Spaces:
Build error
Build error
| __author__ = "Yifan Zhang (yzhang@hbku.edu.qa)" | |
| __copyright__ = "Copyright (C) 2021, Qatar Computing Research Institute, HBKU, Doha" | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple | |
| import torch | |
| from torch import nn | |
| from torch.nn.functional import sigmoid | |
| from transformers import BertPreTrainedModel, BertModel | |
| from transformers.file_utils import ModelOutput | |
| TOKEN_TAGS = ( | |
| "<PAD>", "O", | |
| "Name_Calling,Labeling", "Repetition", "Slogans", "Appeal_to_fear-prejudice", "Doubt", | |
| "Exaggeration,Minimisation", "Flag-Waving", "Loaded_Language", | |
| "Reductio_ad_hitlerum", "Bandwagon", | |
| "Causal_Oversimplification", "Obfuscation,Intentional_Vagueness,Confusion", "Appeal_to_Authority", "Black-and-White_Fallacy", | |
| "Thought-terminating_Cliches", "Red_Herring", "Straw_Men", "Whataboutism" | |
| ) | |
| SEQUENCE_TAGS = ("Non-prop", "Prop") | |
| class TokenAndSequenceJointClassifierOutput(ModelOutput): | |
| loss: Optional[torch.FloatTensor] = None | |
| token_logits: torch.FloatTensor = None | |
| sequence_logits: torch.FloatTensor = None | |
| hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| class BertForTokenAndSequenceJointClassification(BertPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.num_token_labels = 20 | |
| self.num_sequence_labels = 2 | |
| self.token_tags = TOKEN_TAGS | |
| self.sequence_tags = SEQUENCE_TAGS | |
| self.alpha = 0.9 | |
| self.bert = BertModel(config) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.ModuleList([ | |
| nn.Linear(config.hidden_size, self.num_token_labels), | |
| nn.Linear(config.hidden_size, self.num_sequence_labels), | |
| ]) | |
| self.masking_gate = nn.Linear(2, 1) | |
| self.init_weights() | |
| self.merge_classifier_1 = nn.Linear(self.num_token_labels + self.num_sequence_labels, self.num_token_labels) | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| token_type_ids=None, | |
| position_ids=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=True, | |
| ): | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.bert( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| ) | |
| sequence_output = outputs[0] | |
| pooler_output = outputs[1] | |
| sequence_output = self.dropout(sequence_output) | |
| token_logits = self.classifier[0](sequence_output) | |
| pooler_output = self.dropout(pooler_output) | |
| sequence_logits = self.classifier[1](pooler_output) | |
| gate = torch.sigmoid(self.masking_gate(sequence_logits)) | |
| gates = gate.unsqueeze(1).repeat(1, token_logits.size()[1], token_logits.size()[2]) | |
| weighted_token_logits = torch.mul(gates, token_logits) | |
| logits = [weighted_token_logits, sequence_logits] | |
| loss = None | |
| if labels is not None: | |
| criterion = nn.CrossEntropyLoss(ignore_index=0) | |
| binary_criterion = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([3932/14263]).cuda()) | |
| loss_fct = CrossEntropyLoss() | |
| weighted_token_logits = weighted_token_logits.view(-1, weighted_token_logits.shape[-1]) | |
| sequence_logits = sequence_logits.view(-1, sequence_logits.shape[-1]) | |
| token_loss = criterion(weighted_token_logits, labels) | |
| sequence_label = torch.LongTensor([1] if any([label > 0 for label in labels]) else [0]) | |
| sequence_loss = binary_criterion(sequence_logits, sequence_label) | |
| loss = self.alpha*loss[0] + (1-self.alpha)*loss[1] | |
| if not return_dict: | |
| output = (logits,) + outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return TokenAndSequenceJointClassifierOutput( | |
| loss=loss, | |
| token_logits=weighted_token_logits, | |
| sequence_logits=sequence_logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |