File size: 24,592 Bytes
72311b0
cf69ab1
 
 
 
 
 
342a018
 
 
cf69ab1
 
 
 
 
 
 
 
342a018
 
 
 
cf69ab1
 
 
0810251
 
 
cf69ab1
0810251
 
 
b4875af
780cfe8
 
b4875af
 
0810251
b4875af
 
 
 
780cfe8
 
 
 
 
 
0810251
 
 
 
 
 
 
 
 
 
cf69ab1
780cfe8
 
 
 
 
 
 
 
 
 
 
 
 
3576afe
 
 
 
 
 
 
 
 
 
 
 
 
 
780cfe8
3576afe
780cfe8
 
 
 
3576afe
 
 
 
 
 
 
 
 
780cfe8
3576afe
780cfe8
3576afe
780cfe8
 
 
 
3576afe
780cfe8
3576afe
 
 
780cfe8
 
 
 
 
3576afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
780cfe8
 
 
 
5dd4551
 
780cfe8
 
5dd4551
 
 
3576afe
 
5dd4551
 
780cfe8
cf69ab1
 
 
 
 
 
 
 
 
 
 
14e48c5
cf69ab1
 
14e48c5
 
 
 
 
 
 
 
6405203
 
14e48c5
 
 
0810251
 
cf69ab1
0810251
 
 
 
cf69ab1
 
 
 
14e48c5
 
cf69ab1
14e48c5
 
 
 
780cfe8
 
5dd4551
780cfe8
5dd4551
cf69ab1
 
 
0810251
5dd4551
0810251
cf69ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0442da0
 
 
 
 
 
 
 
 
cf69ab1
 
 
 
 
 
 
 
 
14e48c5
 
 
cf69ab1
14e48c5
 
cf69ab1
 
14e48c5
 
cf69ab1
14e48c5
cf69ab1
14e48c5
cf69ab1
 
f668ec8
0442da0
f668ec8
 
 
0442da0
 
 
 
f668ec8
 
cf69ab1
 
 
 
 
 
 
f668ec8
 
 
cf69ab1
f668ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf69ab1
f668ec8
 
 
 
 
72311b0
f668ec8
 
 
 
 
 
 
 
cf69ab1
f668ec8
 
cf69ab1
0442da0
 
 
 
 
 
5dd4551
cf69ab1
 
5dd4551
cf69ab1
14e48c5
 
cf69ab1
14e48c5
 
 
 
58e1c05
cf69ab1
 
 
58e1c05
 
14e48c5
 
 
 
 
58e1c05
cf69ab1
14e48c5
6405203
a5e18c5
 
14e48c5
58e1c05
 
 
 
 
14e48c5
 
 
 
 
72311b0
14e48c5
 
 
 
 
58e1c05
14e48c5
 
 
cf69ab1
a5e18c5
cf69ab1
 
 
 
 
 
 
 
14e48c5
cf69ab1
 
 
 
 
14e48c5
cf69ab1
 
 
14e48c5
cf69ab1
5dd4551
 
 
 
 
 
 
 
 
cf69ab1
 
 
 
 
 
 
14e48c5
cf69ab1
 
 
 
14e48c5
cf69ab1
 
 
14e48c5
cf69ab1
5dd4551
 
 
 
 
 
 
 
 
cf69ab1
 
 
 
 
 
 
14e48c5
cf69ab1
 
14e48c5
 
cf69ab1
 
 
 
14e48c5
 
cf69ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6405203
 
 
 
 
 
cf69ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72311b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf69ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
from flask import Flask, request, jsonify, send_from_directory
from flask_cors import CORS
from sentence_transformers import SentenceTransformer
from pinecone import Pinecone
import os
import logging
import json

# Get Pinecone API key from environment variables
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')

app = Flask(__name__)
CORS(app)  # Enable CORS for all routes

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Validate API key
if not PINECONE_API_KEY:
    raise ValueError("PINECONE_API_KEY environment variable is required")

