Update app.py
Browse files
app.py
CHANGED
|
@@ -7,9 +7,7 @@ import gradio as gr
|
|
| 7 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 8 |
from sentence_transformers import SentenceTransformer, util
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
# light setup
|
| 12 |
-
# --------------------------
|
| 13 |
def ensure_spacy():
|
| 14 |
try:
|
| 15 |
return spacy.load("en_core_web_sm")
|
|
@@ -27,24 +25,19 @@ def ensure_nltk():
|
|
| 27 |
ensure_nltk()
|
| 28 |
nlp = ensure_spacy()
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
# models (cached)
|
| 32 |
-
# --------------------------
|
| 33 |
sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 34 |
bert_sentiment = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 35 |
-
|
| 36 |
emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
|
| 37 |
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name)
|
| 38 |
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name)
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
#
|
| 42 |
-
#
|
| 43 |
-
CSV_PATH_PLUS = "la matrice plus.csv" # pathways + colors
|
| 44 |
-
CSV_PATH_COLOR = "la matrice.csv" # color lexicon
|
| 45 |
|
|
|
|
| 46 |
SEQUENCE_ALIASES = {
|
| 47 |
-
"Auto (recommend)": "auto",
|
| 48 |
"Direct": "direct",
|
| 49 |
"Fem": "feminine",
|
| 50 |
"Knot": "knot",
|
|
@@ -58,6 +51,7 @@ SEQUENCE_ALIASES = {
|
|
| 58 |
"Sad": "sad",
|
| 59 |
}
|
| 60 |
|
|
|
|
| 61 |
SEQUENCE_IMAGE_FILES = {
|
| 62 |
"direct": "direct pathway.png",
|
| 63 |
"feminine": "fem pathway.png",
|
|
@@ -72,6 +66,7 @@ SEQUENCE_IMAGE_FILES = {
|
|
| 72 |
"sad": "sad pathway.png"
|
| 73 |
}
|
| 74 |
|
|
|
|
| 75 |
GNH_DOMAINS: Dict[str, str] = {
|
| 76 |
"Mental Wellness": "mental health, emotional clarity, peace of mind",
|
| 77 |
"Social Wellness": "relationships, community, friendship, social harmony",
|
|
@@ -104,24 +99,22 @@ GNH_COLORS: Dict[str, str] = {
|
|
| 104 |
"Cultural Diversity": "#9370db",
|
| 105 |
}
|
| 106 |
|
| 107 |
-
#
|
| 108 |
-
# load pathway → colors & phrase (from la matrice plus.csv)
|
| 109 |
-
# --------------------------
|
| 110 |
def load_pathway_info(csv_path_plus: str):
|
| 111 |
df = pd.read_csv(csv_path_plus)
|
| 112 |
-
keys = set(SEQUENCE_ALIASES.values())
|
| 113 |
rows = df[df["color"].astype(str).str.lower().isin(keys)].copy()
|
| 114 |
|
| 115 |
seq_to_colors: Dict[str, List[str]] = {}
|
| 116 |
seq_phrase: Dict[str, str] = {}
|
| 117 |
|
| 118 |
-
# use 'r' for color list; phrase = join other non-null columns
|
| 119 |
cols_for_phrase = [c for c in df.columns if c not in ("color", "r", "g", "b")]
|
| 120 |
for _, row in rows.iterrows():
|
| 121 |
key = str(row["color"]).strip().lower()
|
|
|
|
| 122 |
colors_field = str(row.get("r", "") or "")
|
| 123 |
colors = [c.strip().lower() for c in re.split(r"[,\s]+", colors_field) if c.strip()]
|
| 124 |
-
seq_to_colors[key] = list(dict.fromkeys(colors)) #
|
| 125 |
|
| 126 |
vals = []
|
| 127 |
for c in cols_for_phrase:
|
|
@@ -137,15 +130,12 @@ def load_pathway_info(csv_path_plus: str):
|
|
| 137 |
|
| 138 |
SEQ_TO_COLORS, SEQ_PHRASE = load_pathway_info(CSV_PATH_PLUS)
|
| 139 |
|
| 140 |
-
#
|
| 141 |
-
# load color lexicon (from la matrice.csv)
|
| 142 |
-
# --------------------------
|
| 143 |
