Spaces:
Runtime error
Runtime error
| import os | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| import tqdm | |
| from modules import processing, shared, images, devices, sd_models | |
| from modules.shared import opts | |
| import modules.gfpgan_model | |
| from modules.ui import plaintext_to_html | |
| import modules.codeformer_model | |
| import piexif | |
| import piexif.helper | |
| import gradio as gr | |
| cached_images = {} | |
| def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): | |
| devices.torch_gc() | |
| imageArr = [] | |
| # Also keep track of original file names | |
| imageNameArr = [] | |
| if extras_mode == 1: | |
| #convert file to pillow image | |
| for img in image_folder: | |
| image = Image.fromarray(np.array(Image.open(img))) | |
| imageArr.append(image) | |
| imageNameArr.append(os.path.splitext(img.orig_name)[0]) | |
| else: | |
| imageArr.append(image) | |
| imageNameArr.append(None) | |
| outpath = opts.outdir_samples or opts.outdir_extras_samples | |
| outputs = [] | |
| for image, image_name in zip(imageArr, imageNameArr): | |
| if image is None: | |
| return outputs, "Please select an input image.", '' | |
| existing_pnginfo = image.info or {} | |
| image = image.convert("RGB") | |
| info = "" | |
| if gfpgan_visibility > 0: | |
| restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) | |
| res = Image.fromarray(restored_img) | |
| if gfpgan_visibility < 1.0: | |
| res = Image.blend(image, res, gfpgan_visibility) | |
| info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n" | |
| image = res | |
| if codeformer_visibility > 0: | |
| restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) | |
| res = Image.fromarray(restored_img) | |
| if codeformer_visibility < 1.0: | |
| res = Image.blend(image, res, codeformer_visibility) | |
| info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n" | |
| image = res | |
| if upscaling_resize != 1.0: | |
| def upscale(image, scaler_index, resize): | |
| small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10)) | |
| pixels = tuple(np.array(small).flatten().tolist()) | |
| key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels | |
| c = cached_images.get(key) | |
| if c is None: | |
| upscaler = shared.sd_upscalers[scaler_index] | |
| c = upscaler.scaler.upscale(image, resize, upscaler.data_path) | |
| cached_images[key] = c | |
| return c | |
| info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n" | |
| res = upscale(image, extras_upscaler_1, upscaling_resize) | |
| if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0: | |
| res2 = upscale(image, extras_upscaler_2, upscaling_resize) | |
| info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n" | |
| res = Image.blend(res, res2, extras_upscaler_2_visibility) | |
| image = res | |
| while len(cached_images) > 2: | |
| del cached_images[next(iter(cached_images.keys()))] | |
| images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True, | |
| no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, | |
| forced_filename=image_name if opts.use_original_name_batch else None) | |
| outputs.append(image) | |
| devices.torch_gc() | |
| return outputs, plaintext_to_html(info), '' | |
| def run_pnginfo(image): | |
| if image is None: | |
| return '', '', '' | |
| items = image.info | |
| geninfo = '' | |
| if "exif" in image.info: | |
| exif = piexif.load(image.info["exif"]) | |
| exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'') | |
| try: | |
| exif_comment = piexif.helper.UserComment.load(exif_comment) | |
| except ValueError: | |
| exif_comment = exif_comment.decode('utf8', errors="ignore") | |
| items['exif comment'] = exif_comment | |
| geninfo = exif_comment | |
| for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif', | |
| 'loop', 'background', 'timestamp', 'duration']: | |
| items.pop(field, None) | |
| geninfo = items.get('parameters', geninfo) | |
| info = '' | |
| for key, text in items.items(): | |
| info += f""" | |
| <div> | |
| <p><b>{plaintext_to_html(str(key))}</b></p> | |
| <p>{plaintext_to_html(str(text))}</p> | |
| </div> | |
| """.strip()+"\n" | |
| if len(info) == 0: | |
| message = "Nothing found in the image." | |
| info = f"<div><p>{message}<p></div>" | |
| return '', geninfo, info | |
| def run_modelmerger(primary_model_name, secondary_model_name, interp_method, interp_amount, save_as_half, custom_name): | |
| # Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation) | |
| def weighted_sum(theta0, theta1, alpha): | |
| return ((1 - alpha) * theta0) + (alpha * theta1) | |
| # Smoothstep (https://en.wikipedia.org/wiki/Smoothstep) | |
| def sigmoid(theta0, theta1, alpha): | |
| alpha = alpha * alpha * (3 - (2 * alpha)) | |
| return theta0 + ((theta1 - theta0) * alpha) | |
| # Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep) | |
| def inv_sigmoid(theta0, theta1, alpha): | |
| import math | |
| alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0) | |
| return theta0 + ((theta1 - theta0) * alpha) | |
| primary_model_info = sd_models.checkpoints_list[primary_model_name] | |
| secondary_model_info = sd_models.checkpoints_list[secondary_model_name] | |
| print(f"Loading {primary_model_info.filename}...") | |
| primary_model = torch.load(primary_model_info.filename, map_location='cpu') | |
| print(f"Loading {secondary_model_info.filename}...") | |
| secondary_model = torch.load(secondary_model_info.filename, map_location='cpu') | |
| theta_0 = primary_model['state_dict'] | |
| theta_1 = secondary_model['state_dict'] | |
| theta_funcs = { | |
| "Weighted Sum": weighted_sum, | |
| "Sigmoid": sigmoid, | |
| "Inverse Sigmoid": inv_sigmoid, | |
| } | |
| theta_func = theta_funcs[interp_method] | |
| print(f"Merging...") | |
| for key in tqdm.tqdm(theta_0.keys()): | |
| if 'model' in key and key in theta_1: | |
| theta_0[key] = theta_func(theta_0[key], theta_1[key], (float(1.0) - interp_amount)) # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint | |
| if save_as_half: | |
| theta_0[key] = theta_0[key].half() | |
| for key in theta_1.keys(): | |
| if 'model' in key and key not in theta_0: | |
| theta_0[key] = theta_1[key] | |
| if save_as_half: | |
| theta_0[key] = theta_0[key].half() | |
| ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path | |
| filename = primary_model_info.model_name + '_' + str(round(interp_amount, 2)) + '-' + secondary_model_info.model_name + '_' + str(round((float(1.0) - interp_amount), 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt' | |
| filename = filename if custom_name == '' else (custom_name + '.ckpt') | |
| output_modelname = os.path.join(ckpt_dir, filename) | |
| print(f"Saving to {output_modelname}...") | |
| torch.save(primary_model, output_modelname) | |
| sd_models.list_models() | |
| print(f"Checkpoint saved.") | |
| return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(3)] | |