Spaces:
Runtime error
Runtime error
| from collections import namedtuple | |
| from copy import copy | |
| from itertools import permutations, chain | |
| import random | |
| import csv | |
| from io import StringIO | |
| from PIL import Image | |
| import numpy as np | |
| import modules.scripts as scripts | |
| import gradio as gr | |
| from modules import images | |
| from modules.processing import process_images, Processed | |
| from modules.shared import opts, cmd_opts, state | |
| import modules.shared as shared | |
| import modules.sd_samplers | |
| import modules.sd_models | |
| import re | |
| def apply_field(field): | |
| def fun(p, x, xs): | |
| setattr(p, field, x) | |
| return fun | |
| def apply_prompt(p, x, xs): | |
| p.prompt = p.prompt.replace(xs[0], x) | |
| p.negative_prompt = p.negative_prompt.replace(xs[0], x) | |
| def apply_order(p, x, xs): | |
| token_order = [] | |
| # Initally grab the tokens from the prompt, so they can be replaced in order of earliest seen | |
| for token in x: | |
| token_order.append((p.prompt.find(token), token)) | |
| token_order.sort(key=lambda t: t[0]) | |
| prompt_parts = [] | |
| # Split the prompt up, taking out the tokens | |
| for _, token in token_order: | |
| n = p.prompt.find(token) | |
| prompt_parts.append(p.prompt[0:n]) | |
| p.prompt = p.prompt[n + len(token):] | |
| # Rebuild the prompt with the tokens in the order we want | |
| prompt_tmp = "" | |
| for idx, part in enumerate(prompt_parts): | |
| prompt_tmp += part | |
| prompt_tmp += x[idx] | |
| p.prompt = prompt_tmp + p.prompt | |
| samplers_dict = {} | |
| for i, sampler in enumerate(modules.sd_samplers.samplers): | |
| samplers_dict[sampler.name.lower()] = i | |
| for alias in sampler.aliases: | |
| samplers_dict[alias.lower()] = i | |
| def apply_sampler(p, x, xs): | |
| sampler_index = samplers_dict.get(x.lower(), None) | |
| if sampler_index is None: | |
| raise RuntimeError(f"Unknown sampler: {x}") | |
| p.sampler_index = sampler_index | |
| def apply_checkpoint(p, x, xs): | |
| info = modules.sd_models.get_closet_checkpoint_match(x) | |
| assert info is not None, f'Checkpoint for {x} not found' | |
| modules.sd_models.reload_model_weights(shared.sd_model, info) | |
| def apply_hypernetwork(p, x, xs): | |
| hn = shared.hypernetworks.get(x, None) | |
| opts.data["sd_hypernetwork"] = hn.name if hn is not None else 'None' | |
| def format_value_add_label(p, opt, x): | |
| if type(x) == float: | |
| x = round(x, 8) | |
| return f"{opt.label}: {x}" | |
| def format_value(p, opt, x): | |
| if type(x) == float: | |
| x = round(x, 8) | |
| return x | |
| def format_value_join_list(p, opt, x): | |
| return ", ".join(x) | |
| def do_nothing(p, x, xs): | |
| pass | |
| def format_nothing(p, opt, x): | |
| return "" | |
| def str_permutations(x): | |
| """dummy function for specifying it in AxisOption's type when you want to get a list of permutations""" | |
| return x | |
| AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value"]) | |
| AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value"]) | |
| axis_options = [ | |
| AxisOption("Nothing", str, do_nothing, format_nothing), | |
| AxisOption("Seed", int, apply_field("seed"), format_value_add_label), | |
| AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label), | |
| AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label), | |
| AxisOption("Steps", int, apply_field("steps"), format_value_add_label), | |
| AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label), | |
| AxisOption("Prompt S/R", str, apply_prompt, format_value), | |
| AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list), | |
| AxisOption("Sampler", str, apply_sampler, format_value), | |
| AxisOption("Checkpoint name", str, apply_checkpoint, format_value), | |
| AxisOption("Hypernetwork", str, apply_hypernetwork, format_value), | |
| AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label), | |
| AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label), | |
| AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label), | |
| AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label), | |
| AxisOption("Eta", float, apply_field("eta"), format_value_add_label), | |
| AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label), # as it is now all AxisOptionImg2Img items must go after AxisOption ones | |
| ] | |
| def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend): | |
| res = [] | |
| ver_texts = [[images.GridAnnotation(y)] for y in y_labels] | |
| hor_texts = [[images.GridAnnotation(x)] for x in x_labels] | |
| first_pocessed = None | |
| state.job_count = len(xs) * len(ys) * p.n_iter | |
| for iy, y in enumerate(ys): | |
| for ix, x in enumerate(xs): | |
| state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}" | |
| processed = cell(x, y) | |
| if first_pocessed is None: | |
| first_pocessed = processed | |
