Spaces:
Runtime error
Runtime error
| import json | |
| import math | |
| import os | |
| import sys | |
| import torch | |
| import numpy as np | |
| from PIL import Image, ImageFilter, ImageOps | |
| import random | |
| import cv2 | |
| from skimage import exposure | |
| import modules.sd_hijack | |
| from modules import devices, prompt_parser, masking, sd_samplers, lowvram | |
| from modules.sd_hijack import model_hijack | |
| from modules.shared import opts, cmd_opts, state | |
| import modules.shared as shared | |
| import modules.face_restoration | |
| import modules.images as images | |
| import modules.styles | |
| import logging | |
| # some of those options should not be changed at all because they would break the model, so I removed them from options. | |
| opt_C = 4 | |
| opt_f = 8 | |
| def setup_color_correction(image): | |
| logging.info("Calibrating color correction.") | |
| correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB) | |
| return correction_target | |
| def apply_color_correction(correction, image): | |
| logging.info("Applying color correction.") | |
| image = Image.fromarray(cv2.cvtColor(exposure.match_histograms( | |
| cv2.cvtColor( | |
| np.asarray(image), | |
| cv2.COLOR_RGB2LAB | |
| ), | |
| correction, | |
| channel_axis=2 | |
| ), cv2.COLOR_LAB2RGB).astype("uint8")) | |
| return image | |
| class StableDiffusionProcessing: | |
| def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None): | |
| self.sd_model = sd_model | |
| self.outpath_samples: str = outpath_samples | |
| self.outpath_grids: str = outpath_grids | |
| self.prompt: str = prompt | |
| self.prompt_for_display: str = None | |
| self.negative_prompt: str = (negative_prompt or "") | |
| self.styles: list = styles or [] | |
| self.seed: int = seed | |
| self.subseed: int = subseed | |
| self.subseed_strength: float = subseed_strength | |
| self.seed_resize_from_h: int = seed_resize_from_h | |
| self.seed_resize_from_w: int = seed_resize_from_w | |
| self.sampler_index: int = sampler_index | |
| self.batch_size: int = batch_size | |
| self.n_iter: int = n_iter | |
| self.steps: int = steps | |
| self.cfg_scale: float = cfg_scale | |
| self.width: int = width | |
| self.height: int = height | |
| self.restore_faces: bool = restore_faces | |
| self.tiling: bool = tiling | |
| self.do_not_save_samples: bool = do_not_save_samples | |
| self.do_not_save_grid: bool = do_not_save_grid | |
| self.extra_generation_params: dict = extra_generation_params or {} | |
| self.overlay_images = overlay_images | |
| self.eta = eta | |
| self.paste_to = None | |
| self.color_corrections = None | |
| self.denoising_strength: float = 0 | |
| self.sampler_noise_scheduler_override = None | |
| self.ddim_discretize = opts.ddim_discretize | |
| self.s_churn = opts.s_churn | |
| self.s_tmin = opts.s_tmin | |
| self.s_tmax = float('inf') # not representable as a standard ui option | |
| self.s_noise = opts.s_noise | |
| if not seed_enable_extras: | |
| self.subseed = -1 | |
| self.subseed_strength = 0 | |
| self.seed_resize_from_h = 0 | |
| self.seed_resize_from_w = 0 | |
| def init(self, all_prompts, all_seeds, all_subseeds): | |
| pass | |
| def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): | |
| raise NotImplementedError() | |
| class Processed: | |
| def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None): | |
| self.images = images_list | |
| self.prompt = p.prompt | |
| self.negative_prompt = p.negative_prompt | |
| self.seed = seed | |
| self.subseed = subseed | |
| self.subseed_strength = p.subseed_strength | |
| self.info = info | |
| self.width = p.width | |
| self.height = p.height | |
| self.sampler_index = p.sampler_index | |
| self.sampler = sd_samplers.samplers[p.sampler_index].name | |
| self.cfg_scale = p.cfg_scale | |
| self.steps = p.steps | |
| self.batch_size = p.batch_size | |
| self.restore_faces = p.restore_faces | |
| self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None | |
| self.sd_model_hash = shared.sd_model.sd_model_hash | |
| self.seed_resize_from_w = p.seed_resize_from_w | |
| self.seed_resize_from_h = p.seed_resize_from_h | |
| self.denoising_strength = getattr(p, 'denoising_strength', None) | |
| self.extra_generation_params = p.extra_generation_params | |
| self.index_of_first_image = index_of_first_image | |
| self.styles = p.styles | |
| self.job_timestamp = state.job_timestamp | |
| self.eta = p.eta | |
| self.ddim_discretize = p.ddim_discretize | |
| self.s_churn = p.s_churn | |
| self.s_tmin = p.s_tmin | |
| self.s_tmax = p.s_tmax | |
| self.s_noise = p.s_noise | |
| self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override | |
| self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0] | |