def _find_col(df: pd.DataFrame, candidates: List[str]) -> str | None:
|
| 144 |
names = {c.lower(): c for c in df.columns}
|
| 145 |
for c in candidates:
|
| 146 |
if c.lower() in names:
|
| 147 |
return names[c.lower()]
|
| 148 |
-
# fuzzy contains
|
| 149 |
for want in candidates:
|
| 150 |
for lc, orig in names.items():
|
| 151 |
if want.replace(" ", "").replace("-", "") in lc.replace(" ", "").replace("-", ""):
|
|
@@ -181,9 +171,10 @@ def sequence_to_image_path(seq_key: str) -> str | None:
|
|
| 181 |
fname = SEQUENCE_IMAGE_FILES.get(seq_key)
|
| 182 |
return fname if (fname and os.path.exists(fname)) else None
|
| 183 |
|
| 184 |
-
#
|
| 185 |
-
|
| 186 |
-
|
|
|
|
| 187 |
def classify_emotion(text: str) -> Tuple[str, float]:
|
| 188 |
inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True)
|
| 189 |
with torch.no_grad():
|
|
@@ -200,50 +191,21 @@ def score_sentiment(text: str) -> float:
|
|
| 200 |
return round(min(10, max(1, scaled)), 2)
|
| 201 |
|
| 202 |
def score_accomplishment(text: str) -> float:
|
| 203 |
-
doc = nlp(text)
|
| 204 |
-
score = 5.0
|
| 205 |
key_phrases = {"finally","told","decided","quit","refused","stood","walked","walked away","returned","return"}
|
| 206 |
for token in doc:
|
| 207 |
if token.text.lower() in key_phrases: score += 1.5
|
| 208 |
if token.tag_ in {"VBD","VBN"}: score += 0.5
|
| 209 |
return round(min(10, max(1, score)), 2)
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
# --------------------------
|
| 214 |
-
def encode_text(t: str):
|
| 215 |
-
return sbert_model.encode(t, convert_to_tensor=True)
|
| 216 |
-
|
| 217 |
-
def composite_vector(base_text: str, extras: List[Tuple[str,float]], limits: List[Tuple[str,float]]):
|
| 218 |
-
"""
|
| 219 |
-
v = base + Σ(w_i * encode(extra_i)) - Σ(w_j * encode(limit_j))
|
| 220 |
-
`extras` and `limits` are (text, weight) pairs
|
| 221 |
-
"""
|
| 222 |
-
v = encode_text(base_text)
|
| 223 |
-
for s, w in extras:
|
| 224 |
-
if s and w:
|
| 225 |
-
v = v + float(w) * encode_text(s)
|
| 226 |
-
for s, w in limits:
|
| 227 |
-
if s and w:
|
| 228 |
-
v = v - float(w) * encode_text(s)
|
| 229 |
-
return v
|
| 230 |
-
|
| 231 |
-
def best_sequence_for_vector(vec) -> Tuple[str, float]:
|
| 232 |
-
best_key, best_sim = None, -1.0
|
| 233 |
-
for key, phrase in SEQ_PHRASE.items():
|
| 234 |
-
if not phrase: continue
|
| 235 |
-
sim = float(util.cos_sim(vec, encode_text(phrase)).item())
|
| 236 |
-
if sim > best_sim:
|
| 237 |
-
best_key, best_sim = key, sim
|
| 238 |
-
return best_key or "direct", best_sim
|
| 239 |
-
|
| 240 |
-
def semantic_indicator_mapping_from_vec(vec, sentiment_score: float, sentiment_weight: float = 0.3) -> Dict[str, float]:
|
| 241 |
out: Dict[str, float] = {}
|
| 242 |
-
for
|
| 243 |
-
sim = float(util.cos_sim(
|
| 244 |
sim = max(0.0, min(1.0, sim))
|
| 245 |
blended = (1 - sentiment_weight) * sim + sentiment_weight * (sentiment_score / 10.0)
|
| 246 |
-
out[
|
| 247 |
return dict(sorted(out.items(), key=lambda kv: -kv[1]))
|
| 248 |
|
| 249 |
def indicators_plot(indicators: Dict[str, float]):
|
|
@@ -252,161 +214,154 @@ def indicators_plot(indicators: Dict[str, float]):
|
|
| 252 |
fig = plt.figure(figsize=(8,5))
|
| 253 |
plt.barh(labels, values, color=colors)
|
| 254 |
plt.gca().invert_yaxis()
|
| 255 |
-
