Spaces:
Runtime error
Runtime error
| import functools | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import transformers | |
| from transformers import GPT2Config, LogitsProcessorList | |
| from indextts.gpt.transformers_gpt2 import GPT2PreTrainedModel, GPT2Model | |
| # from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList | |
| from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions | |
| from transformers.utils.model_parallel_utils import (assert_device_map, | |
| get_device_map) | |
| from indextts.gpt.conformer_encoder import ConformerEncoder | |
| from indextts.gpt.perceiver import PerceiverResampler | |
| from indextts.utils.arch_util import AttentionBlock | |
| from indextts.utils.typical_sampling import TypicalLogitsWarper | |
| def null_position_embeddings(range, dim): | |
| return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) | |
| class ResBlock(nn.Module): | |
| """ | |
| Basic residual convolutional block that uses GroupNorm. | |
| """ | |
| def __init__(self, chan): | |
| super().__init__() | |
| self.net = nn.Sequential( | |
| nn.Conv1d(chan, chan, kernel_size=3, padding=1), | |
| nn.GroupNorm(chan // 8, chan), | |
| nn.ReLU(), | |
| nn.Conv1d(chan, chan, kernel_size=3, padding=1), | |
| nn.GroupNorm(chan // 8, chan) | |
| ) | |
| def forward(self, x): | |
| return F.relu(self.net(x) + x) | |
| class GPT2InferenceModel(GPT2PreTrainedModel): | |
| def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache=False): | |
| super().__init__(config) | |
| # Note: the argument named `text_pos_emb` here actually represents the mel position embedding | |
| self.transformer = gpt | |
| self.text_pos_embedding = text_pos_emb | |
| self.embeddings = embeddings | |
| self.final_norm = norm | |
| self.lm_head = nn.Sequential(norm, linear) | |
| self.kv_cache = kv_cache | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| self.cached_mel_emb = None | |
| def parallelize(self, device_map=None): | |
| self.device_map = ( | |
| get_device_map(len(self.transformer.h), range(max(1, torch.cuda.device_count()))) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.transformer.h)) | |
| self.transformer.parallelize(self.device_map) | |
| self.lm_head = self.lm_head.to(self.transformer.first_device) | |
| self.model_parallel = True | |
| def deparallelize(self): | |
| self.transformer.deparallelize() | |
| self.transformer = self.transformer.to("cpu") | |
| self.lm_head = self.lm_head.to("cpu") | |
| self.model_parallel = False | |
| torch.cuda.empty_cache() | |
| if torch.backends.mps.is_available(): | |
| torch.mps.empty_cache() | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def store_mel_emb(self, mel_emb): | |
| self.cached_mel_emb = mel_emb | |
| def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): | |
| token_type_ids = kwargs.get("token_type_ids", None) # usually None | |
| if not self.kv_cache: | |
| past_key_values = None | |
| # only last token for inputs_ids if past is defined in kwargs | |
| if past_key_values: | |
| input_ids = input_ids[:, -1].unsqueeze(-1) | |
| if token_type_ids is not None: | |
| token_type_ids = token_type_ids[:, -1].unsqueeze(-1) | |
| attention_mask = kwargs.get("attention_mask", None) | |
| position_ids = kwargs.get("position_ids", None) | |
| if attention_mask is not None and position_ids is None: | |
| # create position_ids on the fly for batch generation | |
| position_ids = attention_mask.long().cumsum(-1) - 1 | |
| position_ids.masked_fill_(attention_mask == 0, 0) | |
| if past_key_values: | |
| position_ids = position_ids[:, -1].unsqueeze(-1) | |
| else: | |
| position_ids = None | |
| return { | |
| "input_ids": input_ids, | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| "position_ids": position_ids, | |
| "attention_mask": attention_mask, | |
| "token_type_ids": token_type_ids, | |
| } | |
| def forward( | |
| self, | |
| input_ids=None, | |
| past_key_values=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| labels=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| assert self.cached_mel_emb is not None | |