# Initialize Pinecone
pc = Pinecone(api_key=PINECONE_API_KEY)
# Configuration
# Index names for different models
INDEX_NAME_EN = "budget-proposals-optimized"  # 384 dimensions for all-MiniLM-L6-v2 (English documents)
INDEX_NAME_MULTILINGUAL = "budget-proposals-embeddinggemma"  # 768 dimensions for EmbeddingGemma (Sinhala/Tamil)

# Load embedding models - Hybrid approach for better performance
# English: all-MiniLM-L6-v2 (better domain understanding)
# Sinhala/Tamil: EmbeddingGemma-300m (better multilingual support)
import os
import re
import google.generativeai as genai
from huggingface_hub import login

# Login to Hugging Face if token is available (for EmbeddingGemma)
hf_token = os.getenv('HF_TOKEN')
if hf_token:
    login(token=hf_token)

# Configure Gemini for transliteration
gemini_api_key = os.getenv('GEMINI_API_KEY')
if gemini_api_key:
    genai.configure(api_key=gemini_api_key)
    gemini_model = genai.GenerativeModel('gemini-2.5-flash')

# Load both models
embed_model_en = SentenceTransformer("all-MiniLM-L6-v2")
embed_model_multilingual = SentenceTransformer("google/embeddinggemma-300m")

def get_embedding_model(language):
    """Get the appropriate embedding model based on language"""
    if language == 'en':
        return embed_model_en
    else:  # si, ta, or any other language
        return embed_model_multilingual

def contains_sinhala_roman(text):
    """Check if text contains Roman Sinhala patterns"""
    # Common Roman Sinhala patterns
    sinhala_roman_patterns = [
        r'\b[a-z]+[aeiou][a-z]*\b',  # Basic Sinhala roman patterns
        r'\b(ma|ta|ka|ga|cha|ja|da|tha|pa|ba|ya|ra|la|wa|sa|ha|na|mata|kata|gata)\b',  # Common words
    ]
    
    for pattern in sinhala_roman_patterns:
        if re.search(pattern, text.lower()):
            return True
    return False

def contains_tamil_roman(text):
    """Check if text contains Roman Tamil patterns"""
    # Common Roman Tamil patterns
    tamil_roman_patterns = [
        r'\b[a-z]+[aeiou][a-z]*\b',  # Basic Tamil roman patterns
        r'\b(amma|appa|akka|anna|thambi|thangai|paapa|amma|appa|akka|anna|thambi|thangai|paapa)\b',  # Common Tamil words
        r'\b(naan|neenga|avan|aval|adhu|idhu|edhu|yaaru|eppadi|enna|yaen|kaalam|vaaram|maasam|varusham)\b',  # Tamil pronouns/words
    ]
    
    for pattern in tamil_roman_patterns:
        if re.search(pattern, text.lower()):
            return True
    return False

def transliterate_sinhala_roman_to_sinhala(text):
    """Use Gemini to convert Roman Sinhala to Sinhala script with enhanced context"""
    if not gemini_api_key or not contains_sinhala_roman(text):
        return text
    
    try:
        prompt = f"""You are a language expert specializing in Sri Lankan languages. Convert this Roman Sinhala text (Sinhala words written in English letters) to proper Sinhala script.

IMPORTANT CONTEXT:
- This is for a Sri Lankan budget proposals search system
- The user is likely searching for government policies, economic proposals, or budget information
- Use formal Sinhala appropriate for policy discussions
- Only convert if it's actually Sinhala words in Roman script
- If it's English or other language, return as is
- Be accurate with Sri Lankan Sinhala terminology

Text to convert: "{text}"

Converted Sinhala script:"""
        
        response = gemini_model.generate_content(prompt)
        result = response.text.strip()
        
        # Clean up the response - remove any extra text that might be added
        if result and len(result) > 0:
            # Remove common prefixes that Gemini might add
            result = result.replace("Converted Sinhala script:", "").strip()
            result = result.replace("Sinhala script:", "").strip()
            return result
        else:
            return text
            
    except Exception as e:
        logger.warning(f"Sinhala transliteration failed: {e}")
        return text

def transliterate_tamil_roman_to_tamil(text):
    """Use Gemini to convert Roman Tamil to Tamil script with enhanced context"""
    if not gemini_api_key or not contains_tamil_roman(text):
        return text
    
    try:
        prompt = f"""You are a language expert specializing in Sri Lankan languages. Convert this Roman Tamil text (Tamil words written in English letters) to proper Tamil script.