plt.title("GNH Indicator Similarity
|
| 256 |
plt.xlabel("Score")
|
| 257 |
plt.tight_layout()
|
| 258 |
return fig
|
| 259 |
|
| 260 |
-
#
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
def
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
pills = "".join(
|
| 267 |
f"<span style='display:inline-block;margin:2px 6px;padding:2px 8px;border-radius:12px;background:#eee;font-size:12px'>{w}</span>"
|
| 268 |
for w in words
|
| 269 |
)
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
# include the pathway phrase itself as a small bias, if not auto
|
| 338 |
-
if chosen_key != "auto":
|
| 339 |
-
phrase = SEQ_PHRASE.get(chosen_key, "")
|
| 340 |
-
if phrase: extras.append((phrase, 0.5))
|
| 341 |
-
|
| 342 |
-
# include color interpretation texts (user inputs)
|
| 343 |
-
if color_a_text.strip(): extras.append((color_a_text.strip(), color_prompt_weight))
|
| 344 |
-
if color_b_text.strip(): extras.append((color_b_text.strip(), color_prompt_weight))
|
| 345 |
-
|
| 346 |
-
# limits: other sequences user selected to suppress
|
| 347 |
-
limit_keys = [SEQUENCE_ALIASES.get(lbl, lbl).lower() for lbl in limit_seqs_labels]
|
| 348 |
-
for k in limit_keys:
|
| 349 |
-
p = SEQ_PHRASE.get(k, "")
|
| 350 |
-
if p: limits.append((p, limit_weight))
|
| 351 |
-
|
| 352 |
-
# composite vector & choose pathway (or evaluate chosen)
|
| 353 |
-
context_vec = composite_vector(text, extras, limits)
|
| 354 |
-
|
| 355 |
-
if chosen_key == "auto":
|
| 356 |
-
final_key, final_sim = best_sequence_for_vector(context_vec)
|
| 357 |
-
else:
|
| 358 |
-
final_key = chosen_key
|
| 359 |
-
phrase = SEQ_PHRASE.get(final_key, "")
|
| 360 |
-
final_sim = float(util.cos_sim(context_vec, encode_text(phrase)).item()) if phrase else 0.0
|
| 361 |
-
|
| 362 |
-
# outputs
|
| 363 |
-
final_phrase = SEQ_PHRASE.get(final_key, "—")
|
| 364 |
-
img_path = sequence_to_image_path(final_key)
|
| 365 |
-
|
| 366 |
-
indicators = semantic_indicator_mapping_from_vec(context_vec, sentiment_score=sentiment)
|
| 367 |
fig = indicators_plot(indicators)
|
| 368 |
top5 = list(indicators.items())[:5]
|
| 369 |
top5_str = "\n".join(f"{k}: {v}" for k, v in top5)
|
| 370 |
|
|
|
|
| 371 |
emo_str = f"{emotion} ({emo_conf:.3f})"
|
| 372 |
-
meta = f"{
|
| 373 |
-
|
| 374 |
-
cols = SEQ_TO_COLORS.get(final_key, [])
|
| 375 |
-
meta += f" | colors: {', '.join(cols) if cols else '—'}"
|
| 376 |
|
| 377 |
-
#
|
| 378 |
-
|
| 379 |
|
| 380 |
return (
|
| 381 |
sentiment, emo_str, accomplishment,
|
| 382 |
-
|
| 383 |
-
|
| 384 |
)
|
| 385 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
with gr.Blocks(title="RGB Root Matriz Color Plotter") as demo:
|
| 387 |
gr.Markdown("## RGB Root Matriz Color Plotter\n"
|
| 388 |
"Type a phrase. Choose a **Sequence** or keep **Auto** to recommend a pathway. "
|
| 389 |
"You’ll get sentiment, emotion, accomplishment, GNH bars, and the pathway phrase + image from the dataset.")
|
| 390 |
|
| 391 |
with gr.Row():
|
| 392 |
-
inp = gr.Textbox(lines=4, label="
|
| 393 |
|
| 394 |
with gr.Row():
|
| 395 |
-
seq = gr.Dropdown(choices=
|
| 396 |
-
word_mode = gr.Radio(choices=["Matrice1","Matrice","English"], value="Matrice1", label="Word Mode")
|
| 397 |
|
| 398 |
-
|
| 399 |
-
chips_block = gr.HTML("Select a pathway to see color prompts.")
