Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,26 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
| 2 |
import nltk
|
| 3 |
import spacy
|
| 4 |
import torch
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
|
| 9 |
import gradio as gr
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
from sentence_transformers import SentenceTransformer, util
|
| 12 |
-
import torch.nn.functional as F
|
| 13 |
|
| 14 |
-
#
|
|
|
|
|
|
|
| 15 |
def ensure_spacy():
|
| 16 |
try:
|
| 17 |
return spacy.load("en_core_web_sm")
|
|
@@ -26,11 +35,14 @@ def ensure_nltk():
|
|
| 26 |
except LookupError:
|
| 27 |
nltk.download("punkt")
|
| 28 |
|
| 29 |
-
# --------- load resources once (cached) ---------
|
| 30 |
ensure_nltk()
|
| 31 |
nlp = ensure_spacy()
|
| 32 |
|
|
|
|
|
|
|
|
|
|
| 33 |
sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
|
|
| 34 |
bert_sentiment = pipeline(
|
| 35 |
"sentiment-analysis",
|
| 36 |
model="distilbert-base-uncased-finetuned-sst-2-english"
|
|
@@ -40,7 +52,9 @@ emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
|
|
| 40 |
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name)
|
| 41 |
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name)
|
| 42 |
|
| 43 |
-
#
|
|
|
|
|
|
|
| 44 |
GNH_DOMAINS: Dict[str, str] = {
|
| 45 |
"Mental Wellness": "mental health, emotional clarity, peace of mind",
|
| 46 |
"Social Wellness": "relationships, community, friendship, social harmony",
|
|
@@ -54,7 +68,7 @@ GNH_DOMAINS: Dict[str, str] = {
|
|
| 54 |
"Living Standards": "housing, wealth, basic needs, affordability",
|
| 55 |
"Cultural Diversity": "tradition, language, cultural expression, heritage",
|
| 56 |
"Political Wellness": "rights, law, free speech, civic participation",
|
| 57 |
-
"Ecological Diversity": "biodiversity, forest, ecosystem, wildlife"
|
| 58 |
}
|
| 59 |
|
| 60 |
GNH_COLORS: Dict[str, str] = {
|
|
@@ -73,28 +87,89 @@ GNH_COLORS: Dict[str, str] = {
|
|
| 73 |
"Cultural Diversity": "#9370db",
|
| 74 |
}
|
| 75 |
|
| 76 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
def classify_emotion(text: str) -> Tuple[str, float]:
|
| 78 |
inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True)
|
| 79 |
with torch.no_grad():
|
| 80 |
logits = emotion_model(**inputs).logits
|
| 81 |
probs = F.softmax(logits, dim=1).squeeze()
|
| 82 |
labels = emotion_model.config.id2label
|
| 83 |
-
top_idx = torch.argmax(probs).item()
|
| 84 |
return labels[top_idx], float(probs[top_idx].item())
|
| 85 |
|
| 86 |
def score_sentiment(text: str) -> float:
|
| 87 |
-
"""
|
| 88 |
-
BERT sentiment → scale to [1..10]
|
| 89 |
-
POSITIVE: ~[6..10]; NEGATIVE: ~[1..5]
|
| 90 |
-
"""
|
| 91 |
out = bert_sentiment(text[:512])[0]
|
| 92 |
label, score = out["label"], out["score"]
|
| 93 |
-
if label == "POSITIVE"
|
| 94 |
-
|
| 95 |
-
else:
|
| 96 |
-
scaled = 1 + 4 * (1 - score)
|
| 97 |
-
return round(max(1, min(10, scaled)), 2)
|
| 98 |
|
| 99 |
def score_accomplishment(text: str) -> float:
|
| 100 |
doc = nlp(text)
|
|
@@ -103,14 +178,11 @@ def score_accomplishment(text: str) -> float:
|
|
| 103 |
for token in doc:
|
| 104 |
if token.text.lower() in key_phrases:
|
| 105 |
score += 1.5
|
| 106 |
-
if token.tag_ in {"VBD", "VBN"}:
|
| 107 |
score += 0.5
|
| 108 |
-
return round(
|
| 109 |
|
| 110 |
def semantic_indicator_mapping(text: str, sentiment_score: float, sentiment_weight: float = 0.3) -> Dict[str, float]:
|
| 111 |
-
"""
|
| 112 |
-
SBERT cosine similarity to domain descriptions, then blend with sentiment_score.