| self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0] | |
| self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) | |
| self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1 | |
| self.all_prompts = all_prompts or [self.prompt] | |
| self.all_seeds = all_seeds or [self.seed] | |
| self.all_subseeds = all_subseeds or [self.subseed] | |
| self.infotexts = infotexts or [info] | |
| def js(self): | |
| obj = { | |
| "prompt": self.prompt, | |
| "all_prompts": self.all_prompts, | |
| "negative_prompt": self.negative_prompt, | |
| "seed": self.seed, | |
| "all_seeds": self.all_seeds, | |
| "subseed": self.subseed, | |
| "all_subseeds": self.all_subseeds, | |
| "subseed_strength": self.subseed_strength, | |
| "width": self.width, | |
| "height": self.height, | |
| "sampler_index": self.sampler_index, | |
| "sampler": self.sampler, | |
| "cfg_scale": self.cfg_scale, | |
| "steps": self.steps, | |
| "batch_size": self.batch_size, | |
| "restore_faces": self.restore_faces, | |
| "face_restoration_model": self.face_restoration_model, | |
| "sd_model_hash": self.sd_model_hash, | |
| "seed_resize_from_w": self.seed_resize_from_w, | |
| "seed_resize_from_h": self.seed_resize_from_h, | |
| "denoising_strength": self.denoising_strength, | |
| "extra_generation_params": self.extra_generation_params, | |
| "index_of_first_image": self.index_of_first_image, | |
| "infotexts": self.infotexts, | |
| "styles": self.styles, | |
| "job_timestamp": self.job_timestamp, | |
| } | |
| return json.dumps(obj) | |
| def infotext(self, p: StableDiffusionProcessing, index): | |
| return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size) | |
| # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3 | |
| def slerp(val, low, high): | |
| low_norm = low/torch.norm(low, dim=1, keepdim=True) | |
| high_norm = high/torch.norm(high, dim=1, keepdim=True) | |
| dot = (low_norm*high_norm).sum(1) | |
| if dot.mean() > 0.9995: | |
| return low * val + high * (1 - val) | |
| omega = torch.acos(dot) | |
| so = torch.sin(omega) | |
| res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high | |
| return res | |
| def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None): | |
| xs = [] | |
| # if we have multiple seeds, this means we are working with batch size>1; this then | |
| # enables the generation of additional tensors with noise that the sampler will use during its processing. | |
| # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to | |
| # produce the same images as with two batches [100], [101]. | |
| if p is not None and p.sampler is not None and len(seeds) > 1 and opts.enable_batch_seeds: | |
| sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))] | |
| else: | |
| sampler_noises = None | |
| for i, seed in enumerate(seeds): | |
| noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8) | |
| subnoise = None | |
| if subseeds is not None: | |
| subseed = 0 if i >= len(subseeds) else subseeds[i] | |
| subnoise = devices.randn(subseed, noise_shape) | |
| # randn results depend on device; gpu and cpu get different results for same seed; | |
| # the way I see it, it's better to do this on CPU, so that everyone gets same result; | |
| # but the original script had it like this, so I do not dare change it for now because | |
| # it will break everyone's seeds. | |
| noise = devices.randn(seed, noise_shape) | |
| if subnoise is not None: | |
| noise = slerp(subseed_strength, noise, subnoise) | |
| if noise_shape != shape: | |
| x = devices.randn(seed, shape) | |
| dx = (shape[2] - noise_shape[2]) // 2 | |
| dy = (shape[1] - noise_shape[1]) // 2 | |
| w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx | |
| h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy | |
| tx = 0 if dx < 0 else dx | |
| ty = 0 if dy < 0 else dy | |
| dx = max(-dx, 0) | |
| dy = max(-dy, 0) | |
| x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w] | |
| noise = x | |
| if sampler_noises is not None: | |
| cnt = p.sampler.number_of_needed_noises(p) | |
| for j in range(cnt): | |
| sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape))) | |
| xs.append(noise) | |
| if sampler_noises is not None: | |
| p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises] | |
| x = torch.stack(xs).to(shared.device) | |
| return x | |
| def get_fixed_seed(seed): | |
| if seed is None or seed == '' or seed == -1: | |
| return int(random.randrange(4294967294)) | |
| return seed | |
| def fix_seed(p): | |
| p.seed = get_fixed_seed(p.seed) | |
| p.subseed = get_fixed_seed(p.subseed) | |
| def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0): | |
| index = position_in_batch + iteration * p.batch_size | |
| generation_params = { | |
| "Steps": p.steps, | |
| "Sampler": sd_samplers.samplers[p.sampler_index].name, | |