|
| 400 |
-
color_a = gr.Textbox(label="Color A meaning", placeholder="—")
|
| 401 |
-
color_b = gr.Textbox(label="Color B meaning", placeholder="—")
|
| 402 |
|
| 403 |
-
#
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
color_w = gr.Slider(0.0, 1.5, value=0.8, step=0.05, label="Color prompt weight")
|
| 409 |
-
limit_w = gr.Slider(0.0, 1.5, value=0.6, step=0.05, label="Limit weight")
|
| 410 |
|
| 411 |
run = gr.Button("Generate Pathway Analysis", variant="primary")
|
| 412 |
|
|
@@ -417,23 +372,33 @@ with gr.Blocks(title="RGB Root Matriz Color Plotter") as demo:
|
|
| 417 |
acc = gr.Number(label="Accomplishment (1–10)")
|
| 418 |
|
| 419 |
with gr.Row():
|
| 420 |
-
phrase_out = gr.Text(label="Pathway
|
| 421 |
gnh_top = gr.Text(label="Top GNH Indicators (Top 5)")
|
| 422 |
|
| 423 |
-
gnh_plot = gr.Plot(label="GNH Similarity
|
| 424 |
img_out = gr.Image(label="Pathway image", type="filepath")
|
| 425 |
-
meta_out = gr.Text(label="Chosen pathway / colors
|
| 426 |
|
| 427 |
-
#
|
| 428 |
-
|
| 429 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
|
| 431 |
run.click(
|
| 432 |
fn=analyze,
|
| 433 |
-
inputs=[inp, seq, word_mode,
|
| 434 |
-
outputs=[sent, emo, acc, phrase_out, gnh_top, gnh_plot, img_out, meta_out, chips_block,
|
| 435 |
)
|
| 436 |
|
| 437 |
if __name__ == "__main__":
|
| 438 |
demo.launch()
|
| 439 |
|
|
|
|
|
|
| 7 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 8 |
from sentence_transformers import SentenceTransformer, util
|
| 9 |
|
| 10 |
+
# ---------- lightweight setup ----------
|
|
|
|
|
|
|
| 11 |
def ensure_spacy():
|
| 12 |
try:
|
| 13 |
return spacy.load("en_core_web_sm")
|
|
|
|
| 25 |
ensure_nltk()
|
| 26 |
nlp = ensure_spacy()
|
| 27 |
|
| 28 |
+
# ---------- models ----------
|
|
|
|
|
|
|
| 29 |
sbert_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 30 |
bert_sentiment = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
|
|
|
| 31 |
emotion_model_name = "j-hartmann/emotion-english-distilroberta-base"
|
| 32 |
emotion_tokenizer = AutoTokenizer.from_pretrained(emotion_model_name)
|
| 33 |
emotion_model = AutoModelForSequenceClassification.from_pretrained(emotion_model_name)
|
| 34 |
|
| 35 |
+
# ---------- constants ----------
|
| 36 |
+
CSV_PATH_PLUS = "la matrice plus.csv" # pathways + colors + narrative pieces
|
| 37 |
+
CSV_PATH_COLOR = "la matrice.csv" # color lexicon
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
# only explicit pathways (no Auto here)
|
| 40 |
SEQUENCE_ALIASES = {
|
|
|
|
| 41 |
"Direct": "direct",
|
| 42 |
"Fem": "feminine",
|
| 43 |
"Knot": "knot",
|
|
|
|
| 51 |
"Sad": "sad",
|
| 52 |
}
|
| 53 |
|
| 54 |
+
|
| 55 |
SEQUENCE_IMAGE_FILES = {
|
| 56 |
"direct": "direct pathway.png",
|
| 57 |
"feminine": "fem pathway.png",
|
|
|
|
| 66 |
"sad": "sad pathway.png"
|
| 67 |
}
|
| 68 |
|
| 69 |
+
# GNH dictionaries
|
| 70 |
GNH_DOMAINS: Dict[str, str] = {
|
| 71 |
"Mental Wellness": "mental health, emotional clarity, peace of mind",
|
| 72 |
"Social Wellness": "relationships, community, friendship, social harmony",
|
|
|
|
| 99 |
"Cultural Diversity": "#9370db",
|
| 100 |
}
|
| 101 |
|
| 102 |
+
# ---------- load pathway → colors & phrase (plus) ----------
|
|
|
|
|
|
|
| 103 |
def load_pathway_info(csv_path_plus: str):
|
| 104 |
df = pd.read_csv(csv_path_plus)
|
| 105 |
+