IMPORTANT CONTEXT:
- This is for a Sri Lankan budget proposals search system
- The user is likely searching for government policies, economic proposals, or budget information
- Use formal Tamil appropriate for policy discussions
- Use Sri Lankan Tamil dialect and terminology
- Only convert if it's actually Tamil words in Roman script
- If it's English or other language, return as is
- Be accurate with Sri Lankan Tamil terminology and context

Text to convert: "{text}"

Converted Tamil script:"""
        
        response = gemini_model.generate_content(prompt)
        result = response.text.strip()
        
        # Clean up the response - remove any extra text that might be added
        if result and len(result) > 0:
            # Remove common prefixes that Gemini might add
            result = result.replace("Converted Tamil script:", "").strip()
            result = result.replace("Tamil script:", "").strip()
            return result
        else:
            return text
            
    except Exception as e:
        logger.warning(f"Tamil transliteration failed: {e}")
        return text

def preprocess_query(query, language):
    """Preprocess query with transliteration if needed"""
    if language == 'si' and contains_sinhala_roman(query):
        logger.info(f"Transliterating Roman Sinhala: {query}")
        transliterated = transliterate_sinhala_roman_to_sinhala(query)
        logger.info(f"Transliterated to: {transliterated}")
        return transliterated
    elif language == 'ta' and contains_tamil_roman(query):
        logger.info(f"Transliterating Roman Tamil: {query}")
        transliterated = transliterate_tamil_roman_to_tamil(query)
        logger.info(f"Transliterated to: {transliterated}")
        return transliterated
    return query

# Load dynamic metadata
def load_dynamic_metadata():
    """Load metadata from dynamic_metadata.json"""
    try:
        if os.path.exists("dynamic_metadata.json"):
            with open("dynamic_metadata.json", 'r', encoding='utf-8') as f:
                return json.load(f)
    except Exception as e:
        logger.error(f"Error loading dynamic metadata: {e}")
    return {}

# Load dynamic metadata (will be reloaded on each request)
DYNAMIC_METADATA = load_dynamic_metadata()

def get_language_specific_data(proposal_data, field, language='en'):
    """Get language-specific data from proposal metadata"""
    # If it's the old format (single language), return as-is
    if isinstance(proposal_data.get(field), str):
        return proposal_data.get(field, '')
    
    # If it's the new multi-language format, return language-specific data
    if isinstance(proposal_data.get(field), dict):
        # Only return data for the requested language, no fallback
        return proposal_data.get(field, {}).get(language, '')
    
    return ''

def get_pinecone_index(language='en'):
    """Get the appropriate Pinecone index based on language"""
    try:
        if language == 'en':
            return pc.Index(INDEX_NAME_EN)
        else:  # si, ta, or any other language
            return pc.Index(INDEX_NAME_MULTILINGUAL)
    except Exception as e:
        logger.error(f"Error accessing Pinecone index: {e}")
        return None

def semantic_search(query: str, top_k=1, category_filter=None, language='en'):
    """Perform semantic search on budget proposals with multi-language support"""
    try:
        # Reload metadata to get latest updates
        global DYNAMIC_METADATA
        DYNAMIC_METADATA = load_dynamic_metadata()
        
        # Preprocess query with transliteration if needed
        original_query = query
        query = preprocess_query(query, language)
        
        pc_index = get_pinecone_index(language)
        if not pc_index:
            return []
        
        # Use language-specific embedding model
        model = get_embedding_model(language)
        query_emb = model.encode(query).tolist()
        
        # Build filter if category is specified
        filter_dict = {"source": "budget_proposals"}
        if category_filter and category_filter != "All categories":
            filter_dict["category"] = category_filter
        
        # Get more results to find relevant documents
        res = pc_index.query(
            vector=query_emb, 
            top_k=50,  # Get more results to find relevant documents
            include_metadata=True,
            filter=filter_dict
        )

