using prepared doc_store
Browse files- .gitignore +1 -0
- app.py +5 -79
- doc_store.zip +3 -0
- requirements.txt +1 -1
.gitignore
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
__pycache__/
|
|
|
|
|
|
| 1 |
__pycache__/
|
| 2 |
+
data/
|
app.py
CHANGED
|
@@ -1,21 +1,14 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
import streamlit as st
|
| 4 |
-
from haystack.document_stores import FAISSDocumentStore
|
| 5 |
-
from haystack.utils import convert_files_to_docs, fetch_archive_from_http, clean_wiki_text
|
| 6 |
-
from haystack.nodes import DensePassageRetriever
|
| 7 |
-
from haystack.utils import print_documents, print_answers
|
| 8 |
-
from haystack.pipelines import DocumentSearchPipeline
|
| 9 |
-
from haystack.nodes import Seq2SeqGenerator
|
| 10 |
-
from haystack.pipelines import GenerativeQAPipeline
|
| 11 |
-
from haystack.utils import convert_files_to_docs, clean_wiki_text
|
| 12 |
|
| 13 |
from lfqa import prepare, answer
|
| 14 |
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
faiss_file = './faiss_index.faiss'
|
| 19 |
|
| 20 |
# Sliders
|
| 21 |
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
|
|
@@ -130,72 +123,5 @@ def main(pipe):
|
|
| 130 |
st.write(st.session_state.results['answers'][0].meta['content'][i])
|
| 131 |
st.markdown('---\n')
|
| 132 |
|
| 133 |
-
|
| 134 |
-
# if not os.path.exists(sql_file) or not os.path.exists(faiss_file):
|
| 135 |
-
|
| 136 |
-
module_dir = os.path.dirname(os.path.abspath(__file__))
|
| 137 |
-
os.chdir(module_dir)
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
# %% Download/Load Docs
|
| 142 |
-
|
| 143 |
-
# Get some files that we want to use
|
| 144 |
-
# s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/wiki_gameofthrones_txt12.zip"
|
| 145 |
-
# fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
|
| 146 |
-
|
| 147 |
-
print('---> Loading Documents ...')
|
| 148 |
-
|
| 149 |
-
# Convert files to docs + cleaning
|
| 150 |
-
docs = convert_files_to_docs(dir_path=doc_dir,
|
| 151 |
-
clean_func=clean_wiki_text,
|
| 152 |
-
split_paragraphs=True)
|
| 153 |
-
|
| 154 |
-
# %% Document Store
|
| 155 |
-
|
| 156 |
-
print('---> Creating document store ...')
|
| 157 |
-
# # custom path for sql file
|
| 158 |
-
# document_store = FAISSDocumentStore(embedding_dim=128,
|
| 159 |
-
# faiss_index_factory_str="Flat",
|
| 160 |
-
# sql_url=f"sqlite:///{sql_file}")
|
| 161 |
-
|
| 162 |
-
# In memory database
|
| 163 |
-
document_store = FAISSDocumentStore(embedding_dim=128,
|
| 164 |
-
faiss_index_factory_str="Flat",
|
| 165 |
-
sql_url=f"sqlite://")
|
| 166 |
-
|
| 167 |
-
# # default path for sql file
|
| 168 |
-
# document_store = FAISSDocumentStore(embedding_dim=128,
|
| 169 |
-
# faiss_index_factory_str="Flat")
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
# %% Retriever (DPR)
|
| 174 |
-
|
| 175 |
-
print('---> Initializing retriever ...')
|
| 176 |
-
retriever = DensePassageRetriever(
|
| 177 |
-
document_store=document_store,
|
| 178 |
-
query_embedding_model="vblagoje/dpr-question_encoder-single-lfqa-wiki",
|
| 179 |
-
passage_embedding_model="vblagoje/dpr-ctx_encoder-single-lfqa-wiki",
|
| 180 |
-
use_gpu=False
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
# %% Create Embeddings and save results
|
| 184 |
-
document_store.update_embeddings(retriever)
|
| 185 |
-
|
| 186 |
-
print('---> Saving results ...')
|
| 187 |
-
# update db
|
| 188 |
-
document_store.write_documents(docs)
|
| 189 |
-
# save faiss file
|
| 190 |
-
document_store.save(faiss_file)
|
| 191 |
-
|
| 192 |
-
print('Done!')
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
# %% ------------------------------------------- Main App
|
| 196 |
-
|
| 197 |
-
generator = Seq2SeqGenerator(model_name_or_path="vblagoje/bart_lfqa", use_gpu=False)
|
| 198 |
-
|
| 199 |
-
pipe = GenerativeQAPipeline(generator, retriever)
|
| 200 |
-
# pipe = prepare()
|
| 201 |
main(pipe)
|
|
|
|
| 1 |
+
from zipfile import ZipFile
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
|
| 5 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
from lfqa import prepare, answer
|
| 8 |
|
| 9 |
|
| 10 |
+
with ZipFile("doc_store.zip","r") as zip_ref:
|
| 11 |
+
zip_ref.extractall('.')
|
|
|
|
| 12 |
|
| 13 |
# Sliders
|
| 14 |
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", "3"))
|
|
|
|
| 123 |
st.write(st.session_state.results['answers'][0].meta['content'][i])
|
| 124 |
st.markdown('---\n')
|
| 125 |
|
| 126 |
+
pipe = prepare()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
main(pipe)
|
doc_store.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6c25c0f4d55c7d80aa4525d619a11531d9a5c316d5022cb8927bdd19c635747
|
| 3 |
+
size 2589071
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
farm-haystack[
|
| 2 |
streamlit >= 1.9.0, < 2
|
| 3 |
st-annotated-text >= 2.0.0, < 3
|
|
|
|
| 1 |
+
farm-haystack[ocr,faiss]
|
| 2 |
streamlit >= 1.9.0, < 2
|
| 3 |
st-annotated-text >= 2.0.0, < 3
|