| assert inputs_embeds is None # Not supported by this inference model. | |
| assert labels is None # Training not supported by this inference model. | |
| return_dict = ( | |
| return_dict if return_dict is not None else self.config.use_return_dict | |
| ) | |
| # Create embedding | |
| mel_len = self.cached_mel_emb.shape[1] | |
| if input_ids.shape[1] != 1: | |
| text_inputs = input_ids[:, mel_len:] | |
| text_emb = self.embeddings(text_inputs) | |
| text_emb = text_emb + self.text_pos_embedding(text_emb) | |
| if self.cached_mel_emb.shape[0] != text_emb.shape[0]: | |
| mel_emb = self.cached_mel_emb.repeat_interleave( | |
| text_emb.shape[0] // self.cached_mel_emb.shape[0], 0 | |
| ) | |
| else: # this outcome only occurs once per loop in most cases | |
| mel_emb = self.cached_mel_emb | |
| emb = torch.cat([mel_emb, text_emb], dim=1) | |
| else: | |
| emb = self.embeddings(input_ids) | |
| emb = emb + self.text_pos_embedding.get_fixed_embedding( | |
| attention_mask.shape[1] - mel_len, attention_mask.device | |
| ) | |
| transformer_outputs = self.transformer( | |
| inputs_embeds=emb, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| if torch.backends.mps.is_available(): | |
| self.to(self.transformer.first_device) | |
| else: | |
| torch.cuda.set_device(self.transformer.first_device) | |
| hidden_states = hidden_states.to(self.lm_head.weight.device) | |
| lm_logits = self.lm_head(hidden_states) | |
| if not return_dict: | |
| return (lm_logits,) + transformer_outputs[1:] | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=None, | |
| logits=lm_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| cross_attentions=transformer_outputs.cross_attentions, | |
| ) | |
| def _reorder_cache(past, beam_idx): | |
| """ | |
| This function is used to re-order the :obj:`past_key_values` cache if | |
| :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is | |
| called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. | |
| """ | |
| return tuple( | |
| tuple( | |
| past_state.index_select(0, beam_idx.to(past_state.device)) | |
| for past_state in layer_past | |
| ) | |
| for layer_past in past | |
| ) | |
| class ConditioningEncoder(nn.Module): | |
| def __init__(self, | |
| spec_dim, | |
| embedding_dim, | |
| attn_blocks=6, | |
| num_attn_heads=4, | |
| do_checkpointing=False, | |
| mean=False): | |
| super().__init__() | |
| attn = [] | |
| self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1) | |
| for a in range(attn_blocks): | |
| attn.append(AttentionBlock(embedding_dim, num_attn_heads)) | |
| self.attn = nn.Sequential(*attn) | |
| self.dim = embedding_dim | |
| self.do_checkpointing = do_checkpointing | |
| self.mean = mean | |
| def forward(self, x): | |
| h = self.init(x) | |
| h = self.attn(h) | |
| if self.mean: | |
| return h.mean(dim=2) | |
| else: | |
| return h | |
| # return h[:, :, 0] | |
| class LearnedPositionEmbeddings(nn.Module): | |
| def __init__(self, seq_len, model_dim, init=.02): | |
| super().__init__() | |
| self.emb = nn.Embedding(seq_len, model_dim) | |
| # Initializing this way is standard for GPT-2 | |
| self.emb.weight.data.normal_(mean=0.0, std=init) | |
| def forward(self, x): | |
| sl = x.shape[1] | |
| return self.emb(torch.arange(0, sl, device=x.device)) | |
| def get_fixed_embedding(self, ind, dev): | |
| return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0) | |
| def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing, activation_function): | |
| """ | |
| GPT-2 implemented by the HuggingFace library. | |
| """ | |
| from transformers import GPT2Config, GPT2Model | |
| gpt_config = GPT2Config(vocab_size=256, # Unused. | |
| n_positions=max_mel_seq_len + max_text_seq_len, | |
| n_ctx=max_mel_seq_len + max_text_seq_len, | |
| n_embd=model_dim, | |
| n_layer=layers, | |
| n_head=heads, | |
| activation_function=activation_function or "gelu_new", | |
| gradient_checkpointing=checkpointing, | |
| use_cache=not checkpointing) | |
| gpt = GPT2Model(gpt_config) | |