|
| 113 |
-
"""
|
| 114 |
text_vec = sbert_model.encode(text, convert_to_tensor=True)
|
| 115 |
out: Dict[str, float] = {}
|
| 116 |
for label, desc in GNH_DOMAINS.items():
|
|
@@ -121,12 +193,42 @@ def semantic_indicator_mapping(text: str, sentiment_score: float, sentiment_weig
|
|
| 121 |
out[label] = round(blended, 3)
|
| 122 |
return dict(sorted(out.items(), key=lambda kv: -kv[1]))
|
| 123 |
|
| 124 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
def indicators_plot(indicators: Dict[str, float]):
|
| 126 |
labels = list(indicators.keys())
|
| 127 |
values = list(indicators.values())
|
| 128 |
colors = [GNH_COLORS.get(label, "#cccccc") for label in labels]
|
| 129 |
-
|
| 130 |
fig = plt.figure(figsize=(8, 5))
|
| 131 |
plt.barh(labels, values, color=colors)
|
| 132 |
plt.gca().invert_yaxis()
|
|
@@ -135,43 +237,92 @@ def indicators_plot(indicators: Dict[str, float]):
|
|
| 135 |
plt.tight_layout()
|
| 136 |
return fig
|
| 137 |
|
| 138 |
-
#
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
if not text or not text.strip():
|
| 141 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
sentiment = score_sentiment(text)
|
| 143 |
emotion, emo_conf = classify_emotion(text)
|
| 144 |
accomplishment = score_accomplishment(text)
|
| 145 |
indicators = semantic_indicator_mapping(text, sentiment)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
|
|
|
| 147 |
top5 = list(indicators.items())[:5]
|
| 148 |
top5_str = "\n".join(f"{k}: {v}" for k, v in top5)
|
| 149 |
-
fig = indicators_plot(indicators)
|
| 150 |
|
| 151 |
return (
|
| 152 |
sentiment,
|
| 153 |
f"{emotion} ({emo_conf:.3f})",
|
|
|
|
|
|
|
|
|
|
| 154 |
top5_str,
|
| 155 |
fig,
|
| 156 |
-
|
|
|
|
|
|
|
| 157 |
)
|
| 158 |
|
| 159 |
-
with gr.Blocks(title="
|
| 160 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
| 161 |
with gr.Row():
|
| 162 |
inp = gr.Textbox(lines=4, label="Input text", placeholder="e.g., I finally quit my toxic job and feel lighter.")