keys = set(SEQUENCE_ALIASES.values())
|
| 106 |
rows = df[df["color"].astype(str).str.lower().isin(keys)].copy()
|
| 107 |
|
| 108 |
seq_to_colors: Dict[str, List[str]] = {}
|
| 109 |
seq_phrase: Dict[str, str] = {}
|
| 110 |
|
|
|
|
| 111 |
cols_for_phrase = [c for c in df.columns if c not in ("color", "r", "g", "b")]
|
| 112 |
for _, row in rows.iterrows():
|
| 113 |
key = str(row["color"]).strip().lower()
|
| 114 |
+
# colors list is in column 'r' (comma/space separated), supports 2–8
|
| 115 |
colors_field = str(row.get("r", "") or "")
|
| 116 |
colors = [c.strip().lower() for c in re.split(r"[,\s]+", colors_field) if c.strip()]
|
| 117 |
+
seq_to_colors[key] = list(dict.fromkeys(colors)) # dedupe, keep order
|
| 118 |
|
| 119 |
vals = []
|
| 120 |
for c in cols_for_phrase:
|
|
|
|
| 130 |
|
| 131 |
SEQ_TO_COLORS, SEQ_PHRASE = load_pathway_info(CSV_PATH_PLUS)
|
| 132 |
|
| 133 |
+
# ---------- load color lexicon (color CSV) ----------
|
|
|
|
|
|
|
| 134 |
def _find_col(df: pd.DataFrame, candidates: List[str]) -> str | None:
|
| 135 |
names = {c.lower(): c for c in df.columns}
|
| 136 |
for c in candidates:
|
| 137 |
if c.lower() in names:
|
| 138 |
return names[c.lower()]
|
|
|
|
| 139 |
for want in candidates:
|
| 140 |
for lc, orig in names.items():
|
| 141 |
if want.replace(" ", "").replace("-", "") in lc.replace(" ", "").replace("-", ""):
|
|
|
|
| 171 |
fname = SEQUENCE_IMAGE_FILES.get(seq_key)
|
| 172 |
return fname if (fname and os.path.exists(fname)) else None
|
| 173 |
|
| 174 |
+
# ---------- core scoring ----------
|
| 175 |
+
def encode_text(t: str):
|
| 176 |
+
return sbert_model.encode(t, convert_to_tensor=True)
|
| 177 |
+
|
| 178 |
def classify_emotion(text: str) -> Tuple[str, float]:
|
| 179 |
inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True)
|
| 180 |
with torch.no_grad():
|
|
|
|
| 191 |
return round(min(10, max(1, scaled)), 2)
|
| 192 |
|
| 193 |
def score_accomplishment(text: str) -> float:
|
| 194 |
+
doc = nlp(text); score = 5.0
|
|
|
|
| 195 |
key_phrases = {"finally","told","decided","quit","refused","stood","walked","walked away","returned","return"}
|
| 196 |
for token in doc:
|
| 197 |
if token.text.lower() in key_phrases: score += 1.5
|
| 198 |
if token.tag_ in {"VBD","VBN"}: score += 0.5
|
| 199 |
return round(min(10, max(1, score)), 2)
|
| 200 |
|
| 201 |
+
def semantic_indicator_mapping(text: str, sentiment_score: float, sentiment_weight: float = 0.3) -> Dict[str, float]:
|
| 202 |
+
v = encode_text(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
out: Dict[str, float] = {}
|
| 204 |
+
for dom, desc in GNH_DOMAINS.items():
|
| 205 |
+
sim = float(util.cos_sim(v, encode_text(desc)).item())
|
| 206 |
sim = max(0.0, min(1.0, sim))
|
| 207 |
blended = (1 - sentiment_weight) * sim + sentiment_weight * (sentiment_score / 10.0)
|
| 208 |
+
out[dom] = round(blended, 3)
|
| 209 |
return dict(sorted(out.items(), key=lambda kv: -kv[1]))
|
| 210 |
|
| 211 |
def indicators_plot(indicators: Dict[str, float]):
|
|
|
|
| 214 |
fig = plt.figure(figsize=(8,5))
|
| 215 |
plt.barh(labels, values, color=colors)
|
| 216 |
plt.gca().invert_yaxis()
|
| 217 |
+
plt.title("GNH Indicator Similarity")
|
| 218 |
plt.xlabel("Score")
|
| 219 |
plt.tight_layout()
|
| 220 |
return fig
|
| 221 |
|
| 222 |
+
# ---------- chips / prompts ----------
|