| # Override the built in positional embeddings | |
| del gpt.wpe | |
| gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) | |
| # Built-in token embeddings are unused. | |
| del gpt.wte | |
| return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim), \ | |
| None, None | |
| class MelEncoder(nn.Module): | |
| def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2): | |
| super().__init__() | |
| self.channels = channels | |
| self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1), | |
| nn.Sequential(*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)]), | |
| nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1), | |
| nn.GroupNorm(channels // 16, channels // 2), | |
| nn.ReLU(), | |
| nn.Sequential(*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)]), | |
| nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1), | |
| nn.GroupNorm(channels // 8, channels), | |
| nn.ReLU(), | |
| nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]), | |
| ) | |
| self.reduction = 4 | |
| def forward(self, x): | |
| for e in self.encoder: | |
| x = e(x) | |
| return x.permute(0, 2, 1) | |
| class UnifiedVoice(nn.Module): | |
| def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1, | |
| mel_length_compression=1024, number_text_tokens=256, | |
| start_text_token=0, stop_text_token=1, number_mel_codes=8194, start_mel_token=8192, stop_mel_token=8193, | |
| train_solo_embeddings=False, use_mel_codes_as_input=True, | |
| checkpointing=True, types=1, activation_function=None, | |
| condition_num_latent=32, condition_type="perceiver", condition_module=None): | |
| """ | |
| Args: | |
| layers: Number of layers in transformer stack. | |
| model_dim: Operating dimensions of the transformer | |
| heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64 | |
| max_text_tokens: Maximum number of text tokens that will be encountered by model. | |
| max_mel_tokens: Maximum number of MEL tokens that will be encountered by model. | |
| max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s). | |
| mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length. | |
| number_text_tokens: | |
| start_text_token: | |
| stop_text_token: | |
| number_mel_codes: | |
| start_mel_token: | |
| stop_mel_token: | |
| train_solo_embeddings: | |
| use_mel_codes_as_input: | |
| checkpointing: | |
| condition_type: perceiver, gst or default encoder | |
| """ | |
| super().__init__() | |
| self.number_text_tokens = number_text_tokens | |
| self.start_text_token = start_text_token | |
| self.stop_text_token = stop_text_token | |
| self.number_mel_codes = number_mel_codes | |
| self.start_mel_token = start_mel_token | |
| self.stop_mel_token = stop_mel_token | |
| self.layers = layers | |
| self.heads = heads | |
| self.max_mel_tokens = max_mel_tokens | |
| self.max_text_tokens = max_text_tokens | |
| self.model_dim = model_dim | |
| self.max_conditioning_inputs = max_conditioning_inputs | |
| self.mel_length_compression = mel_length_compression | |
| self.condition_type = condition_type | |
| self.cond_num = condition_num_latent | |
| self.cond_mask_pad = nn.ConstantPad1d((self.cond_num, 0), True) | |
| if condition_type == "perceiver": | |
| self.conditioning_encoder = ConditioningEncoder(100, model_dim, num_attn_heads=heads) | |
| self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=model_dim, num_latents=self.cond_num) | |
| elif condition_type == "conformer_perceiver" or condition_type == "conformer_encoder": | |
| self.conditioning_encoder = ConformerEncoder(input_size=100, | |
| output_size=condition_module['output_size'], | |
| linear_units=condition_module['linear_units'], | |
| attention_heads=condition_module['attention_heads'], | |
| num_blocks=condition_module['num_blocks'], | |
| input_layer=condition_module['input_layer']) | |
| if condition_type == "conformer_perceiver": | |
| self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=condition_module['output_size'], | |
| ff_mult=condition_module['perceiver_mult'], | |
| heads=condition_module['attention_heads'], | |
| num_latents=self.cond_num) | |