|
| 163 |
with gr.Row():
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
| 165 |
with gr.Row():
|
| 166 |
sent = gr.Number(label="Sentiment (1–10)")
|
| 167 |
emo = gr.Text(label="Emotion")
|
| 168 |
acc = gr.Number(label="Accomplishment (1–10)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
with gr.Row():
|
| 170 |
-
|
|
|
|
|
|
|
| 171 |
with gr.Row():
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
-
btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
if __name__ == "__main__":
|
| 177 |
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import io
|
| 3 |
+
from typing import Dict, Tuple, List
|
| 4 |
+
|
| 5 |
import nltk
|
| 6 |
import spacy
|
| 7 |
import torch
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import pandas as pd
|
|
|
|
| 11 |
import gradio as gr
|
| 12 |
+
|
| 13 |
+
from transformers import (
|
| 14 |
+
pipeline,
|
| 15 |
+
AutoTokenizer,
|
| 16 |
+
AutoModelForSequenceClassification,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
from sentence_transformers import SentenceTransformer, util
|
|
|
|
| 20 |
|
| 21 |
+
# =========================
|
| 22 |
+
# 0) Lightweight setup
|
| 23 |
+
# =========================
|
| 24 |
def ensure_spacy():
|
| 25 |
try:
|
| 26 |
return spacy.load("en_core_web_sm")
|
|
|
|
| 35 |
except LookupError:
|
| 36 |
nltk.download("punkt")
|
| 37 |
|
|
|
|
| 38 |
ensure_nltk()
|
| 39 |
nlp = ensure_spacy()
|
| 40 |
|
| 41 |
+
# =========================
|
| 42 |
+
# 1) Models (cached)
|
| 43 |
+
# =========================
|
| 44 |
sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 45 |
+
|
| 46 |
bert_sentiment = pipeline(
|
| 47 |
"sentiment-analysis",
|
| 48 |
model="distilbert-base-uncased-finetuned-sst-2-english"
|
|
|
|
| 52 |
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name)
|
| 53 |
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name)
|
| 54 |
|
| 55 |
+
# =========================
|
| 56 |
+
# 2) GNH definitions
|
| 57 |
+
# =========================
|
| 58 |
GNH_DOMAINS: Dict[str, str] = {
|
| 59 |
"Mental Wellness": "mental health, emotional clarity, peace of mind",
|
| 60 |
"Social Wellness": "relationships, community, friendship, social harmony",
|
|
|
|
| 68 |
"Living Standards": "housing, wealth, basic needs, affordability",
|
| 69 |
"Cultural Diversity": "tradition, language, cultural expression, heritage",
|
| 70 |
"Political Wellness": "rights, law, free speech, civic participation",
|
| 71 |
+
"Ecological Diversity": "biodiversity, forest, ecosystem, wildlife",
|
| 72 |
}
|
| 73 |
|
| 74 |
GNH_COLORS: Dict[str, str] = {
|
|
|
|
| 87 |
"Cultural Diversity": "#9370db",
|
| 88 |
}
|
| 89 |
|
| 90 |
+
# =========================
|
| 91 |
+
# 3) Pathway data
|
| 92 |
+
# - Reads phrases from bottom of "la matrice plus.csv"
|
| 93 |
+
# - Maps sequence keys -> phrase & image path
|
| 94 |
+
# =========================
|
| 95 |
+
CSV_PATH = "la matrice plus.csv"
|
| 96 |
+
|
| 97 |
+
# Aliases so your UI label → CSV row & image file
|
| 98 |
+
SEQUENCE_ALIASES = {
|
| 99 |
+
"Auto (recommend)": "auto",
|
| 100 |
+
"Direct": "direct",
|
| 101 |
+
"Fem": "feminine", # CSV row is 'feminine', image is 'fem pathway.png'
|
| 102 |
+
"Knot": "knot",
|
| 103 |
+
"Masc": "masc",
|
| 104 |
+
"Pain": "pain",
|
| 105 |
+
"Prayer": "prayer",
|
| 106 |
+
"Precise": "precise",
|
| 107 |
+
"Practical": "practical",
|
| 108 |
+
"Plot": "plot",
|
| 109 |
+
# add more later (e.g., "Spiritual", "Sad") if/when images are added
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
SEQUENCE_IMAGE_FILES = {
|
| 113 |
+
"direct": "direct pathway.png",
|
| 114 |
+
"feminine": "fem pathway.png",
|
| 115 |
+
"knot": "knot pathway.png",
|
| 116 |
+
"masc": "masc pathway.png",
|
| 117 |
+
"pain": "pain pathway.png",
|
| 118 |
+
"prayer": "prayer pathway.png",
|
| 119 |
+
"precise": "precise pathway.png",
|
| 120 |
+
"practical": "practical pathway.png",
|
| 121 |
+
"plot": "plot pathway.png",
|
| 122 |
+
# add "spiritual": "...png", "sad": "...png" when you drop them in
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
def load_pathway_phrases(csv_path: str) -> Dict[str, str]:
|
| 126 |
+
"""
|
| 127 |
+
Build pathway phrase text by concatenating non-null columns
|
| 128 |
+
from 'matrice1' onward for each sequence row at the bottom of the sheet.