        # Track the best score for each unique document
        best_scores = {}  # file_path -> best_score
        
        for match in res["matches"]:
            metadata = match["metadata"]
            score = match["score"]
            file_path = metadata.get("file_path", "")
            
            # Keep track of the best score for each document
            if file_path not in best_scores or score > best_scores[file_path]:
                best_scores[file_path] = score
        
        # Debug logging for duplicate investigation
        if query.lower() == "quality industrial zone":
            logger.info(f"Debug - Query: {query}")
            logger.info(f"Debug - Total matches from Pinecone: {len(res['matches'])}")
            logger.info(f"Debug - Unique documents after deduplication: {len(best_scores)}")
            logger.info(f"Debug - Document scores: {list(best_scores.items())[:5]}")
            for file_path, score in list(best_scores.items())[:3]:
                logger.info(f"Debug - Document: {file_path}, Score: {score}")
        
        if not best_scores:
            return []
        
        # Sort documents by their best scores
        sorted_docs = sorted(best_scores.items(), key=lambda x: x[1], reverse=True)
        
        # Determine how many documents to return based on query specificity
        max_score = sorted_docs[0][1]  # Best score
        
        # If the best score is very high (>0.6), it's a specific query - show fewer results
        # If the best score is moderate (0.3-0.6), it's a medium query - show some results
        # If the best score is low (<0.3), it's a broad query - show more results
        if max_score > 0.6:
            # Specific query - show 1-2 documents
            threshold = max_score * 0.8  # Show documents within 80% of best score
            max_docs = 2
        elif max_score > 0.3:
            # Medium query - show 2-3 documents
            threshold = max_score * 0.7  # Show documents within 70% of best score
            max_docs = 3
        else:
            # Broad query - show 3-5 documents
            threshold = max_score * 0.5  # Show documents within 50% of best score
            max_docs = 5
        
        # Create a lookup dictionary for efficient metadata retrieval
        # Store the match with the highest score for each file_path
        metadata_lookup = {}
        for match in res["matches"]:
            file_path_key = match["metadata"].get("file_path", "")
            score = match["score"]
            
            # Only store if this is the first match for this file_path or if it has a higher score
            if file_path_key not in metadata_lookup or score > metadata_lookup[file_path_key]["score"]:
                metadata_lookup[file_path_key] = match
        
        results = []
        doc_count = 0
        
        for file_path, score in sorted_docs:
            if doc_count >= max_docs or score < threshold:
                break
            
            # Get the metadata for this document using the lookup
            if file_path in metadata_lookup:
                match = metadata_lookup[file_path]
                metadata = match["metadata"]
                
                # Use the DYNAMIC_METADATA mapping if available, otherwise use metadata
                proposal_data = DYNAMIC_METADATA.get(file_path, {
                    "title": metadata.get("title", "Unknown Title"),
                    "summary": metadata.get("summary", ""),
                    "category": metadata.get("category", "Budget Proposal"),
                    "costLKR": metadata.get("costLKR", "No Costing Available")
                })
                
                # Get language-specific data
                title = get_language_specific_data(proposal_data, "title", language)
                summary = get_language_specific_data(proposal_data, "summary", language)
                costLKR = get_language_specific_data(proposal_data, "costLKR", language)
                category = get_language_specific_data(proposal_data, "category", language)
                thumb_url = metadata.get("thumbUrl", "")
                
                # Only include documents that have meaningful content in the requested language
                # Skip documents where title and summary are empty or "Unknown"/"No summary available"
                if (title and title.strip() and title not in ["Unknown", "Unknown Title", ""] and
                    summary and summary.strip() and summary not in ["No summary available", ""]):
                    
                    result = {
                        "title": title,
                        "summary": summary,
                        "costLKR": costLKR,
                        "category": category,
                        "badge": proposal_data.get("badge", ""),  # Add badge field
                        "pdfUrl": f"assets/pdfs/{file_path}" if file_path else "",
                        "thumbUrl": f"assets/thumbs/{thumb_url}" if thumb_url else "",
                        "score": score,
                        "relevance_percentage": int(score * 100),
                        "file_path": file_path,
                        "id": match["id"],
                        "content": metadata.get("content", "")  # Add the actual content
                    }
                    