| 223 |
+
WORD_MODES = ["Matrice1", "Matrice", "English", "GNH Indicators"]
|
| 224 |
+
|
| 225 |
+
def join_lex_words(color: str) -> str:
|
| 226 |
+
d = COLOR_LEX.get(color.lower(), {})
|
| 227 |
+
words = d.get("matrice1", []) + d.get("matrice", []) + d.get("english", [])
|
| 228 |
+
return " ".join(dict.fromkeys(words))
|
| 229 |
+
|
| 230 |
+
def nearest_gnh_domain_for_color(color: str) -> Tuple[str, float]:
|
| 231 |
+
text = join_lex_words(color)
|
| 232 |
+
if not text:
|
| 233 |
+
return "Mental Wellness", 0.0
|
| 234 |
+
v = encode_text(text)
|
| 235 |
+
best, best_sim = None, -1.0
|
| 236 |
+
for dom, desc in GNH_DOMAINS.items():
|
| 237 |
+
sim = float(util.cos_sim(v, encode_text(desc)).item())
|
| 238 |
+
if sim > best_sim:
|
| 239 |
+
best, best_sim = dom, sim
|
| 240 |
+
return best or "Mental Wellness", best_sim
|
| 241 |
+
|
| 242 |
+
def chip_html_for(color: str, mode: str, max_words: int = 4) -> str:
|
| 243 |
+
if not color: return ""
|
| 244 |
+
if mode.lower().startswith("gnh"):
|
| 245 |
+
domain, sim = nearest_gnh_domain_for_color(color)
|
| 246 |
+
hex_color = GNH_COLORS.get(domain, "#cccccc")
|
| 247 |
+
dot = f"<span style='display:inline-block;width:12px;height:12px;border-radius:50%;background:{hex_color};margin-right:6px;border:1px solid #999;vertical-align:middle'></span>"
|
| 248 |
+
pill = f"<span style='display:inline-block;margin:2px 6px;padding:2px 8px;border-radius:12px;background:#eee;font-size:12px'>{domain} · {sim:.2f}</span>"
|
| 249 |
+
return f"<div style='margin-bottom:6px'>{dot}<b>{color.capitalize()}</b>{pill}</div>"
|
| 250 |
+
# word modes
|
| 251 |
+
key = "english" if mode.lower() == "english" else ("matrice1" if mode.lower()=="matrice1" else "matrice")
|
| 252 |
+
words = COLOR_LEX.get(color.lower(), {}).get(key, [])[:max_words]
|
| 253 |
pills = "".join(
|
| 254 |
f"<span style='display:inline-block;margin:2px 6px;padding:2px 8px;border-radius:12px;background:#eee;font-size:12px'>{w}</span>"
|
| 255 |
for w in words
|
| 256 |
)
|
| 257 |
+
dot = f"<span style='display:inline-block;width:12px;height:12px;border-radius:50%;background:{color};margin-right:6px;border:1px solid #999;vertical-align:middle'></span>"
|
| 258 |
+
return f"<div style='margin-bottom:6px'>{dot}<b>{color.capitalize()}</b>{pills}</div>"
|
| 259 |
+
|
| 260 |
+
def colors_for_sequence(seq_key: str) -> List[str]:
|
| 261 |
+
return SEQ_TO_COLORS.get(seq_key, []) # 2–8 colors
|
| 262 |
+
|
| 263 |
+
def labels_for_mode(colors: List[str], mode: str) -> List[str]:
|
| 264 |
+
if mode.lower().startswith("gnh"):
|
| 265 |
+
labs = []
|
| 266 |
+
for c in colors:
|
| 267 |
+
d, _ = nearest_gnh_domain_for_color(c)
|
| 268 |
+
labs.append(d)
|
| 269 |
+
return labs
|
| 270 |
+
return [c.capitalize() for c in colors]
|
| 271 |
+
|
| 272 |
+
# ---------- dynamic prompt UI (2–8 inputs) ----------
|
| 273 |
+
MAX_COLORS = 8 # upper bound for inputs we render
|
| 274 |
+
|
| 275 |
+
def update_prompt_ui(seq_choice: str, word_mode: str):
|
| 276 |
+
key = SEQUENCE_ALIASES.get(seq_choice)
|
| 277 |
+
colors = colors_for_sequence(key)
|
| 278 |
+
labels = labels_for_mode(colors, word_mode)
|
| 279 |
+
|
| 280 |
+
# chips HTML for all colors
|
| 281 |
+
chips = "".join(chip_html_for(c, word_mode) for c in colors) or "No prompts available for this pathway."