| else: | |
| self.conditioning_encoder = ConditioningEncoder(100, model_dim, num_attn_heads=heads, mean=True) | |
| self.text_embedding = nn.Embedding(self.number_text_tokens * types + 1, model_dim) | |
| if use_mel_codes_as_input: | |
| self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim) | |
| else: | |
| self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1) | |
| self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \ | |
| build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens + 2 + self.max_conditioning_inputs, | |
| self.max_text_tokens + 2, checkpointing, activation_function) | |
| if train_solo_embeddings: | |
| self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True) | |
| self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True) | |
| else: | |
| self.mel_solo_embedding = 0 | |
| self.text_solo_embedding = 0 | |
| self.final_norm = nn.LayerNorm(model_dim) | |
| self.text_head = nn.Linear(model_dim, self.number_text_tokens * types + 1) | |
| self.mel_head = nn.Linear(model_dim, self.number_mel_codes) | |
| # Initialize the embeddings per the GPT-2 scheme | |
| embeddings = [self.text_embedding] | |
| if use_mel_codes_as_input: | |
| embeddings.append(self.mel_embedding) | |
| for module in embeddings: | |
| module.weight.data.normal_(mean=0.0, std=.02) | |
| def post_init_gpt2_config(self, use_deepspeed=False, kv_cache=False, half=False): | |
| seq_length = self.max_mel_tokens + self.max_text_tokens + 2 | |
| gpt_config = GPT2Config( | |
| vocab_size=self.number_mel_codes, | |
| n_positions=seq_length, | |
| n_ctx=seq_length, | |
| n_embd=self.model_dim, | |
| n_layer=self.layers, | |
| n_head=self.heads, | |
| gradient_checkpointing=False, | |
| use_cache=True, | |
| ) | |
| self.inference_model = GPT2InferenceModel( | |
| gpt_config, | |
| self.gpt, | |
| self.mel_pos_embedding, | |
| self.mel_embedding, | |
| self.final_norm, | |
| self.mel_head, | |
| kv_cache=kv_cache, | |
| ) | |
| if use_deepspeed and half and torch.cuda.is_available(): | |
| import deepspeed | |
| self.ds_engine = deepspeed.init_inference(model=self.inference_model, | |
| mp_size=1, | |
| replace_with_kernel_inject=False, | |
| dtype=torch.float16) | |
| self.inference_model = self.ds_engine.module.eval() | |
| elif use_deepspeed and torch.cuda.is_available(): | |
| import deepspeed | |
| self.ds_engine = deepspeed.init_inference(model=self.inference_model, | |
| mp_size=1, | |
| replace_with_kernel_inject=False, | |
| dtype=torch.float32) | |
| self.inference_model = self.ds_engine.module.eval() | |
| else: | |
| self.inference_model = self.inference_model.eval() | |
| # self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head) | |
| self.gpt.wte = self.mel_embedding | |
| def build_aligned_inputs_and_targets(self, input, start_token, stop_token): | |
| inp = F.pad(input, (1, 0), value=start_token) | |
| tar = F.pad(input, (0, 1), value=stop_token) | |
| return inp, tar | |
| def set_mel_padding(self, mel_input_tokens, mel_lengths): | |
| """ | |
| Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in | |
| that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required | |
| preformatting to create a working TTS model. | |
| """ | |
| for b in range(len(mel_lengths)): | |
| # Due to the convolutional nature of how these tokens are generated, | |
| # it would be best if the model predicts a token past the actual last token. | |
| actual_end = mel_lengths[b] | |
| if actual_end < mel_input_tokens.shape[-1]: | |
| mel_input_tokens[b, actual_end:] = self.stop_mel_token | |
| return mel_input_tokens | |
| def set_text_padding(self, text_input_tokens, text_lengths): | |
| """ | |
| Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in | |
| that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required | |
| preformatting to create a working TTS model. | |
| """ | |
| for b in range(len(text_lengths)): | |
| # Due to the convolutional nature of how these tokens are generated, | |
| # it would be best if the model predicts a token past the actual last token. | |