                    results.append(result)
                    doc_count += 1
        
        # Debug logging for final results
        if query.lower() == "quality industrial zone":
            logger.info(f"Debug - Final results count: {len(results)}")
            for i, result in enumerate(results):
                logger.info(f"Debug - Result {i+1}: {result.get('title', 'No title')} - {result.get('file_path', 'No path')}")
        
        return results
    except Exception as e:
        logger.error(f"Search error: {e}")
        return []

def get_all_proposals(category_filter=None, language='en'):
    """Get all budget proposals with multi-language support"""
    try:
        # Reload metadata to get latest updates
        global DYNAMIC_METADATA
        DYNAMIC_METADATA = load_dynamic_metadata()
        
        logger.info(f"Getting all proposals for language: {language}, category_filter: {category_filter}")
        
        results = []
        
        # Iterate through all files in DYNAMIC_METADATA to ensure we get everything
        for file_path, proposal_data in DYNAMIC_METADATA.items():
            # Get language-specific data
            title = get_language_specific_data(proposal_data, "title", language)
            summary = get_language_specific_data(proposal_data, "summary", language)
            costLKR = get_language_specific_data(proposal_data, "costLKR", language)
            category = get_language_specific_data(proposal_data, "category", language)
            thumb_url = proposal_data.get("thumbUrl", "")
            
            # Only include documents that have meaningful content in the requested language
            # Skip documents where title and summary are empty or "Unknown"/"No summary available"
            if (title and title.strip() and title not in ["Unknown", "Unknown Title", ""] and
                summary and summary.strip() and summary not in ["No summary available", ""]):
                
                # Apply category filter if specified
                if category_filter and category_filter != "All categories":
                    if category != category_filter:
                        continue
                
                result = {
                    "title": title,
                    "summary": summary,
                    "costLKR": costLKR,
                    "category": category,
                    "badge": proposal_data.get("badge", ""),  # Add badge field
                    "pdfUrl": f"assets/pdfs/{file_path}" if file_path else "",
                    "thumbUrl": f"assets/thumbs/{thumb_url}" if thumb_url else "",
                    "score": 1.0,  # Default score for all proposals
                    "relevance_percentage": 100,
                    "file_path": file_path,
                    "id": f"{file_path}_all_proposals"  # Generate a consistent ID
                }
                
                results.append(result)
        
        logger.info(f"Returning {len(results)} proposals for language {language}")
        return results
        
    except Exception as e:
        logger.error(f"Error getting all proposals: {e}")
        return []

@app.route('/api/search', methods=['POST'])
def search_proposals():
    """API endpoint for searching budget proposals with multi-language support"""
    try:
        data = request.get_json()
        query = data.get('query', '').strip()
        top_k = data.get('top_k', 10)
        category_filter = data.get('category_filter')
        language = data.get('language', 'en')  # Default to English
        
        if not query:
            # If no query, return all proposals
            results = get_all_proposals(category_filter, language)
        else:
            results = semantic_search(query, top_k, category_filter, language)
        
        return jsonify({
            "query": query,
            "results": results,
            "total_results": len(results),
            "category_filter": category_filter,
            "language": language
        })
    
    except Exception as e:
        logger.error(f"API error: {e}")
        return jsonify({"error": str(e)}), 500

@app.route('/api/search', methods=['GET'])
def search_proposals_get():
    """API endpoint for searching proposals (GET method) with multi-language support"""
    try:
        query = request.args.get('query', '').strip()
        top_k = int(request.args.get('top_k', 10))
        category_filter = request.args.get('category_filter')
        language = request.args.get('language', 'en')  # Default to English
        
        if not query:
            # If no query, return all proposals
            results = get_all_proposals(category_filter, language)
        else:
            results = semantic_search(query, top_k, category_filter, language)
        
        return jsonify({
            "query": query,
            "results": results,
            "total_results": len(results),
            "category_filter": category_filter,
            "language": language
        })
    
    except Exception as e:
        logger.error(f"API error: {e}")
        return jsonify({"error": str(e)}), 500