|
| 129 |
+
"""
|
| 130 |
+
df = pd.read_csv(csv_path)
|
| 131 |
+
phrases: Dict[str, str] = {}
|
| 132 |
+
# We consider any row whose 'color' is one of our known sequences
|
| 133 |
+
valid_keys = set(SEQUENCE_IMAGE_FILES.keys()) | {"spiritual", "sad"}
|
| 134 |
+
rows = df[df["color"].astype(str).str.lower().isin(valid_keys)].copy()
|
| 135 |
+
|
| 136 |
+
for _, row in rows.iterrows():
|
| 137 |
+
key = str(row["color"]).strip().lower()
|
| 138 |
+
# join from column index 4 onward (matrice1 .. last "Unnamed")
|
| 139 |
+
text = " ".join(
|
| 140 |
+
str(v) for v in row.iloc[4:].tolist() if pd.notna(v)
|
| 141 |
+
).strip()
|
| 142 |
+
# clean duplicate/missing spaces
|
| 143 |
+
text = " ".join(text.split())
|
| 144 |
+
phrases[key] = text
|
| 145 |
+
|
| 146 |
+
return phrases
|
| 147 |
+
|
| 148 |
+
PATHWAY_PHRASES = load_pathway_phrases(CSV_PATH)
|
| 149 |
+
|
| 150 |
+
def sequence_to_image_path(seq_key: str) -> str | None:
|
| 151 |
+
fname = SEQUENCE_IMAGE_FILES.get(seq_key)
|
| 152 |
+
if fname and os.path.exists(fname):
|
| 153 |
+
return fname
|
| 154 |
+
return None # image optional—app will handle gracefully
|
| 155 |
+
|
| 156 |
+
# =========================
|
| 157 |
+
# 4) Core scoring functions
|
| 158 |
+
# =========================
|
| 159 |
def classify_emotion(text: str) -> Tuple[str, float]:
|
| 160 |
inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True)
|
| 161 |
with torch.no_grad():
|
| 162 |
logits = emotion_model(**inputs).logits
|
| 163 |
probs = F.softmax(logits, dim=1).squeeze()
|
| 164 |
labels = emotion_model.config.id2label
|
| 165 |
+
top_idx = int(torch.argmax(probs).item())
|
| 166 |
return labels[top_idx], float(probs[top_idx].item())
|
| 167 |
|
| 168 |
def score_sentiment(text: str) -> float:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
out = bert_sentiment(text[:512])[0]
|
| 170 |
label, score = out["label"], out["score"]
|
| 171 |
+
scaled = 5 + 5 * score if label == "POSITIVE" else 1 + 4 * (1 - score)
|
| 172 |
+
return round(min(10, max(1, scaled)), 2)
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
def score_accomplishment(text: str) -> float:
|
| 175 |
doc = nlp(text)
|
|
|
|
| 178 |
for token in doc:
|
| 179 |
if token.text.lower() in key_phrases:
|
| 180 |
score += 1.5
|
| 181 |
+
if token.tag_ in {"VBD", "VBN"}:
|
| 182 |
score += 0.5
|
| 183 |
+
return round(min(10, max(1, score)), 2)
|
| 184 |
|
| 185 |
def semantic_indicator_mapping(text: str, sentiment_score: float, sentiment_weight: float = 0.3) -> Dict[str, float]:
|
|
|
|
|
|
|
|
|
|
| 186 |
text_vec = sbert_model.encode(text, convert_to_tensor=True)
|
| 187 |
out: Dict[str, float] = {}
|
| 188 |
for label, desc in GNH_DOMAINS.items():
|
|
|
|
| 193 |
out[label] = round(blended, 3)
|
| 194 |
return dict(sorted(out.items(), key=lambda kv: -kv[1]))
|
| 195 |
|
| 196 |
+
# =========================
|
| 197 |
+
# 5) Pathway selection logic
|
| 198 |
+
# =========================
|
| 199 |
+
def suggest_sequence(text: str) -> Tuple[str, float]:
|
| 200 |
+
"""
|
| 201 |
+
Choose the best pathway by SBERT similarity between the input text
|
| 202 |
+
and each pathway phrase from the CSV.