| actual_end = text_lengths[b] | |
| if actual_end < text_input_tokens.shape[-1]: | |
| text_input_tokens[b, actual_end:] = self.stop_text_token | |
| return text_input_tokens | |
| def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False): | |
| if second_inputs is not None: | |
| emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1) | |
| else: | |
| emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1) | |
| gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns) | |
| if get_attns: | |
| return gpt_out.attentions | |
| offset = speech_conditioning_inputs.shape[1] | |
| enc = gpt_out.last_hidden_state[:, offset:] | |
| enc = self.final_norm(enc) | |
| if return_latent: | |
| return enc[:, :first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:] | |
| first_logits = enc[:, :first_inputs.shape[1]] | |
| first_logits = first_head(first_logits) | |
| first_logits = first_logits.permute(0, 2, 1) | |
| if second_inputs is not None: | |
| second_logits = enc[:, -second_inputs.shape[1]:] | |
| second_logits = second_head(second_logits) | |
| second_logits = second_logits.permute(0, 2, 1) | |
| return first_logits, second_logits | |
| else: | |
| return first_logits | |
| def get_conditioning(self, speech_conditioning_input, cond_mel_lengths=None): | |
| if self.condition_type == "perceiver": | |
| if speech_conditioning_input.ndim == 4: | |
| speech_conditioning_input = speech_conditioning_input.squeeze(1) | |
| speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input) # (b, d, s) | |
| conds = self.perceiver_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 32, d) | |
| elif self.condition_type == "conformer_perceiver": | |
| speech_conditioning_input, mask = self.conditioning_encoder(speech_conditioning_input.transpose(1, 2), | |
| cond_mel_lengths) # (b, s, d), (b, 1, s) | |
| if self.condition_type == "conformer_perceiver": | |
| # conds_mask = torch.cat([torch.ones((mask.shape[0], self.cond_num), dtype=torch.bool), mask.squeeze(1)], dim=1) | |
| conds_mask = self.cond_mask_pad(mask.squeeze(1)) | |
| conds = self.perceiver_encoder(speech_conditioning_input, conds_mask) # (b, 32, d) | |
| elif self.condition_type == "gst": | |
| if speech_conditioning_input.ndim == 4: | |
| speech_conditioning_input = speech_conditioning_input.squeeze(1) | |
| conds = self.gst_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 1, d) | |
| else: | |
| speech_conditioning_input = ( | |
| speech_conditioning_input.unsqueeze(1) | |
| if len(speech_conditioning_input.shape) == 3 | |
| else speech_conditioning_input | |
| ) | |
| conds = [] | |
| for j in range(speech_conditioning_input.shape[1]): | |
| conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) | |
| conds = torch.stack(conds, dim=1) | |
| conds = conds.mean(dim=1) | |
| conds = conds.unsqueeze(1) | |
| return conds | |
| def forward(self, speech_conditioning_latent, text_inputs, text_lengths, mel_codes, wav_lengths, | |
| cond_mel_lengths=None, types=None, text_first=True, raw_mels=None, return_attentions=False, | |
| return_latent=False, clip_inputs=False): | |
| """ | |
| Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode | |
| (actuated by `text_first`). | |
| speech_conditioning_input: MEL float tensor, (b,1024) | |
| text_inputs: long tensor, (b,t) | |
| text_lengths: long tensor, (b,) | |
| mel_inputs: long tensor, (b,m) | |
| wav_lengths: long tensor, (b,) | |
| raw_mels: MEL float tensor (b,80,s) | |
| If return_attentions is specified, only logits are returned. | |
| If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned. | |
| If clip_inputs is True, the inputs will be clipped to the smallest input size across each input modality. | |
| """ | |
| speech_conditioning_latent = self.get_conditioning(speech_conditioning_latent, cond_mel_lengths) | |
| # Types are expressed by expanding the text embedding space. | |
| if types is not None: | |
| text_inputs = text_inputs * (1 + types).unsqueeze(-1) | |
| if clip_inputs: | |
| # This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by | |
