Spaces:
Sleeping
Sleeping
| ## https://www.kaggle.com/code/unravel/fine-tuning-of-a-sql-model | |
| import spaces | |
| from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| import gradio as gr | |
| import torch | |
| from transformers.utils import logging | |
| from example_queries import small_query, long_query | |
| logging.set_verbosity_info() | |
| logger = logging.get_logger("transformers") | |
| model_name='t5-small' | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| original_model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) | |
| ft_model_name="daljeetsingh/sql_ft_t5small_kag" #"cssupport/t5-small-awesome-text-to-sql" | |
| ft_model = AutoModelForSeq2SeqLM.from_pretrained(ft_model_name, torch_dtype=torch.bfloat16) | |
| original_model.to('cuda') | |
| ft_model.to('cuda') | |
| def translate_text(text): | |
| prompt = f"{text}" | |
| inputs = tokenizer(prompt, return_tensors='pt') | |
| inputs = inputs.to('cuda') | |
| try: | |
| output = tokenizer.decode( | |
| original_model.generate( | |
| inputs["input_ids"], | |
| max_new_tokens=200, | |
| )[0], | |
| skip_special_tokens=True | |
| ) | |
| ft_output = tokenizer.decode( | |
| ft_model.generate( | |
| inputs["input_ids"], | |
| max_new_tokens=200, | |
| )[0], | |
| skip_special_tokens=True | |
| ) | |
| return [output, ft_output] | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox( | |
| value=small_query, | |
| lines=8, | |
| placeholder="Enter prompt...", | |
| label="Prompt" | |
| ) | |
| submit_btn = gr.Button(value="Generate") | |
| with gr.Column(): | |
| orig_output = gr.Textbox(label="OriginalModel", lines=2) | |
| ft_output = gr.Textbox(label="FTModel", lines=8) | |
| submit_btn.click( | |
| translate_text, inputs=[prompt], outputs=[orig_output, ft_output], api_name=False | |
| ) | |
| examples = gr.Examples( | |
| examples=[ | |
| [small_query], | |
| [long_query], | |
| ], | |
| inputs=[prompt], | |
| ) | |
| demo.launch(show_api=False, share=True, debug=True) | |