| "CFG scale": p.cfg_scale, | |
| "Seed": all_seeds[index], | |
| "Face restoration": (opts.face_restoration_model if p.restore_faces else None), | |
| "Size": f"{p.width}x{p.height}", | |
| "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), | |
| "Batch size": (None if p.batch_size < 2 else p.batch_size), | |
| "Batch pos": (None if p.batch_size < 2 else position_in_batch), | |
| "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]), | |
| "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), | |
| "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), | |
| "Denoising strength": getattr(p, 'denoising_strength', None), | |
| "Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta), | |
| } | |
| generation_params.update(p.extra_generation_params) | |
| generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None]) | |
| negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else "" | |
| return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip() | |
| def process_images(p: StableDiffusionProcessing) -> Processed: | |
| """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" | |
| if type(p.prompt) == list: | |
| assert(len(p.prompt) > 0) | |
| else: | |
| assert p.prompt is not None | |
| devices.torch_gc() | |
| seed = get_fixed_seed(p.seed) | |
| subseed = get_fixed_seed(p.subseed) | |
| if p.outpath_samples is not None: | |
| os.makedirs(p.outpath_samples, exist_ok=True) | |
| if p.outpath_grids is not None: | |
| os.makedirs(p.outpath_grids, exist_ok=True) | |
| modules.sd_hijack.model_hijack.apply_circular(p.tiling) | |
| comments = {} | |
| shared.prompt_styles.apply_styles(p) | |
| if type(p.prompt) == list: | |
| all_prompts = p.prompt | |
| else: | |
| all_prompts = p.batch_size * p.n_iter * [p.prompt] | |
| if type(seed) == list: | |
| all_seeds = seed | |
| else: | |
| all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))] | |
| if type(subseed) == list: | |
| all_subseeds = subseed | |
| else: | |
| all_subseeds = [int(subseed) + x for x in range(len(all_prompts))] | |
| def infotext(iteration=0, position_in_batch=0): | |
| return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch) | |
| if os.path.exists(cmd_opts.embeddings_dir): | |
| model_hijack.embedding_db.load_textual_inversion_embeddings() | |
| infotexts = [] | |
| output_images = [] | |
| with torch.no_grad(): | |
| with devices.autocast(): | |
| p.init(all_prompts, all_seeds, all_subseeds) | |
| if state.job_count == -1: | |
| state.job_count = p.n_iter | |
| for n in range(p.n_iter): | |
| if state.interrupted: | |
| break | |
| prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size] | |
| seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size] | |
| subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] | |
| if (len(prompts) == 0): | |
| break | |
| #uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt]) | |
| #c = p.sd_model.get_learned_conditioning(prompts) | |
| with devices.autocast(): | |
| uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps) | |
| c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps) | |
| if len(model_hijack.comments) > 0: | |
| for comment in model_hijack.comments: | |
| comments[comment] = 1 | |
| if p.n_iter > 1: | |
| shared.state.job = f"Batch {n+1} out of {p.n_iter}" | |
| with devices.autocast(): | |
| samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength) | |
| if state.interrupted: | |
| # if we are interruped, sample returns just noise | |
| # use the image collected previously in sampler loop | |
| samples_ddim = shared.state.current_latent | |
| samples_ddim = samples_ddim.to(devices.dtype) | |
| x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim) | |
| x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
| del samples_ddim | |
| if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: | |
| lowvram.send_everything_to_cpu() | |
| devices.torch_gc() | |
| if opts.filter_nsfw: | |
| import modules.safety as safety | |
| x_samples_ddim = modules.safety.censor_batch(x_samples_ddim) | |
| for i, x_sample in enumerate(x_samples_ddim): | |
| x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) | |
| x_sample = x_sample.astype(np.uint8) | |
| if p.restore_faces: | |
| if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration: | |
| images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration") | |
| devices.torch_gc() | |
| x_sample = modules.face_restoration.restore_faces(x_sample) | |
| devices.torch_gc() | |
| image = Image.fromarray(x_sample) | |
| if p.color_corrections is not None and i < len(p.color_corrections): | |
| if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction: | |
| images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction") | |