@app.route('/api/proposals', methods=['GET'])
def get_proposals():
    """Get all budget proposals with multi-language support"""
    try:
        category_filter = request.args.get('category_filter')
        language = request.args.get('language', 'en')  # Default to English
        results = get_all_proposals(category_filter, language)
        
        return jsonify({
            "results": results,
            "total_results": len(results),
            "category_filter": category_filter,
            "language": language
        })
    
    except Exception as e:
        logger.error(f"API error: {e}")
        return jsonify({"error": str(e)}), 500

@app.route('/api/categories', methods=['GET'])
def get_categories():
    """Get all available categories"""
    try:
        # Get categories directly from dynamic metadata for reliability
        categories = set()
        for file_path, metadata in DYNAMIC_METADATA.items():
            category = metadata.get("category")
            if category:
                # Handle both string and dict formats
                if isinstance(category, dict):
                    # Extract English category from dict
                    category = category.get("en", "")
                if category:
                    categories.add(category)
        
        # If no categories from metadata, fallback to Pinecone
        if not categories:
            all_proposals = get_all_proposals()
            for proposal in all_proposals:
                category = proposal.get("category")
                if category:
                    categories.add(category)
        
        return jsonify({
            "categories": sorted(list(categories))
        })
    
    except Exception as e:
        logger.error(f"API error: {e}")
        return jsonify({"error": str(e)}), 500

@app.route('/api/health', methods=['GET'])
def health_check():
    """Health check endpoint"""
    try:
        pc_index = get_pinecone_index()
        if pc_index:
            stats = pc_index.describe_index_stats()
            return jsonify({
                "status": "healthy", 
                "message": "Budget proposals semantic search API is running",
                "index_stats": {
                    "total_vector_count": stats.total_vector_count,
                    "dimension": stats.dimension,
                    "index_fullness": stats.index_fullness
                }
            })
        else:
            return jsonify({
                "status": "unhealthy",
                "message": "Cannot connect to Pinecone index"
            }), 500
    except Exception as e:
        return jsonify({
            "status": "unhealthy",
            "message": f"Error: {str(e)}"
        }), 500

@app.route('/api/stats', methods=['GET'])
def get_stats():
    """Get index statistics"""
    try:
        pc_index = get_pinecone_index()
        if not pc_index:
            return jsonify({"error": "Cannot connect to Pinecone index"}), 500
        
        stats = pc_index.describe_index_stats()
        return jsonify({
            "total_vector_count": stats.total_vector_count,
            "dimension": stats.dimension,
            "index_fullness": stats.index_fullness
        })
    except Exception as e:
        return jsonify({"error": str(e)}), 500

@app.route('/assets/<path:filename>')
def serve_assets(filename):
    """Serve static assets like badge images"""
    try:
        # Check if the file exists in the Budget_Proposals copy-2/assets directory
        assets_dir = os.path.join("Budget_Proposals copy-2", "assets")
        if os.path.exists(os.path.join(assets_dir, filename)):
            return send_from_directory(assets_dir, filename)
        else:
            # Fallback to current directory assets
            return send_from_directory("assets", filename)
    except Exception as e:
        logger.error(f"Error serving asset {filename}: {e}")
        return jsonify({"error": f"Asset not found: {filename}"}), 404

@app.route('/', methods=['GET'])
def home():
    """Home endpoint with API documentation"""
    return jsonify({
        "message": "Budget Proposals Semantic Search API",
        "version": "1.0.0",
        "endpoints": {
            "POST /api/search": "Search proposals with JSON body",
            "GET /api/search?query=<search_term>": "Search proposals with query parameter",
            "GET /api/proposals": "Get all proposals",
            "GET /api/categories": "Get all categories",
            "GET /api/health": "Health check",
            "GET /api/stats": "Index statistics"
        },
        "status": "running"
    })

if __name__ == '__main__':
    app.run(debug=False, host='0.0.0.0', port=7860)