|
| 203 |
+
Returns (sequence_key, similarity_score).
|
| 204 |
+
"""
|
| 205 |
+
if not PATHWAY_PHRASES:
|
| 206 |
+
return "direct", 0.0
|
| 207 |
+
text_vec = sbert_model.encode(text, convert_to_tensor=True)
|
| 208 |
+
best_key, best_sim = None, -1.0
|
| 209 |
+
for key, phrase in PATHWAY_PHRASES.items():
|
| 210 |
+
if not phrase:
|
| 211 |
+
continue
|
| 212 |
+
phrase_vec = sbert_model.encode(phrase, convert_to_tensor=True)
|
| 213 |
+
sim = float(util.cos_sim(text_vec, phrase_vec).item())
|
| 214 |
+
if sim > best_sim:
|
| 215 |
+
best_key, best_sim = key, sim
|
| 216 |
+
return (best_key or "direct"), best_sim
|
| 217 |
+
|
| 218 |
+
def pathway_payload(seq_key: str) -> Tuple[str, str | None]:
|
| 219 |
+
"""Return (phrase, image_path) for a given sequence key."""
|
| 220 |
+
key = seq_key.strip().lower()
|
| 221 |
+
phrase = PATHWAY_PHRASES.get(key, "")
|
| 222 |
+
img = sequence_to_image_path(key)
|
| 223 |
+
return phrase, img
|
| 224 |
+
|
| 225 |
+
# =========================
|
| 226 |
+
# 6) Plot helper (GNH bars)
|
| 227 |
+
# =========================
|
| 228 |
def indicators_plot(indicators: Dict[str, float]):
|
| 229 |
labels = list(indicators.keys())
|
| 230 |
values = list(indicators.values())
|
| 231 |
colors = [GNH_COLORS.get(label, "#cccccc") for label in labels]
|
|
|
|
| 232 |
fig = plt.figure(figsize=(8, 5))
|
| 233 |
plt.barh(labels, values, color=colors)
|
| 234 |
plt.gca().invert_yaxis()
|
|
|
|
| 237 |
plt.tight_layout()
|
| 238 |
return fig
|
| 239 |
|
| 240 |
+
# =========================
|
| 241 |
+
# 7) Gradio app
|
| 242 |
+
# =========================
|
| 243 |
+
SEQ_CHOICES = list(SEQUENCE_ALIASES.keys())
|
| 244 |
+
|
| 245 |
+
def analyze(text: str, seq_choice: str):
|
| 246 |
if not text or not text.strip():
|
| 247 |
+
return (
|
| 248 |
+
5.0, "neutral (0.0)", 5.0,
|
| 249 |
+
"—", None,
|
| 250 |
+
"{}", None, "—", 0.0
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
# 1) scores
|
| 254 |
sentiment = score_sentiment(text)
|
| 255 |
emotion, emo_conf = classify_emotion(text)
|
| 256 |
accomplishment = score_accomplishment(text)
|
| 257 |
indicators = semantic_indicator_mapping(text, sentiment)
|
| 258 |
+
fig = indicators_plot(indicators)
|
| 259 |
+
|
| 260 |
+
# 2) pathway
|
| 261 |
+
chosen_key = SEQUENCE_ALIASES.get(seq_choice, "auto")
|
| 262 |
+
auto_key, auto_sim = suggest_sequence(text) if chosen_key == "auto" else (chosen_key, None)
|
| 263 |
+
final_key = auto_key
|
| 264 |
+
|
| 265 |
+
phrase, img_path = pathway_payload(final_key)
|
| 266 |
|
| 267 |
+
# outputs
|