| image = apply_color_correction(p.color_corrections[i], image) | |
| if p.overlay_images is not None and i < len(p.overlay_images): | |
| overlay = p.overlay_images[i] | |
| if p.paste_to is not None: | |
| x, y, w, h = p.paste_to | |
| base_image = Image.new('RGBA', (overlay.width, overlay.height)) | |
| image = images.resize_image(1, image, w, h) | |
| base_image.paste(image, (x, y)) | |
| image = base_image | |
| image = image.convert('RGBA') | |
| image.alpha_composite(overlay) | |
| image = image.convert('RGB') | |
| if opts.samples_save and not p.do_not_save_samples: | |
| images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p) | |
| text = infotext(n, i) | |
| infotexts.append(text) | |
| image.info["parameters"] = text | |
| output_images.append(image) | |
| del x_samples_ddim | |
| devices.torch_gc() | |
| state.nextjob() | |
| p.color_corrections = None | |
| index_of_first_image = 0 | |
| unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple | |
| if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count: | |
| grid = images.image_grid(output_images, p.batch_size) | |
| if opts.return_grid: | |
| text = infotext() | |
| infotexts.insert(0, text) | |
| grid.info["parameters"] = text | |
| output_images.insert(0, grid) | |
| index_of_first_image = 1 | |
| if opts.grid_save: | |
| images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) | |
| devices.torch_gc() | |
| return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts) | |
| class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): | |
| sampler = None | |
| firstphase_width = 0 | |
| firstphase_height = 0 | |
| firstphase_width_truncated = 0 | |
| firstphase_height_truncated = 0 | |
| def __init__(self, enable_hr=False, scale_latent=True, denoising_strength=0.75, **kwargs): | |
| super().__init__(**kwargs) | |
| self.enable_hr = enable_hr | |
| self.scale_latent = scale_latent | |
| self.denoising_strength = denoising_strength | |
| def init(self, all_prompts, all_seeds, all_subseeds): | |
| if self.enable_hr: | |
| if state.job_count == -1: | |
| state.job_count = self.n_iter * 2 | |
| else: | |
| state.job_count = state.job_count * 2 | |
| desired_pixel_count = 512 * 512 | |
| actual_pixel_count = self.width * self.height | |
| scale = math.sqrt(desired_pixel_count / actual_pixel_count) | |
| self.firstphase_width = math.ceil(scale * self.width / 64) * 64 | |
| self.firstphase_height = math.ceil(scale * self.height / 64) * 64 | |
| self.firstphase_width_truncated = int(scale * self.width) | |
| self.firstphase_height_truncated = int(scale * self.height) | |
| def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): | |
| self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) | |
| if not self.enable_hr: | |
| x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) | |
| samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning) | |
| return samples | |
| x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) | |
| samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning) | |
| truncate_x = (self.firstphase_width - self.firstphase_width_truncated) // opt_f | |
| truncate_y = (self.firstphase_height - self.firstphase_height_truncated) // opt_f | |
| samples = samples[:, :, truncate_y//2:samples.shape[2]-truncate_y//2, truncate_x//2:samples.shape[3]-truncate_x//2] | |
| if self.scale_latent: | |
| samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") | |
| else: | |
| decoded_samples = self.sd_model.decode_first_stage(samples) | |
| if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None": | |
| decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear") | |
| else: | |
| lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0) | |
| batch_images = [] | |
| for i, x_sample in enumerate(lowres_samples): | |
| x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) | |
| x_sample = x_sample.astype(np.uint8) | |
| image = Image.fromarray(x_sample) | |
| image = images.resize_image(0, image, self.width, self.height) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = np.moveaxis(image, 2, 0) | |
| batch_images.append(image) | |
| decoded_samples = torch.from_numpy(np.array(batch_images)) | |
| decoded_samples = decoded_samples.to(shared.device) | |
| decoded_samples = 2. * decoded_samples - 1. | |
| samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples)) | |
| shared.state.nextjob() | |
| self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) | |
| noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) | |
| # GC now before running the next img2img to prevent running out of memory | |
| x = None | |
| devices.torch_gc() | |
| samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps) | |
| return samples | |