| # chopping the inputs by the maximum actual length. | |
| max_text_len = text_lengths.max() | |
| text_inputs = text_inputs[:, :max_text_len] | |
| max_mel_len = wav_lengths.max() // self.mel_length_compression | |
| mel_codes = mel_codes[:, :max_mel_len] | |
| if raw_mels is not None: | |
| raw_mels = raw_mels[:, :, :max_mel_len * 4] | |
| # Set padding areas within MEL (currently it is coded with the MEL code for <zero>). | |
| # mel_codes_lengths = torch.div(wav_lengths, self.mel_length_compression, rounding_mode='trunc') | |
| mel_codes_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 1 | |
| mel_codes = self.set_mel_padding(mel_codes, mel_codes_lengths) | |
| text_inputs = self.set_text_padding(text_inputs, text_lengths) | |
| text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) | |
| mel_codes = F.pad(mel_codes, (0, 1), value=self.stop_mel_token) | |
| conds = speech_conditioning_latent | |
| text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) | |
| text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) | |
| mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token) | |
| if raw_mels is not None: | |
| mel_inp = F.pad(raw_mels, (0, 8)) | |
| else: | |
| mel_inp = mel_codes | |
| mel_emb = self.mel_embedding(mel_inp) | |
| mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) | |
| if text_first: | |
| # print(f"conds: {conds.shape}, text_emb: {text_emb.shape}, mel_emb: {mel_emb.shape}") | |
| text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions, return_latent=return_latent) | |
| if return_latent: | |
| return mel_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass. | |
| else: | |
| mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions, return_latent=return_latent) | |
| if return_latent: | |
| return text_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass. | |
| if return_attentions: | |
| return mel_logits | |
| loss_text = F.cross_entropy(text_logits, text_targets.long()) | |
| loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) | |
| return loss_text.mean(), loss_mel.mean(), mel_logits | |
| def prepare_gpt_inputs( | |
| self, | |
| conditional_latents: torch.Tensor, | |
| text_inputs: torch.Tensor, | |
| ): | |
| """ | |
| Prepare the inputs for the GPT2InferenceModel to generate. | |
| Args: | |
| conds_latent: (b, 32, dim) audio conditioning embedding by `get_conditioning()` | |
| text_inputs: (b, L) | |
| Returns: | |
| input_ids: (b, s+1) the input ids for the GPT2InferenceModel.generate() | |
| inputs_embeds: (b, s+1, dim) the input embeddings for the GPT2InferenceModel.forward() | |
| attention_mask: (b, s+1) the attention mask for the GPT2InferenceModel.generate() | |
| """ | |
| b, L = text_inputs.shape[:2] | |
| device = text_inputs.device | |
| single_cond = conditional_latents.ndim == 3 and conditional_latents.shape[0] == 1 | |
| if not single_cond: | |
| assert conditional_latents.shape[0] == b, f"batch size mismatch: {conditional_latents.shape[0]} vs {b}" | |
| batched_mel_emb = [] | |
| attention_masks = [] | |
| target_len = conditional_latents.shape[1] + L + 2 | |
| for i in range(b): | |
| valid_mask = (text_inputs[i] != self.stop_text_token) & (text_inputs[i] != self.start_text_token) | |
| text_input = text_inputs[i][valid_mask] | |
| text_input = F.pad(text_input, (1, 0), value=self.start_text_token) | |
| text_input = F.pad(text_input, (0, 1), value=self.stop_text_token) | |
| text_input_pos = torch.arange(0, text_input.size(-1), device=device) | |
| text_emb = self.text_embedding(text_input) + self.text_pos_embedding.emb(text_input_pos) | |
| # concatenate [conditional latents][text embeddings] | |
| conds_text_emb = [ | |
| conditional_latents.squeeze(0) if single_cond else conditional_latents[i], | |
| text_emb, | |
| ] | |
| # +1 for the start_mel_token | |
| attention_mask = torch.ones(target_len+1, dtype=torch.long, device=device) | |
| # check this text input is padded | |
| padding: int = L + 2 - text_input.size(-1) | |
| # pad left of [cond][text] -> [pad][cond][text] | |