| 268 |
top5 = list(indicators.items())[:5]
|
| 269 |
top5_str = "\n".join(f"{k}: {v}" for k, v in top5)
|
|
|
|
| 270 |
|
| 271 |
return (
|
| 272 |
sentiment,
|
| 273 |
f"{emotion} ({emo_conf:.3f})",
|
| 274 |
+
accomplishment,
|
| 275 |
+
final_key, # selected sequence key
|
| 276 |
+
phrase or "—",
|
| 277 |
top5_str,
|
| 278 |
fig,
|
| 279 |
+
img_path, # pathway image (optional)
|
| 280 |
+
auto_key if chosen_key == "auto" else seq_choice,
|
| 281 |
+
float(auto_sim or 0.0)
|
| 282 |
)
|
| 283 |
|
| 284 |
+
with gr.Blocks(title="RGB Root Matriz Color Plotter") as demo:
|
| 285 |
+
gr.Markdown("## La Matriz Consulting, feat. BERT Emotion + GNH + Pathway\n"
|
| 286 |
+
"Type a phrase. Choose a **Sequence** or keep **Auto** to recommend a pathway. "
|
| 287 |
+
"You’ll get sentiment, emotion, accomplishment, GNH bars, and the pathway phrase + image from the dataset.")
|
| 288 |
+
|
| 289 |
with gr.Row():
|
| 290 |
inp = gr.Textbox(lines=4, label="Input text", placeholder="e.g., I finally quit my toxic job and feel lighter.")
|
| 291 |
with gr.Row():
|
| 292 |
+
seq = gr.Dropdown(choices=SEQ_CHOICES, value="Auto (recommend)", label="Sequence choice")
|
| 293 |
+
|
| 294 |
+
btn = gr.Button("Analyze", variant="primary")
|
| 295 |
+
|
| 296 |
with gr.Row():
|
| 297 |
sent = gr.Number(label="Sentiment (1–10)")
|
| 298 |
emo = gr.Text(label="Emotion")
|
| 299 |
acc = gr.Number(label="Accomplishment (1–10)")
|
| 300 |
+
|
| 301 |
+
with gr.Row():
|
| 302 |
+
seq_used = gr.Text(label="Chosen pathway key")
|
| 303 |
+
phrase_out = gr.Text(label="Pathway phrase")
|
| 304 |
+
|
| 305 |
with gr.Row():
|
| 306 |
+
gnh_top = gr.Text(label="Top GNH Indicators (Top 5)")
|
| 307 |
+
gnh_plot = gr.Plot(label="GNH Similarity")
|
| 308 |
+
|
| 309 |
with gr.Row():
|
| 310 |
+
pathway_img = gr.Image(label="Pathway image", type="filepath")
|
| 311 |
+
auto_meta = gr.Text(label="Auto selection (key, similarity)")
|
| 312 |
+
|
| 313 |
+
def _wrap_analyze(text, seq_choice):
|
| 314 |
+
result = analyze(text, seq_choice)
|
| 315 |
+
# build auto meta text
|
| 316 |
+
auto_key = result[-2]
|
| 317 |
+
auto_sim = result[-1]
|
| 318 |
+
meta = f"{auto_key} (similarity={auto_sim:.3f})" if seq_choice == "Auto (recommend)" else "—"
|
| 319 |
+
return (*result[:-2], meta)
|
| 320 |
|
| 321 |
+
btn.click(
|
| 322 |
+
fn=_wrap_analyze,
|
| 323 |
+
inputs=[inp, seq],
|
| 324 |
+
outputs=[sent, emo, acc, seq_used, phrase_out, gnh_top, gnh_plot, pathway_img, auto_meta]
|
| 325 |
+
)
|
| 326 |
|
| 327 |
if __name__ == "__main__":
|
| 328 |
demo.launch()
|