Spaces:
Runtime error
Runtime error
| import math | |
| import modules.scripts as scripts | |
| import gradio as gr | |
| from PIL import Image | |
| from modules import processing, shared, sd_samplers, images, devices | |
| from modules.processing import Processed | |
| from modules.shared import opts, cmd_opts, state | |
| class Script(scripts.Script): | |
| def title(self): | |
| return "SD upscale" | |
| def show(self, is_img2img): | |
| return is_img2img | |
| def ui(self, is_img2img): | |
| info = gr.HTML("<p style=\"margin-bottom:0.75em\">Will upscale the image to twice the dimensions; use width and height sliders to set tile size</p>") | |
| overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, visible=False) | |
| upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", visible=False) | |
| return [info, overlap, upscaler_index] | |
| def run(self, p, _, overlap, upscaler_index): | |
| processing.fix_seed(p) | |
| upscaler = shared.sd_upscalers[upscaler_index] | |
| p.extra_generation_params["SD upscale overlap"] = overlap | |
| p.extra_generation_params["SD upscale upscaler"] = upscaler.name | |
| initial_info = None | |
| seed = p.seed | |
| init_img = p.init_images[0] | |
| if(upscaler.name != "None"): | |
| img = upscaler.scaler.upscale(init_img, 2, upscaler.data_path) | |
| else: | |
| img = init_img | |
| devices.torch_gc() | |
| grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap) | |
| batch_size = p.batch_size | |
| upscale_count = p.n_iter | |
| p.n_iter = 1 | |
| p.do_not_save_grid = True | |
| p.do_not_save_samples = True | |
| work = [] | |
| for y, h, row in grid.tiles: | |
| for tiledata in row: | |
| work.append(tiledata[2]) | |
| batch_count = math.ceil(len(work) / batch_size) | |
| state.job_count = batch_count * upscale_count | |
| print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.") | |
| result_images = [] | |
| for n in range(upscale_count): | |
| start_seed = seed + n | |
| p.seed = start_seed | |
| work_results = [] | |
| for i in range(batch_count): | |
| p.batch_size = batch_size | |
| p.init_images = work[i*batch_size:(i+1)*batch_size] | |
| state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}" | |
| processed = processing.process_images(p) | |
| if initial_info is None: | |
| initial_info = processed.info | |
| p.seed = processed.seed + 1 | |
| work_results += processed.images | |
| image_index = 0 | |
| for y, h, row in grid.tiles: | |
| for tiledata in row: | |
| tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height)) | |
| image_index += 1 | |
| combined_image = images.combine_grid(grid) | |
| result_images.append(combined_image) | |
| if opts.samples_save: | |
| images.save_image(combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p) | |
| processed = Processed(p, result_images, seed, initial_info) | |
| return processed | |