| if padding > 0: | |
| pad = torch.zeros((padding, conditional_latents.size(-1)), dtype=text_emb.dtype, device=device) # [p, dim] | |
| conds_text_emb.insert(0, pad) | |
| attention_mask[:padding] = 0 | |
| mel_emb = torch.cat(conds_text_emb) #[s, dim] | |
| assert mel_emb.shape[0] == target_len, f"mel_emb.shape: {mel_emb.shape}, target_len: {target_len}" | |
| batched_mel_emb.append(mel_emb) | |
| attention_masks.append(attention_mask) | |
| # [b, s, dim] | |
| batched_mel_emb = torch.stack(batched_mel_emb, dim=0) | |
| # [b, s+1] | |
| attention_mask = torch.stack(attention_masks, dim=0) | |
| # [b, s+1] | |
| fake_inputs = torch.ones( | |
| ( | |
| batched_mel_emb.shape[0], | |
| batched_mel_emb.shape[1] + 1, # +1 for the start_mel_token | |
| ), | |
| dtype=torch.long, | |
| device=device, | |
| ) | |
| fake_inputs[:, -1] = self.start_mel_token | |
| return fake_inputs, batched_mel_emb, attention_mask | |
| def inference_speech(self, speech_conditioning_mel, text_inputs, cond_mel_lengths=None, input_tokens=None, num_return_sequences=1, | |
| max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs): | |
| """ | |
| Args: | |
| speech_conditioning_mel: (b, n_mels, frames) or (n_mels, frames) | |
| text_inputs: (b, L) | |
| cond_mel_lengths: lengths of the conditioning mel spectrograms in shape (b,) or (1,) | |
| input_tokens: additional tokens for generation in shape (b, s) or (s,) | |
| max_generate_length: limit the number of generated tokens | |
| hf_generate_kwargs: kwargs for `GPT2InferenceModel.generate(**hf_generate_kwargs)` | |
| """ | |
| if speech_conditioning_mel.ndim == 2: | |
| speech_conditioning_mel = speech_conditioning_mel.unsqueeze(0) | |
| if cond_mel_lengths is None: | |
| cond_mel_lengths = torch.tensor([speech_conditioning_mel.shape[-1]], device=speech_conditioning_mel.device) | |
| conds_latent = self.get_conditioning(speech_conditioning_mel, cond_mel_lengths) | |
| input_ids, inputs_embeds, attention_mask = self.prepare_gpt_inputs(conds_latent, text_inputs) | |
| self.inference_model.store_mel_emb(inputs_embeds) | |
| if input_tokens is None: | |
| inputs = input_ids | |
| else: | |
| if input_tokens.ndim == 1: | |
| input_tokens = input_tokens.unsqueeze(0) | |
| assert num_return_sequences % input_tokens.shape[0] == 0, \ | |
| "The num_return_sequences must be divisible by the batch number of input_tokens" | |
| assert num_return_sequences % text_inputs.shape[0] == 0, \ | |
| "The num_return_sequences must be divisible by the batch number of text_inputs" | |
| b = num_return_sequences // input_ids.shape[0] | |
| if b > 1: | |
| input_ids = input_ids.repeat(b, 1) | |
| attention_mask = attention_mask.repeat(b, 1) | |
| input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1) | |
| inputs = torch.cat([input_ids, input_tokens], dim=1) | |
| attention_mask = F.pad(attention_mask, (0, input_tokens.shape[1]), value=1) | |
| trunc_index = inputs.shape[1] | |
| logits_processor = LogitsProcessorList() | |
| if typical_sampling: | |
| # employ custom typical sampling | |
| if not (typical_mass > 0.0 and typical_mass < 1.0): | |
| raise ValueError(f"`typical_mass` has to be a float > 0 and < 1, but is {typical_mass}") | |
| min_tokens_to_keep = 2 if hf_generate_kwargs.get("num_beams", 1) > 1 else 1 | |
| logits_processor.append(TypicalLogitsWarper(mass=typical_mass, min_tokens_to_keep=min_tokens_to_keep)) | |
| max_length = (trunc_index + self.max_mel_tokens - 1) if max_generate_length is None else trunc_index + max_generate_length | |
| output = self.inference_model.generate(inputs, | |
| bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, | |
| eos_token_id=self.stop_mel_token, attention_mask=attention_mask, | |
| max_length=max_length, logits_processor=logits_processor, | |
| num_return_sequences=num_return_sequences, | |
| **hf_generate_kwargs) | |
| if isinstance(output, torch.Tensor): | |
| return output[:, trunc_index:] | |
| # GenerateOutput | |
| output.sequences = output.sequences[:, trunc_index:] | |
| return output | |