| try: | |
| res.append(processed.images[0]) | |
| except: | |
| res.append(Image.new(res[0].mode, res[0].size)) | |
| grid = images.image_grid(res, rows=len(ys)) | |
| if draw_legend: | |
| grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts) | |
| first_pocessed.images = [grid] | |
| return first_pocessed | |
| re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*") | |
| re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*") | |
| re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*") | |
| re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*") | |
| class Script(scripts.Script): | |
| def title(self): | |
| return "X/Y plot" | |
| def ui(self, is_img2img): | |
| current_axis_options = [x for x in axis_options if type(x) == AxisOption or type(x) == AxisOptionImg2Img and is_img2img] | |
| with gr.Row(): | |
| x_type = gr.Dropdown(label="X type", choices=[x.label for x in current_axis_options], value=current_axis_options[1].label, visible=False, type="index", elem_id="x_type") | |
| x_values = gr.Textbox(label="X values", visible=False, lines=1) | |
| with gr.Row(): | |
| y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[4].label, visible=False, type="index", elem_id="y_type") | |
| y_values = gr.Textbox(label="Y values", visible=False, lines=1) | |
| draw_legend = gr.Checkbox(label='Draw legend', value=True) | |
| no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False) | |
| return [x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds] | |
| def run(self, p, x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds): | |
| modules.processing.fix_seed(p) | |
| p.batch_size = 1 | |
| initial_hn = opts.sd_hypernetwork | |
| def process_axis(opt, vals): | |
| if opt.label == 'Nothing': | |
| return [0] | |
| valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals)))] | |
| if opt.type == int: | |
| valslist_ext = [] | |
| for val in valslist: | |
| m = re_range.fullmatch(val) | |
| mc = re_range_count.fullmatch(val) | |
| if m is not None: | |
| start = int(m.group(1)) | |
| end = int(m.group(2))+1 | |
| step = int(m.group(3)) if m.group(3) is not None else 1 | |
| valslist_ext += list(range(start, end, step)) | |
| elif mc is not None: | |
| start = int(mc.group(1)) | |
| end = int(mc.group(2)) | |
| num = int(mc.group(3)) if mc.group(3) is not None else 1 | |
| valslist_ext += [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()] | |
| else: | |
| valslist_ext.append(val) | |
| valslist = valslist_ext | |
| elif opt.type == float: | |
| valslist_ext = [] | |
| for val in valslist: | |
| m = re_range_float.fullmatch(val) | |
| mc = re_range_count_float.fullmatch(val) | |
| if m is not None: | |
| start = float(m.group(1)) | |
| end = float(m.group(2)) | |
| step = float(m.group(3)) if m.group(3) is not None else 1 | |
| valslist_ext += np.arange(start, end + step, step).tolist() | |
| elif mc is not None: | |
| start = float(mc.group(1)) | |
| end = float(mc.group(2)) | |
| num = int(mc.group(3)) if mc.group(3) is not None else 1 | |
| valslist_ext += np.linspace(start=start, stop=end, num=num).tolist() | |
| else: | |
| valslist_ext.append(val) | |
| valslist = valslist_ext | |
| elif opt.type == str_permutations: | |
| valslist = list(permutations(valslist)) | |
| valslist = [opt.type(x) for x in valslist] | |
| return valslist | |
| x_opt = axis_options[x_type] | |
| xs = process_axis(x_opt, x_values) | |
| y_opt = axis_options[y_type] | |
| ys = process_axis(y_opt, y_values) | |
| def fix_axis_seeds(axis_opt, axis_list): | |
| if axis_opt.label == 'Seed': | |
| return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list] | |
| else: | |
| return axis_list | |
| if not no_fixed_seeds: | |
| xs = fix_axis_seeds(x_opt, xs) | |
| ys = fix_axis_seeds(y_opt, ys) | |
| if x_opt.label == 'Steps': | |
| total_steps = sum(xs) * len(ys) | |
| elif y_opt.label == 'Steps': | |
| total_steps = sum(ys) * len(xs) | |
| else: | |
| total_steps = p.steps * len(xs) * len(ys) | |
| print(f"X/Y plot will create {len(xs) * len(ys) * p.n_iter} images on a {len(xs)}x{len(ys)} grid. (Total steps to process: {total_steps * p.n_iter})") | |
| shared.total_tqdm.updateTotal(total_steps * p.n_iter) | |
| def cell(x, y): | |
| pc = copy(p) | |
| x_opt.apply(pc, x, xs) | |
| y_opt.apply(pc, y, ys) | |
| return process_images(pc) | |
| processed = draw_xy_grid( | |
| p, | |
| xs=xs, | |
| ys=ys, | |
| x_labels=[x_opt.format_value(p, x_opt, x) for x in xs], | |
| y_labels=[y_opt.format_value(p, y_opt, y) for y in ys], | |
| cell=cell, | |
| draw_legend=draw_legend | |
| ) | |
| if opts.grid_save: | |
| images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p) | |
| # restore checkpoint in case it was changed by axes | |
| modules.sd_models.reload_model_weights(shared.sd_model) | |
| opts.data["sd_hypernetwork"] = initial_hn | |
| return processed | |