|
| 282 |
+
|
| 283 |
+
# build visibility/labels/placeholders for up to MAX_COLORS textboxes
|
| 284 |
+
inputs_updates = []
|
| 285 |
+
for i in range(MAX_COLORS):
|
| 286 |
+
if i < len(colors):
|
| 287 |
+
lab = f"{labels[i]} meaning" if labels[i] else f"Input {i+1} meaning"
|
| 288 |
+
ph = f"Describe {labels[i]} meaning..." if labels[i] else "—"
|
| 289 |
+
inputs_updates.append(gr.update(visible=True, label=lab, placeholder=ph, value=""))
|
| 290 |
+
else:
|
| 291 |
+
inputs_updates.append(gr.update(visible=False, value="", label=f"Input {i+1}", placeholder="—"))
|
| 292 |
+
return (chips, *inputs_updates)
|
| 293 |
+
|
| 294 |
+
# ---------- MAIN ANALYSIS ----------
|
| 295 |
+
def analyze(text: str, seq_choice: str, word_mode: str, *color_inputs):
|
| 296 |
+
"""
|
| 297 |
+
- user chooses pathway
|
| 298 |
+
- we show N color prompts (2–8)
|
| 299 |
+
- compose updated pathway phrase that embeds all non-empty inputs
|
| 300 |
+
- analyze sentiment/emotion + GNH on (text + updated phrase)
|
| 301 |
+
"""
|
| 302 |
+
key = SEQUENCE_ALIASES.get(seq_choice)
|
| 303 |
+
if key not in SEQ_PHRASE:
|
| 304 |
+
return (5.0, "neutral (0.0)", 5.0, "Please choose a valid pathway.", "{}", None, None,
|
| 305 |
+
f"{seq_choice} (unavailable)")
|
| 306 |
+
|
| 307 |
+
sentiment = score_sentiment(text or "")
|
| 308 |
+
emotion, emo_conf = classify_emotion(text or "")
|
| 309 |
+
accomplishment = score_accomplishment(text or "")
|
| 310 |
+
|
| 311 |
+
colors = colors_for_sequence(key)
|
| 312 |
+
labels = labels_for_mode(colors, word_mode)
|
| 313 |
+
|
| 314 |
+
# updated phrase = base phrase + each "{Label}: {input}"
|
| 315 |
+
base_phrase = SEQ_PHRASE.get(key, "")
|
| 316 |
+
pieces = [base_phrase]
|
| 317 |
+
for lab, user_text in zip(labels, list(color_inputs)[:len(colors)]):
|
| 318 |
+
if isinstance(user_text, str) and user_text.strip():
|
| 319 |
+
pieces.append(f"{lab}: {user_text.strip()}")
|
| 320 |
+
updated_phrase = " // ".join([p for p in pieces if p])
|
| 321 |
+
|
| 322 |
+
augmented_text = " ".join([t for t in [text, updated_phrase] if t and t.strip()])
|
| 323 |
+
indicators = semantic_indicator_mapping(augmented_text, sentiment_score=sentiment)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
fig = indicators_plot(indicators)
|
| 325 |
top5 = list(indicators.items())[:5]
|
| 326 |
top5_str = "\n".join(f"{k}: {v}" for k, v in top5)
|
| 327 |
|
| 328 |
+
cols = SEQ_TO_COLORS.get(key, [])
|
| 329 |
emo_str = f"{emotion} ({emo_conf:.3f})"
|
| 330 |
+
meta = f"{key} | colors: {', '.join(cols) if cols else '—'}"
|
| 331 |
+
img_path = sequence_to_image_path(key)
|
|
|
|
|
|
|
| 332 |
|
| 333 |
+
# refresh prompt area to keep labels/visibility consistent after run
|
| 334 |
+
chips_and_inputs = update_prompt_ui(seq_choice, word_mode)
|
| 335 |
|
| 336 |
return (
|
| 337 |
sentiment, emo_str, accomplishment,
|
| 338 |
+
updated_phrase, top5_str, fig, img_path, meta,
|
| 339 |
+
*chips_and_inputs
|
| 340 |
)
|
| 341 |
|
| 342 |
+
# ---------- Gradio UI ----------
|
| 343 |
+
SEQ_CHOICES = list(SEQUENCE_ALIASES.keys())
|
| 344 |
+
DEFAULT_SEQ = "Direct" if "Direct" in SEQ_CHOICES else SEQ_CHOICES[0]
|
| 345 |
+
|
| 346 |
with gr.Blocks(title="RGB Root Matriz Color Plotter") as demo:
|
| 347 |
gr.Markdown("## RGB Root Matriz Color Plotter\n"
|
| 348 |
"Type a phrase. Choose a **Sequence** or keep **Auto** to recommend a pathway. "
|
| 349 |
"You’ll get sentiment, emotion, accomplishment, GNH bars, and the pathway phrase + image from the dataset.")
