Spaces:
Runtime error
Runtime error
| import math | |
| import os | |
| import sys | |
| import traceback | |
| import torch | |
| import numpy as np | |
| from torch import einsum | |
| from torch.nn.functional import silu | |
| import modules.textual_inversion.textual_inversion | |
| from modules import prompt_parser, devices, sd_hijack_optimizations, shared, hypernetwork | |
| from modules.shared import opts, device, cmd_opts | |
| import ldm.modules.attention | |
| import ldm.modules.diffusionmodules.model | |
| attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward | |
| diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity | |
| diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward | |
| def apply_optimizations(): | |
| undo_optimizations() | |
| ldm.modules.diffusionmodules.model.nonlinearity = silu | |
| if cmd_opts.opt_split_attention_v1: | |
| ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 | |
| elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): | |
| ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward | |
| ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward | |
| def undo_optimizations(): | |
| ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward | |
| ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity | |
| ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward | |
| class StableDiffusionModelHijack: | |
| fixes = None | |
| comments = [] | |
| layers = None | |
| circular_enabled = False | |
| clip = None | |
| embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir) | |
| def hijack(self, m): | |
| model_embeddings = m.cond_stage_model.transformer.text_model.embeddings | |
| model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) | |
| m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) | |
| self.clip = m.cond_stage_model | |
| apply_optimizations() | |
| def flatten(el): | |
| flattened = [flatten(children) for children in el.children()] | |
| res = [el] | |
| for c in flattened: | |
| res += c | |
| return res | |
| self.layers = flatten(m) | |
| def undo_hijack(self, m): | |
| if type(m.cond_stage_model) == FrozenCLIPEmbedderWithCustomWords: | |
| m.cond_stage_model = m.cond_stage_model.wrapped | |
| model_embeddings = m.cond_stage_model.transformer.text_model.embeddings | |
| if type(model_embeddings.token_embedding) == EmbeddingsWithFixes: | |
| model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped | |
| def apply_circular(self, enable): | |
| if self.circular_enabled == enable: | |
| return | |
| self.circular_enabled = enable | |
| for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]: | |
| layer.padding_mode = 'circular' if enable else 'zeros' | |
| def tokenize(self, text): | |
| max_length = self.clip.max_length - 2 | |
| _, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text]) | |
| return remade_batch_tokens[0], token_count, max_length | |
| class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): | |
| def __init__(self, wrapped, hijack): | |
| super().__init__() | |
| self.wrapped = wrapped | |
| self.hijack: StableDiffusionModelHijack = hijack | |
| self.tokenizer = wrapped.tokenizer | |
| self.max_length = wrapped.max_length | |
| self.token_mults = {} | |
| tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k] | |
| for text, ident in tokens_with_parens: | |
| mult = 1.0 | |
| for c in text: | |
| if c == '[': | |
| mult /= 1.1 | |
| if c == ']': | |
| mult *= 1.1 | |
| if c == '(': | |
| mult *= 1.1 | |
| if c == ')': | |
| mult /= 1.1 | |
| if mult != 1.0: | |
| self.token_mults[ident] = mult | |
| def tokenize_line(self, line, used_custom_terms, hijack_comments): | |
| id_start = self.wrapped.tokenizer.bos_token_id | |
| id_end = self.wrapped.tokenizer.eos_token_id | |
| maxlen = self.wrapped.max_length | |
| if opts.enable_emphasis: | |
| parsed = prompt_parser.parse_prompt_attention(line) | |
| else: | |
| parsed = [[line, 1.0]] | |
| tokenized = self.wrapped.tokenizer([text for text, _ in parsed], truncation=False, add_special_tokens=False)["input_ids"] | |
| fixes = [] | |
| remade_tokens = [] | |
| multipliers = [] | |
| for tokens, (text, weight) in zip(tokenized, parsed): | |
| i = 0 | |
| while i < len(tokens): | |
| token = tokens[i] | |
| embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i) | |
| if embedding is None: | |
| remade_tokens.append(token) | |
| multipliers.append(weight) | |
| i += 1 | |
| else: | |
| emb_len = int(embedding.vec.shape[0]) | |
| fixes.append((len(remade_tokens), embedding)) | |
| remade_tokens += [0] * emb_len | |
| multipliers += [weight] * emb_len | |
| used_custom_terms.append((embedding.name, embedding.checksum())) | |
| i += embedding_length_in_tokens | |
| if len(remade_tokens) > maxlen - 2: | |
| vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()} | |
| ovf = remade_tokens[maxlen - 2:] | |
| overflowing_words = [vocab.get(int(x), "") for x in ovf] | |
| overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words)) | |
| hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") | |
| token_count = len(remade_tokens) | |
| remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) | |
| remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end] | |
| multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers)) | |
| multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0] | |
| return remade_tokens, fixes, multipliers, token_count | |
| def process_text(self, texts): | |
| used_custom_terms = [] | |
| remade_batch_tokens = [] | |
| hijack_comments = [] | |
| hijack_fixes = [] | |
| token_count = 0 | |
| cache = {} | |
| batch_multipliers = [] | |
| for line in texts: | |
| if line in cache: | |
| remade_tokens, fixes, multipliers = cache[line] | |
| else: | |
| remade_tokens, fixes, multipliers, token_count = self.tokenize_line(line, used_custom_terms, hijack_comments) | |
| cache[line] = (remade_tokens, fixes, multipliers) | |
| remade_batch_tokens.append(remade_tokens) | |
| hijack_fixes.append(fixes) | |
| batch_multipliers.append(multipliers) | |
| return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count | |
| def process_text_old(self, text): | |
| id_start = self.wrapped.tokenizer.bos_token_id | |
| id_end = self.wrapped.tokenizer.eos_token_id | |
| maxlen = self.wrapped.max_length | |
| used_custom_terms = [] | |
| remade_batch_tokens = [] | |
| overflowing_words = [] | |
| hijack_comments = [] | |
| hijack_fixes = [] | |
| token_count = 0 | |
| cache = {} | |
| batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"] | |
| batch_multipliers = [] | |
| for tokens in batch_tokens: | |
| tuple_tokens = tuple(tokens) | |
| if tuple_tokens in cache: | |
| remade_tokens, fixes, multipliers = cache[tuple_tokens] | |
| else: | |
| fixes = [] | |
| remade_tokens = [] | |
| multipliers = [] | |
| mult = 1.0 | |
| i = 0 | |
| while i < len(tokens): | |
| token = tokens[i] | |
| embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i) | |
| mult_change = self.token_mults.get(token) if opts.enable_emphasis else None | |
| if mult_change is not None: | |
| mult *= mult_change | |
| i += 1 | |
| elif embedding is None: | |
| remade_tokens.append(token) | |
| multipliers.append(mult) | |
| i += 1 | |
| else: | |
| emb_len = int(embedding.vec.shape[0]) | |
| fixes.append((len(remade_tokens), embedding)) | |
| remade_tokens += [0] * emb_len | |
| multipliers += [mult] * emb_len | |
| used_custom_terms.append((embedding.name, embedding.checksum())) | |
| i += embedding_length_in_tokens | |
| if len(remade_tokens) > maxlen - 2: | |
| vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()} | |
| ovf = remade_tokens[maxlen - 2:] | |
| overflowing_words = [vocab.get(int(x), "") for x in ovf] | |
| overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words)) | |
| hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") | |
| token_count = len(remade_tokens) | |
| remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) | |
| remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end] | |
| cache[tuple_tokens] = (remade_tokens, fixes, multipliers) | |
| multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers)) | |
| multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0] | |
| remade_batch_tokens.append(remade_tokens) | |
| hijack_fixes.append(fixes) | |
| batch_multipliers.append(multipliers) | |
| return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count | |
| def forward(self, text): | |
| if opts.use_old_emphasis_implementation: | |
| batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text) | |
| else: | |
| batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text) | |
| self.hijack.fixes = hijack_fixes | |
| self.hijack.comments = hijack_comments | |
| if len(used_custom_terms) > 0: | |
| self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms])) | |
| tokens = torch.asarray(remade_batch_tokens).to(device) | |
| outputs = self.wrapped.transformer(input_ids=tokens) | |
| z = outputs.last_hidden_state | |
| # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise | |
| batch_multipliers = torch.asarray(batch_multipliers).to(device) | |
| original_mean = z.mean() | |
| z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) | |
| new_mean = z.mean() | |
| z *= original_mean / new_mean | |
| return z | |
| class EmbeddingsWithFixes(torch.nn.Module): | |
| def __init__(self, wrapped, embeddings): | |
| super().__init__() | |
| self.wrapped = wrapped | |
| self.embeddings = embeddings | |
| def forward(self, input_ids): | |
| batch_fixes = self.embeddings.fixes | |
| self.embeddings.fixes = None | |
| inputs_embeds = self.wrapped(input_ids) | |
| if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0: | |
| return inputs_embeds | |
| vecs = [] | |
| for fixes, tensor in zip(batch_fixes, inputs_embeds): | |
| for offset, embedding in fixes: | |
| emb = embedding.vec | |
| emb_len = min(tensor.shape[0]-offset-1, emb.shape[0]) | |
| tensor = torch.cat([tensor[0:offset+1], emb[0:emb_len], tensor[offset+1+emb_len:]]) | |
| vecs.append(tensor) | |
| return torch.stack(vecs) | |
| def add_circular_option_to_conv_2d(): | |
| conv2d_constructor = torch.nn.Conv2d.__init__ | |
| def conv2d_constructor_circular(self, *args, **kwargs): | |
| return conv2d_constructor(self, *args, padding_mode='circular', **kwargs) | |
| torch.nn.Conv2d.__init__ = conv2d_constructor_circular | |
| model_hijack = StableDiffusionModelHijack() | |