopenjtalk | |
| from janome.tokenizer import Tokenizer | |
| # Regular expression matching whitespace: | |
| _whitespace_re = re.compile(r'\s+') | |
| # List of (regular expression, replacement) pairs for abbreviations: | |
| _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ | |
| ('mrs', 'misess'), | |
| ('mr', 'mister'), | |
| ('dr', 'doctor'), | |
| ('st', 'saint'), | |
| ('co', 'company'), | |
| ('jr', 'junior'), | |
| ('maj', 'major'), | |
| ('gen', 'general'), | |
| ('drs', 'doctors'), | |
| ('rev', 'reverend'), | |
| ('lt', 'lieutenant'), | |
| ('hon', 'honorable'), | |
| ('sgt', 'sergeant'), | |
| ('capt', 'captain'), | |
| ('esq', 'esquire'), | |
| ('ltd', 'limited'), | |
| ('col', 'colonel'), | |
| ('ft', 'fort'), | |
| ]] | |
| # Regular expression matching Japanese without punctuation marks: | |
| _japanese_characters = re.compile(r'[A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]') | |
| # Regular expression matching non-Japanese characters or punctuation marks: | |
| _japanese_marks = re.compile(r'[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]') | |
| # Tokenizer for Japanese | |
| tokenizer = Tokenizer() | |
| def expand_abbreviations(text): | |
| for regex, replacement in _abbreviations: | |
| text = re.sub(regex, replacement, text) | |
| return text | |
| def lowercase(text): | |
| return text.lower() | |
| def collapse_whitespace(text): | |
| return re.sub(_whitespace_re, ' ', text) | |
| def convert_to_ascii(text): | |
| return unidecode(text) | |
| def basic_cleaners(text): | |
| '''Basic pipeline that lowercases and collapses whitespace without transliteration.''' | |
| text = lowercase(text) | |
| text = collapse_whitespace(text) | |
| return text | |
| def transliteration_cleaners(text): | |
| '''Pipeline for non-English text that transliterates to ASCII.''' | |
| text = convert_to_ascii(text) | |
| text = lowercase(text) | |
| text = collapse_whitespace(text) | |
| return text | |
| def japanese_cleaners(text): | |
| '''Pipeline for Japanese text.''' | |
| sentences = re.split(_japanese_marks, text) | |
| marks = re.findall(_japanese_marks, text) | |
| text = '' | |
| for i, mark in enumerate(marks): | |
| if re.match(_japanese_characters, sentences[i]): | |
| text += pyopenjtalk.g2p(sentences[i], kana=False).replace('pau','').replace(' ','') | |
| text += unidecode(mark).replace(' ','') | |
| if re.match(_japanese_characters, sentences[-1]): | |
| text += pyopenjtalk.g2p(sentences[-1], kana=False).replace('pau','').replace(' ','') | |
| if re.match('[A-Za-z]',text[-1]): | |
| text += '.' | |
| return text | |
| def japanese_tokenization_cleaners(text): | |
| '''Pipeline for tokenizing Japanese text.''' | |
| words = [] | |
| for token in tokenizer.tokenize(text): | |
| if token.phonetic!='*': | |
| words.append(token.phonetic) | |
| else: | |
| words.append(token.surface) | |
| text = '' | |
| for word in words: | |
| if re.match(_japanese_characters, word): | |
| if word[0] == '\u30fc': | |
| continue | |
| if len(text)>0: | |
| text += ' ' | |
| text += pyopenjtalk.g2p(word, kana=False).replace(' ','') | |
| else: | |
| text += unidecode(word).replace(' ','') | |
| if re.match('[A-Za-z]',text[-1]): | |
| text += '.' | |
| return text | |
| def japanese_accent_cleaners(text): | |
| '''Pipeline for notating accent in Japanese text.''' | |
| '''Reference https://r9y9.github.io/ttslearn/latest/notebooks/ch10_Recipe-Tacotron.html''' | |
| sentences = re.split(_japanese_marks, text) | |
| marks = re.findall(_japanese_marks, text) | |
| text = '' | |
| for i, sentence in enumerate(sentences): | |
| if re.match(_japanese_characters, sentence): | |
| text += ':' | |
| labels = pyopenjtalk.extract_fullcontext(sentence) | |
| for n, label in enumerate(labels): | |
| phoneme = re.search(r'\-([^\+]*)\+', label).group(1) | |
| if phoneme not in ['sil','pau']: | |
| text += phoneme | |
| else: | |
| continue | |
| n_moras = int(re.search(r'/F:(\d+)_', label).group(1)) | |
| a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1)) | |
| a2 = int(re.search(r"\+(\d+)\+", label).group(1)) | |
| a3 = int(re.search(r"\+(\d+)/", label).group(1)) | |
| if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil','pau']: | |
| a2_next=-1 | |
| else: | |
| a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1)) | |
| # Accent phrase boundary | |
| if a3 == 1 and a2_next == 1: | |
| text += ' ' | |
| # Falling | |
| elif a1 == 0 and a2_next == a2 + 1 and a2 != n_moras: | |
| text += ')' | |
| # Rising | |
| elif a2 == 1 and a2_next == 2: | |
| text += '(' | |
| if i<len(marks): | |
| text += unidecode(marks[i]).replace(' ','') | |
| if re.match('[A-Za-z]',text[-1]): | |
| text += '.' | |
| return text | |
| def japanese_phrase_cleaners(text): | |
| '''Pipeline for dividing Japanese text into phrases.''' | |
| sentences = re.split(_japanese_marks, text) | |
| marks = re.findall(_japanese_marks, text) | |
| text = '' | |
| for i, sentence in enumerate(sentences): | |
| if re.match(_japanese_characters, sentence): | |
| if text != '': | |
| text += ' ' | |
| labels = pyopenjtalk.extract_fullcontext(sentence) | |
| for n, label in enumerate(labels): | |
| phoneme = re.search(r'\-([^\+]*)\+', label).group(1) | |
| if phoneme not in ['sil','pau']: | |
| text += phoneme | |
| else: | |
| continue | |
| a3 = int(re.search(r"\+(\d+)/", label).group(1)) | |
| if re.search(r'\-([^\+]*)\+', labels[n + 1]).group(1) in ['sil','pau']: | |
| a2_next=-1 | |
| else: | |
| a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1)) | |
| # Accent phrase boundary | |
| if a3 == 1 and a2_next == 1: | |
| text += ' ' | |
| if i<len(marks): | |
| text += unidecode(marks[i]).replace(' ','') | |
| if re.match('[A-Za-z]',text[-1]): | |
| text += '.' | |
| return text | |