|
| 350 |
|
| 351 |
with gr.Row():
|
| 352 |
+
inp = gr.Textbox(lines=4, label="Your situation / obstacle", placeholder="Describe the situation...")
|
| 353 |
|
| 354 |
with gr.Row():
|
| 355 |
+
seq = gr.Dropdown(choices=SEQ_CHOICES, value=DEFAULT_SEQ, label="Pathway")
|
| 356 |
+
word_mode = gr.Radio(choices=["Matrice1", "Matrice", "English", "GNH Indicators"], value="Matrice1", label="Word Mode")
|
| 357 |
|
| 358 |
+
chips_block = gr.HTML() # chips for all colors
|
|
|
|
|
|
|
|
|
|
| 359 |
|
| 360 |
+
# up to MAX_COLORS inputs (shown/hidden dynamically)
|
| 361 |
+
color_inputs = []
|
| 362 |
+
for i in range(MAX_COLORS):
|
| 363 |
+
tb = gr.Textbox(visible=False, label=f"Input {i+1}", placeholder="—")
|
| 364 |
+
color_inputs.append(tb)
|
|
|
|
|
|
|
| 365 |
|
| 366 |
run = gr.Button("Generate Pathway Analysis", variant="primary")
|
| 367 |
|
|
|
|
| 372 |
acc = gr.Number(label="Accomplishment (1–10)")
|
| 373 |
|
| 374 |
with gr.Row():
|
| 375 |
+
phrase_out = gr.Text(label="Updated Pathway Phrase (with your meanings)")
|
| 376 |
gnh_top = gr.Text(label="Top GNH Indicators (Top 5)")
|
| 377 |
|
| 378 |
+
gnh_plot = gr.Plot(label="GNH Similarity")
|
| 379 |
img_out = gr.Image(label="Pathway image", type="filepath")
|
| 380 |
+
meta_out = gr.Text(label="Chosen pathway / colors")
|
| 381 |
|
| 382 |
+
# initialize prompt area for default selection
|
| 383 |
+
init_updates = update_prompt_ui(DEFAULT_SEQ, "Matrice1")
|
| 384 |
+
chips_block.value = init_updates[0]
|
| 385 |
+
for tb, up in zip(color_inputs, init_updates[1:1+MAX_COLORS]):
|
| 386 |
+
tb.update(**up)
|
| 387 |
+
|
| 388 |
+
# re-render prompts on changes
|
| 389 |
+
def _update_ui(seq_choice, mode):
|
| 390 |
+
return update_prompt_ui(seq_choice, mode)
|
| 391 |
+
|
| 392 |
+
seq.change(fn=_update_ui, inputs=[seq, word_mode], outputs=[chips_block, *color_inputs])
|
| 393 |
+
word_mode.change(fn=_update_ui, inputs=[seq, word_mode], outputs=[chips_block, *color_inputs])
|
| 394 |
|
| 395 |
run.click(
|
| 396 |
fn=analyze,
|
| 397 |
+
inputs=[inp, seq, word_mode, *color_inputs],
|
| 398 |
+
outputs=[sent, emo, acc, phrase_out, gnh_top, gnh_plot, img_out, meta_out, chips_block, *color_inputs],
|
| 399 |
)
|
| 400 |
|
| 401 |
if __name__ == "__main__":
|
| 402 |
demo.launch()
|
| 403 |
|
| 404 |
+
|