| class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): | |
| sampler = None | |
| def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs): | |
| super().__init__(**kwargs) | |
| self.init_images = init_images | |
| self.resize_mode: int = resize_mode | |
| self.denoising_strength: float = denoising_strength | |
| self.init_latent = None | |
| self.image_mask = mask | |
| #self.image_unblurred_mask = None | |
| self.latent_mask = None | |
| self.mask_for_overlay = None | |
| self.mask_blur = mask_blur | |
| self.inpainting_fill = inpainting_fill | |
| self.inpaint_full_res = inpaint_full_res | |
| self.inpaint_full_res_padding = inpaint_full_res_padding | |
| self.inpainting_mask_invert = inpainting_mask_invert | |
| self.mask = None | |
| self.nmask = None | |
| def init(self, all_prompts, all_seeds, all_subseeds): | |
| self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model) | |
| crop_region = None | |
| if self.image_mask is not None: | |
| self.image_mask = self.image_mask.convert('L') | |
| if self.inpainting_mask_invert: | |
| self.image_mask = ImageOps.invert(self.image_mask) | |
| #self.image_unblurred_mask = self.image_mask | |
| if self.mask_blur > 0: | |
| self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur)) | |
| if self.inpaint_full_res: | |
| self.mask_for_overlay = self.image_mask | |
| mask = self.image_mask.convert('L') | |
| crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding) | |
| crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height) | |
| x1, y1, x2, y2 = crop_region | |
| mask = mask.crop(crop_region) | |
| self.image_mask = images.resize_image(2, mask, self.width, self.height) | |
| self.paste_to = (x1, y1, x2-x1, y2-y1) | |
| else: | |
| self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height) | |
| np_mask = np.array(self.image_mask) | |
| np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8) | |
| self.mask_for_overlay = Image.fromarray(np_mask) | |
| self.overlay_images = [] | |
| latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask | |
| add_color_corrections = opts.img2img_color_correction and self.color_corrections is None | |
| if add_color_corrections: | |
| self.color_corrections = [] | |
| imgs = [] | |
| for img in self.init_images: | |
| image = img.convert("RGB") | |
| if crop_region is None: | |
| image = images.resize_image(self.resize_mode, image, self.width, self.height) | |
| if self.image_mask is not None: | |
| image_masked = Image.new('RGBa', (image.width, image.height)) | |
| image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L'))) | |
| self.overlay_images.append(image_masked.convert('RGBA')) | |
| if crop_region is not None: | |
| image = image.crop(crop_region) | |
| image = images.resize_image(2, image, self.width, self.height) | |
| if self.image_mask is not None: | |
| if self.inpainting_fill != 1: | |
| image = masking.fill(image, latent_mask) | |
| if add_color_corrections: | |
| self.color_corrections.append(setup_color_correction(image)) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = np.moveaxis(image, 2, 0) | |
| imgs.append(image) | |
| if len(imgs) == 1: | |
| batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0) | |
| if self.overlay_images is not None: | |
| self.overlay_images = self.overlay_images * self.batch_size | |
| elif len(imgs) <= self.batch_size: | |
| self.batch_size = len(imgs) | |
| batch_images = np.array(imgs) | |
| else: | |
| raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less") | |
| image = torch.from_numpy(batch_images) | |
| image = 2. * image - 1. | |
| image = image.to(shared.device) | |
| self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image)) | |
| if self.image_mask is not None: | |
| init_mask = latent_mask | |
| latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2])) | |
| latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255 | |
| latmask = latmask[0] | |
| latmask = np.around(latmask) | |
| latmask = np.tile(latmask[None], (4, 1, 1)) | |
| self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype) | |
| self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype) | |
| # this needs to be fixed to be done in sample() using actual seeds for batches | |
| if self.inpainting_fill == 2: | |
| self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask | |
| elif self.inpainting_fill == 3: | |
| self.init_latent = self.init_latent * self.mask | |
| def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): | |
| x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) | |
| samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning) | |
| if self.mask is not None: | |
| samples = samples * self.nmask + self.init_latent * self.mask | |
| del x | |
| devices.torch_gc() | |
| return samples | |